一种柔性环保耐高温保护膜及其制备方法转让专利

申请号 : CN202010511425.4

文献号 : CN111647188B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 潘炜

申请人 : 宁波六麦新材料科技有限公司

摘要 :

本发明涉及膜制造技术领域,尤其是一种柔性环保耐高温保护膜及其制备方法,该保护膜包括基础芯层、红外反射层;由芳香族聚酰胺纤维、纳米氧化铜、纳米硫化锌、全氟烷基聚醚、酚醛树脂改性氯丁胶、聚四氟乙烯、聚苯并咪唑纤维、玄武岩纤维、纳米二氧化硅、氯醇橡胶、邻甲酚醛环氧树脂、甲基硅橡胶、聚氨酯改性环氧树脂、三氧化硫制成。本发明膜经过多层处理,使得整个膜的层级分明,可以降低导热效果,通过外界的辐射会经过多层反射,降低整体膜的热量吸收,具有更好的高温耐受性和隔热效果,制作环节和环境相容性好,由更好的环境适宜性。

权利要求 :

1.一种柔性环保耐高温保护膜,其特征在于,该保护膜包括基础芯层、红外反射层;所述基础芯层、红外反射层的质量比为(5‑8):0.1;以质量份计,所述红外反射层由以下原料制成:芳香族聚酰胺纤维3‑5份、纳米氧化铜0.1‑0.3份、纳米硫化锌0.1‑0.3份、全氟烷基聚醚0.01‑0.05份、酚醛树脂改性氯丁胶15‑25份、聚四氟乙烯5‑15份;

所述基础芯层由以下质量份的原料组成:聚苯并咪唑纤维8‑10份、玄武岩纤维0.2‑0.5份、纳米二氧化硅0.5‑1份、氯醇橡胶10‑15份、邻甲酚醛环氧树脂18‑22份、甲基硅橡胶5‑8份、聚氨酯改性环氧树脂25‑30份、三氧化硫0.02‑0.05份;

所述的柔性环保耐高温保护膜,制备方法如下:

(1)玄武岩纤维改性:

将玄武岩纤维在真空下,加热到100‑120℃,通入水蒸气共热10‑20min,通入三氧化硫,加热到180‑200℃,经超声波处理15‑25min,再将温度降低至60‑80℃,将玄武岩纤维真空干燥至恒重即可;所述水蒸气与玄武岩纤维的质量比为1:10;

(2)基础芯层混炼:

将聚苯并咪唑纤维、纳米二氧化硅、氯醇橡胶、甲基硅橡胶在真空设备中加热至220‑

240℃,混炼均匀后加入改性玄武岩纤维;

(3)基础芯层定型:

在上一步的混合物中加入邻甲酚醛环氧树脂充分混匀后,再加入聚氨酯改性环氧树脂溶解搅拌,将熔融体倒入模具中冷却成型得到基础芯层;

(4)红外反射层粘附

将芳香族聚酰胺纤维、纳米氧化铜、纳米硫化锌、全氟烷基聚醚、酚醛树脂改性氯丁胶加热到180‑200℃混合均匀,喷涂到基础芯层表面,再喷一层熔融聚四氟乙烯即可。

2.如权利要求1所述的柔性环保耐高温保护膜,其特征在于,所述芳香族聚酰胺纤维为聚对苯二甲酰对苯二胺纤维、聚间苯二甲酰间苯二胺纤维中的一种或多种。

3.如权利要求1所述的柔性环保耐高温保护膜,其特征在于,所述芳香族聚酰胺纤维细度为0.1mm‑0.8mm。

4.如权利要求1所述的柔性环保耐高温保护膜,其特征在于,所述聚苯并咪唑纤维的细度为0.1mm‑0.8mm。

说明书 :

