一种核壳结构高耐电强度氧化钛基介质粉体及其制备方法和应用转让专利

申请号 : CN202010512917.5

文献号 : CN111732431B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陈莹房卓群姚春华董显林

申请人 : 中国科学院上海硅酸盐研究所

摘要 :

本发明涉及一种核壳结构高耐电强度氧化钛基介质粉体及其制备方法和应用,所述核壳结构高耐电强度氧化钛基介质粉体具有核壳机构,内核为TiO2颗粒,外壳为CaO‑MgO‑Al2O3‑SiO2包覆层;所述包覆层中CaO、MgO、Al2O3和SiO2摩尔比为(0.7~1.1):(0.9~1.2):(1.7~2.3):(7.5~8.3),优选为1:1:2:8。

权利要求 :

1.一种核壳结构高耐电强度氧化钛基介质粉体,其特征在于,所述核壳结构高耐电强度氧化钛基介质粉体具有核壳结 构,内核为TiO2颗粒,外壳为CaO‑MgO‑Al2O3‑SiO2包覆层;

所述包覆层中CaO、MgO、Al2O3和SiO2摩尔比为(0.7~1.1):(0.9~1.2):(1.7~2.3):(7.5~

8.3);所述TiO2颗粒和CaO‑MgO‑Al2O3‑SiO2包覆层的质量比为1:x;其中,0.02≤x≤0.12;

所述的核壳结构高耐电强度氧化钛基介质粉体的制备方法包括:

2+ 2+ 3+

(1)将钙盐、镁盐和铝盐溶于水,得到含有Ca 、Mg 和Al 的溶液A;

(2)将硅源溶于无水乙醇,得到溶液B;

(3)将TiO2纳米粉体分散到去离子水中,得到悬浊液C;

(4)将溶液A和溶液B依次注入至悬浊液C中,得到混合溶液D,注入完成后使混合溶液充分搅拌1~3小时,然后调节pH为7~10;

(5)将所得混合溶液D在70~90℃下水浴加热后,再经烘干和煅烧,得到所述核壳结构高耐电强度氧化钛基介质粉体。

2.根据权利要求1所述的核壳结构高耐电强度氧化钛基介质粉体,其特征在于,所述包覆层中CaO、MgO、Al2O3和SiO2摩尔比为1:1:2:8。

3.根据权利要求1所述的核壳结构高耐电强度氧化钛基介质粉体,其特征在于,所述TiO2颗粒和CaO‑MgO‑Al2O3‑SiO2包覆层的质量比为1:x;其中,0.04≤x≤0.10。

4.根据权利要求1所述的核壳结构高耐电强度氧化钛基介质粉体,其特征在于,所述TiO2颗粒的粒径为40~150nm;所述CaO‑MgO‑Al2O3‑SiO2包覆层的厚度不超过20nm。

5.根据权利要求1所述的核壳结构高耐电强度氧化钛基介质粉体,其特征在于,所述溶

2+

液A中金属离子的总浓度为0.06~0.30 mol/L;其中,Ca 的离子浓度为0.01~0.05 mol/L,

2+ 3+

Mg 的离子浓度为0.01~0.05 mol/L,Al 的离子浓度为0.04~0.20 mol/L。

6.根据权利要求1所述的核壳结构高耐电强度氧化钛基介质粉体,其特征在于,所述硅源选自正硅酸四乙酯,所述溶液B中硅源的浓度为0.2~0.8mol/L;所述悬浊液C中TiO2纳米粉体和去离子水的质量比为1:5~1:15。

7.根据权利要求1‑6中任一项所述的核壳结构高耐电强度氧化钛基介质粉体,其特征在于,所述煅烧的温度为500~600℃,时间为2~4小时。

8.一种高耐电强度氧化钛基介质陶瓷块体,其特征在于,选用权利要求1‑7中任一项所述的核壳结构高耐电强度氧化钛基介质粉体作为原料,经过压制成型和烧结,得到所述高耐电强度氧化钛基介质陶瓷块体。