一种柔性环保耐高温保护膜及其制备方法

技术领域

[0001] 本发明涉及膜制造技术领域,尤其涉及一种柔性环保耐高温保护膜及其制备方法。

背景技术

[0002] 以有机高分子聚合物为材料制成的薄膜。随着石油工业和科技的发展,高分子膜的应用领域不断扩大,由最初的包装膜发展到了智能高分子膜、高分子功能膜等。高分子膜凭借其优良的性能应用于核燃料及金属提炼、气体分离、海水淡化、超纯水制备、污废处理、人工脏器的制造、医药、食品、农业、化工等等领域。但是当前技术中的高分子膜在高热使用下的研究较少,并且高分子膜的制作中多是简单的混合凝结,难以发挥出高分子膜的优良性能。如专利号为CN201310658538.7的一种隔热塑料膜及生产方法,由掺酸聚甲基丙烯酸酯薄膜和沉积在薄膜表面的纳米二氧化锡晶态隔热层组成,使得膜贴到玻璃表面隔热效果好,塑料膜质地柔软、强度高,但是其耐高温效果区间较窄,在特殊环境下并不能发挥出膜的高强度;又如专利号为CN201510600862.2为一种耐高温隔离膜及其制备方法,采用在基材的涂硅橡胶使得与非织造布纤维具有好的浸润性和物理缠结性,交联剂固化后,整体强度较高,柔性很好,但是膜的隔热方式简单,仅仅通过使用耐高温材料,使得持续高温下的使用效果较差。

发明内容

[0003] 为了解决现有技术中存在的问题,本发明提供一种柔性环保耐高温保护膜及其制备方法,以提高膜在高温强度下的使用,提高膜在极端条件下的使用效果,具体技术方案如下:
[0004] 一种柔性环保耐高温保护膜,该保护膜包括基础芯层、红外反射层;所述基础芯层、红外反射层的质量比为(5‑8):0.1;以质量份计,所述红外反射层由以下原料制成:芳香族聚酰胺纤维3‑5份、纳米氧化铜0.1‑0.3份、纳米硫化锌0.1‑0.3份、全氟烷基聚醚0.01‑0.05份、酚醛树脂改性氯丁胶15‑25份、聚四氟乙烯5‑15份。
[0005] 进一步的,所述基础芯层由以下质量份的原料组成:聚苯并咪唑纤维8‑10份、玄武岩纤维0.2‑0.5份、纳米二氧化硅0.5‑1份、氯醇橡胶10‑15份、邻甲酚醛环氧树脂18‑22份、甲基硅橡胶5‑8份、聚氨酯改性环氧树脂25‑30份、三氧化硫0.02‑0.05份。
[0006] 进一步的,所述芳香族聚酰胺纤维为聚对苯二甲酰对苯二胺纤维、聚间苯二甲酰间苯二胺纤维中的一种或多种。
[0007] 进一步的,所述芳香族聚酰胺纤维细度为0.1mm‑0.8mm。
[0008] 进一步的,所述聚苯并咪唑纤维的细度为0.1mm‑0.8mm。
[0009] 本发明所述的柔性环保耐高温保护膜,制备方法如下:
[0010] (1)玄武岩纤维改性:
[0011] 将玄武岩纤维在真空下,加热到100‑120℃,通入水蒸气共热10‑20min,通入三氧化硫,加热到180‑200℃,经超声波处理15‑25min,再将温度降低至60‑80℃,将玄武岩纤维真空干燥至恒重即可;所述水蒸气与玄武岩纤维的质量比为1:10;
[0012] (2)基础芯层混炼:
[0013] 将聚苯并咪唑纤维、纳米二氧化硅、氯醇橡胶、甲基硅橡胶在真空设备中加热至220‑240℃,混炼均匀后加入改性玄武岩纤维;
[0014] (3)基础芯层定型:
[0015] 在上一步的混合物中加入邻甲酚醛环氧树脂充分混匀后,再加入聚氨酯改性环氧树脂溶解搅拌,将熔融体倒入模具中冷却成型得到基础芯层;
[0016] (4)红外反射层粘附
[0017] 将芳香族聚酰胺纤维、纳米氧化铜、纳米硫化锌、全氟烷基聚醚、酚醛树脂改性氯丁胶加热到180‑200℃混合均匀,喷涂到基础芯层表面,再喷一层熔融聚四氟乙烯即可。
[0018] 与现有技术相比,本发明的技术效果体现在:
[0019] 本发明膜经过多层处理,通过设置基础芯层和红外反射层,使得整个膜的层级分明,可以降低导热效果,通过外界的辐射会经过多层反射,降低整体膜的热量吸收,具有更好的高温耐受性和隔热效果。而且,本发明通过基础芯层和红外反射层的原料选择,利用芳香族聚酰胺纤维、酚醛树脂改性氯丁胶、聚四氟乙烯喷涂混合,提高红外反射层的致密性。
[0020] 本发明利用芳香族聚酰胺纤维的高稳定性和酚醛树脂改性氯丁胶的高粘度,增加纳米氧化铜、纳米硫化锌的混合度,促进其分散,使得红外反射层在强光下的稳定性更高,同时增强红外反射层的膜凝结度,在微观结构上具有更好的受力特性,增强分子约束效果,提高抗断裂的宏观效果;并且,纳米氧化铜、纳米硫化锌的禁带宽度在0.5‑3.1eV,更靠近近红外和可见光的禁带宽度,而且折射率高,二者对于近红外线具有更高的反射效果,通过不同禁带宽度的搭配,使得反射红外的效果增强,在膜的整体宏观性能上,使得膜在耐受高温的同时最大限度的反射红外线,在极端环境下的性能更好。
[0021] 另外,本发明的基础芯层中玄武岩纤维通过高温使用三氧化硫改性,利用玄武岩纤维含有钙等活性金属的特性,通过高温水蒸气携带微量三氧化硫的高效扩散形成的硫酸蚀刻玄武岩纤维,在超声波作用下加速玄武岩纤维的表面改性,使得玄武岩纤维与硫酸接触面积更广、其表面的粗糙度更高,强化玄武岩纤维和硅橡胶、聚氨酯改性环氧树脂的粘结效果,再协同二氧化硅的作用,提高和树脂橡胶的团聚,增强基础芯层在高温下的稳定性,同时让基础芯层和红外反射层贴合度提高,膜在整体上分层但是结构上浑然一体,力学效果统一,整体抗性更好,在红外反射层的包覆之下,基础芯层具有更低的温度,使得膜在高温下具有更广的高温缓冲区间,利于膜在高温下发挥出更好的结构性能,具有更好的抗性;而且制作中没有严重的污染排放,极为环保。
[0022] 本发明通过表面喷涂聚四氟乙烯,利用聚四氟乙烯高熔点的特性,通过喷涂烧蚀芳香族聚酰胺纤维、纳米氧化铜、纳米硫化锌、全氟烷基聚醚、酚醛树脂改性氯丁胶混合物表面,促进整个红外反射层的表面收紧,强化保护膜表面的强度和耐高温特性,减少外界热量的渗透,而且利用烧蚀产生的表面形变增加红外反射区,使得整个保护膜在高温和低温下都有很好的适用效果,保证膜内纳米氧化铜、纳米硫化锌对红外线的反射,同时,提高膜在低温下的柔韧性。
[0023] 本发明制作的保护膜拉伸强度超过5.28Mpa,断裂伸长率超过200.53%。室温为25℃时,将本发明膜附着在玻璃板上,在本发明膜的另一面用1000W碘钨灯照射,照射距离0.5米,玻璃板在30min时温度低于29.68℃,60min时温度低于33.12℃,可见本发明膜高温隔绝效果极好。