9.根据权利要求8所述的高耐电强度氧化钛基介质陶瓷块体,其特征在于,所述压制成型的压力为80~300 MPa;所述烧结的温度为1050~1250℃,时间为1~3小时。

10.一种介质陶瓷元件,其特征在于,将权利要求8或9所述高耐电强度氧化钛基介质陶瓷块体经覆银工艺,得到所述介质陶瓷元件。

说明书 :

一种核壳结构高耐电强度氧化钛基介质粉体及其制备方法和

应用

技术领域

[0001] 本发明涉及一种核壳结构高耐电强度氧化钛基介质粉体及其制备方法和应用,属于电子陶瓷材料技术领域。

背景技术

[0002] 随着科学技术的不断发展,高功率脉冲技术在各个领域的应用越来越广阔。高功率脉冲技术的实质是将脉冲能量在时间尺度上进行压缩,以获得在极短时间内的高峰值功
3 7 3 7 6
率输出。其典型特征是具有高电压(10~10V)、大电流(10~10 A)和高功率(>10W)。脉冲
功率系统中绝缘传输介质的介电性能、绝缘性能决定了脉冲功率器件的体积、级别和适用
范围。传统上一般选用变压器油和去离子水作为绝缘传输介质,这类设备存在体积庞大,环
境适应性差,可靠性低等问题,不能满足应用发展的需求,使用固态传输介质是脉冲功率技
术实现紧凑小型化发展的必然趋势,受到国际科技界的广泛关注,在军事(强脉冲激光、高
功率微波、电磁脉冲武器等)、科学研究(粒子束惯性约束聚变、电子束加速器、强X射线技术
等)、工业(化学工业、石油工业等),以及生物医学和环境保护等诸多领域显示出十分诱人
的应用前景。
[0003] 固态介质通常可分为有机物、玻璃和陶瓷三种。有机介质具有较高的耐电强度,但介电常数很低(2~3),同时易变形和老化。玻璃虽然也具有较高的耐电强度,但存在严重的
界面极化问题,实际储能密度和效率偏低。陶瓷介质的介电常数高且可调节、放电速度快、
介电损耗低、工作温度范围宽、环境适应性好。但传统陶瓷材料的耐电强度较低,脉冲功率
技术紧凑小型化的发展迫切需要开发高耐电强度的介质陶瓷材料技术。
[0004] 氧化钛(TiO2)陶瓷介电常数适中(90~110),介电常数的频率稳定性好,是一种很有前景的脉冲功率系统用介质陶瓷材料。但纯氧化钛陶瓷的耐电强度只有25kV/mm,难以满
足实际应用需求。因此,开发具有更高耐电强度的TiO2基介质陶瓷技术将具有重要的科学
意义和广阔的应用前景。
[0005] 专利1(中国公告号CN108117385A)公开了一种具有高耐电强度的氧化钛基介质陶瓷体系,采用传统固相法烧结后,其陶瓷的耐电强度可高达40~48kV/mm,是介电性能优异
的陶瓷材料体系。专利2(中国公开号CN103664162A)公开了一种CaO‑MgO‑Al2O3‑SiO2‑TiO2
体系的具有高耐电强度的介质陶瓷材料,采用传统固相法烧结后,其陶瓷的耐电强度可以
达到53kV/mm。但是,伴随着应用需求的不断提高,需要开发具有更高耐电强度的陶瓷材料
技术。