具体实施方式

[0024] 下面结合具体的实施方式来对本发明的技术方案做进一步的限定,但要求保护的范围不仅局限于所作的描述。
[0025] 实施例1
[0026] 一种柔性环保耐高温保护膜,该保护膜包括基础芯层、红外反射层;所述基础芯层、红外反射层的质量比为8:0.1;以质量份计,所述红外反射层由以下原料制成:芳香族聚酰胺纤维5份、纳米氧化铜0.3份、纳米硫化锌0.3份、全氟烷基聚醚0.05份、酚醛树脂改性氯丁胶25份、聚四氟乙烯15份制备而成;所述芳香族聚酰胺纤维为聚对苯二甲酰对苯二胺纤维;所述芳香族聚酰胺纤维细度为0.8mm;所述基础芯层由以下质量份的原料组成:聚苯并咪唑纤维10份、玄武岩纤维0.5份、纳米二氧化硅0.2份、氯醇橡胶15份、邻甲酚醛环氧树脂22份、甲基硅橡胶8份、聚氨酯改性环氧树脂30份、三氧化硫0.05份;所述聚苯并咪唑纤维的细度为0.8mm。
[0027] 本发明所述的柔性环保耐高温保护膜,制备方法如下:
[0028] (1)玄武岩纤维改性:
[0029] 将玄武岩纤维在真空下,加热到120℃,通入水蒸气共热20min,通入三氧化硫,加热到200℃,经超声波处理25min,再将温度降低至80℃,将玄武岩纤维真空干燥至恒重即可;所述水蒸气与玄武岩纤维的质量比为1:10;
[0030] (2)基础芯层混炼:
[0031] 将聚苯并咪唑纤维、纳米二氧化硅、氯醇橡胶、甲基硅橡胶在真空设备中加热至220℃,混炼均匀后加入改性玄武岩纤维;
[0032] (3)基础芯层定型:
[0033] 在上一步的混合物中加入邻甲酚醛环氧树脂充分混匀后,再加入聚氨酯改性环氧树脂溶解搅拌,将熔融体倒入模具中冷却成型得到基础芯层;
[0034] (4)红外反射层粘附
[0035] 将芳香族聚酰胺纤维、纳米氧化铜、纳米硫化锌、全氟烷基聚醚、酚醛树脂改性氯丁胶加热到200℃混合均匀,喷涂到基础芯层表面,再喷一层熔融聚四氟乙烯即可。
[0036] 实施例2
[0037] 一种柔性环保耐高温保护膜,该保护膜包括基础芯层、红外反射层;所述基础芯层、红外反射层的质量比为5:0.1;以质量份计,所述红外反射层由以下原料制成:芳香族聚酰胺纤维3份、纳米氧化铜0.1份、纳米硫化锌0.1份、全氟烷基聚醚0.01份、酚醛树脂改性氯丁胶15份、聚四氟乙烯5份制备而成;所述芳香族聚酰胺纤维聚间苯二甲酰间苯二胺纤维;所述芳香族聚酰胺纤维细度为0.8mm;所述基础芯层由以下质量份的原料组成:聚苯并咪唑纤维10份、玄武岩纤维0.5份、纳米二氧化硅0.2份、氯醇橡胶15份、邻甲酚醛环氧树脂22份、甲基硅橡胶8份、聚氨酯改性环氧树脂30份、三氧化硫0.05份;所述聚苯并咪唑纤维的细度为0.8mm。
[0038] 本发明所述的柔性环保耐高温保护膜,制备方法如下:
[0039] (1)玄武岩纤维改性:
[0040] 将玄武岩纤维在真空下,加热到120℃,通入水蒸气共热20min,通入三氧化硫,加热到180℃,经超声波处理15min,再将温度降低至60℃,将玄武岩纤维真空干燥至恒重即可;所述水蒸气与玄武岩纤维的质量比为1:10;
[0041] (2)基础芯层混炼:
[0042] 将聚苯并咪唑纤维、纳米二氧化硅、氯醇橡胶、甲基硅橡胶在真空设备中加热至240℃,混炼均匀后加入改性玄武岩纤维;
[0043] (3)基础芯层定型:
[0044] 在上一步的混合物中加入邻甲酚醛环氧树脂充分混匀后,再加入聚氨酯改性环氧树脂溶解搅拌,将熔融体倒入模具中冷却成型得到基础芯层;
[0045] (4)红外反射层粘附
[0046] 将芳香族聚酰胺纤维、纳米氧化铜、纳米硫化锌、全氟烷基聚醚、酚醛树脂改性氯丁胶加热到180℃混合均匀,喷涂到基础芯层表面,再喷一层熔融聚四氟乙烯即可。
[0047] 实施例3
[0048] 一种柔性环保耐高温保护膜,该保护膜包括基础芯层、红外反射层;所述基础芯层、红外反射层的质量比为7:0.1;以质量份计,所述红外反射层由以下原料制成:芳香族聚酰胺纤维4份、纳米氧化铜0.23份、纳米硫化锌0.13份、全氟烷基聚醚0.03份、酚醛树脂改性氯丁胶18份、聚四氟乙烯11份制备而成;所述芳香族聚酰胺纤维为聚对苯二甲酰对苯二胺纤维、聚间苯二甲酰间苯二胺纤维按质量比1:1混合而成;所述芳香族聚酰胺纤维细度为0.5mm;所述基础芯层由以下质量份的原料组成:聚苯并咪唑纤维9份、玄武岩纤维0.4份、纳米二氧化硅1份、氯醇橡胶13份、邻甲酚醛环氧树脂19份、甲基硅橡胶7份、聚氨酯改性环氧树脂28份、三氧化硫0.02份;所述聚苯并咪唑纤维的细度为0.8mm。
[0049] 本发明所述的柔性环保耐高温保护膜,制备方法如下:
[0050] (1)玄武岩纤维改性:
[0051] 将玄武岩纤维在真空下,加热到110℃,通入水蒸气共热18min,通入三氧化硫,加热到199℃,经超声波处理19min,再将温度降低至75℃,将玄武岩纤维真空干燥至恒重即可;所述水蒸气与玄武岩纤维的质量比为1:10;
[0052] (2)基础芯层混炼:
[0053] 将聚苯并咪唑纤维、纳米二氧化硅、氯醇橡胶、甲基硅橡胶在真空设备中加热至230℃,混炼均匀后加入改性玄武岩纤维;
[0054] (3)基础芯层定型:
[0055] 在上一步的混合物中加入邻甲酚醛环氧树脂充分混匀后,再加入聚氨酯改性环氧树脂溶解搅拌,将熔融体倒入模具中冷却成型得到基础芯层;
[0056] (4)红外反射层粘附
[0057] 将芳香族聚酰胺纤维、纳米氧化铜、纳米硫化锌、全氟烷基聚醚、酚醛树脂改性氯丁胶加热到190℃混合均匀,喷涂到基础芯层表面,再喷一层熔融聚四氟乙烯即可。
[0058] 对比例
[0059] 对比例1 与实施例1的区别是制作原料中不含纳米氧化铜;对比例2 与实施例1的区别是制作原料中不含纳米硫化锌;
对比例3 与实施例1的区别是制作原料中不含聚氟四烯;
对比例4 与实施例1的区别是制作原料中不含玄武岩纤维;
对比例5 与实施例1的区别是制作原料中不对玄武岩纤维改性;
对比例6 与实施例1的区别是制作原料中步骤(2)中不加纳米二氧化硅;
对比例7 与实施例1的区别是步骤(1)中不加三氧化硫;
对比例8 与实施例1的区别是步骤(1)中未经超声波处理;
对比例9 按照专利号CN201810673134.8实施。
[0060] 试验例
[0061] 分别将本发明实施例1‑3和对比例1‑8制作的膜在150℃的保温箱中处理5h,检测其拉伸强度和断裂拉伸率其性能指标;室温25℃下,将各组膜附着在玻璃板上,在膜的一面用1000W碘钨灯照射,照射距离0.5米,检测玻璃板在30min、60min的温度,评估各组膜的隔热效果。
[0062]
[0063]
[0064] 由表可以看出,本发明的膜经过高温处理后,有更好的拉伸强度和断裂伸长率,其高温耐受性更好;并且经照射后,本发明膜厚玻璃板温度更低,温度上升速度慢,所以本发明膜的隔热效果更好。