发明内容

[0006] 为此,本发明提供了一种全新结构的核壳结构高耐电强度氧化钛基介质粉体及其制备方法和应用,该材料具有较高的介电常数、高的耐电强度以及良好的环境适应性,可显
著提高脉冲功率装置的输出功率、寿命和稳定性。
[0007] 第一方面,本发明提供了一种核壳结构高耐电强度氧化钛基介质粉体,所述核壳结构高耐电强度氧化钛基介质粉体具有核壳机构,内核为TiO2颗粒,外壳为CaO‑MgO‑Al2O3‑
SiO2包覆层;所述包覆层中CaO、MgO、Al2O3和SiO2摩尔比为(0.7~1.1):(0.9~1.2):(1.7~
2.3):(7.5~8.3),优选为1:1:2:8。
[0008] 在本发明中,高耐电强度氧化钛基介质粉体是以TiO2颗粒作为内核,CaO‑MgO‑Al2O3‑SiO2包覆层作为外壳。一方面,在高介电常数的核(TiO2)周围引入低介电常数的壳层
(CaO‑MgO‑Al2O3‑SiO2)之后,壳层材料会在核周围产生电场屏蔽效应,导致核内电场强度显
著降低;另一方面,具有高绝缘性的CaO‑MgO‑Al2O3‑SiO2壳层还可以有效抑制击穿通道沿
TiO2颗粒扩展;最终在极大程度上提高了该TiO2基介质陶瓷的耐电强度。
[0009] 较佳的,所述TiO2颗粒和CaO‑MgO‑Al2O3‑SiO2包覆层的质量比为1:x;其中,0.02≤x≤0.12,优选为0.04≤x≤0.10。
[0010] 较佳的,所述TiO2颗粒的粒径为40~150nm。
[0011] 较佳的,所述CaO‑MgO‑Al2O3‑SiO2包覆层的厚度为不超过20nm。
[0012] 第二方面,本发明还提供了一种上述的核壳结构高耐电强度氧化钛基介质粉体的制备方法,包括:
[0013] (1)将钙盐、镁盐和铝盐溶于水,得到含有Ca2+、Mg2+和Al3+的溶液A;
[0014] (2)将硅源溶于无水乙醇,得到溶液B;
[0015] (3)将TiO2纳米粉体分散到去离子水中,得到悬浊液C;
[0016] (4)将溶液A和溶液B依次注入至悬浊液C中,得到混合溶液D,注入完成后使混合溶液充分搅拌1~3小时,然后调节pH在7~10之间;
[0017] (5)将所得混合溶液D在70~90℃下水浴加热后,再经烘干和煅烧,得到所述核壳结构高耐电强度氧化钛基介质粉体。
[0018] 在本发明中,采用化学溶液法,将具有高绝缘性的CaO‑MgO‑Al2O3‑SiO2多元氧化物成功均匀包覆在TiO2纳米颗粒表面,最终制备出具有核壳结构的氧化钛基陶瓷粉体。具体
来说,将上述溶液A和溶液B依次注入至悬浊液C中,得到混合溶液D,注入完成后充分搅拌1
2+ 2+ 3+
~3小时,使硅源进行充分的水解,然后调节pH在7~10之间,使Ca 、Mg 和Al 反应生成相
对应的氢氧化物,并沉淀在TiO2颗粒上。将所得混合溶液D在70~90℃下水浴加热以蒸发溶
剂,直到形成干凝胶,经烘干使干凝胶充分干燥。再经过煅烧,使粉体中残余的结晶水、有机
物等杂质分解,得到所述核壳结构高耐电强度氧化钛基介质粉体。
[0019] 较佳的,所述溶液A中金属离子的总浓度为0.06~0.30mol/L;其中,Ca2+的离子浓2+ 3+
度为0.01~0.05mol/L,Mg 的离子浓度为0.01~0.05mol/L,Al 的离子浓度为0.04~
0.20mol/L。
[0020] 较佳的,所述硅源选用正硅酸四乙酯,所述溶液B中硅源的浓度为0.2~0.8mol/L。
[0021] 较佳的,所述悬浊液C中TiO2纳米粉体和去离子水的质量比为1:5~1:15。
[0022] 较佳的,Ca2+、Mg2+和Al3+和硅源中Si的摩尔比为(0.7~1.1):(0.9~1.2):(3.4~4.6):(7.5~8.3)。其中TiO2纳米粉体的加入量根据产品中TiO2颗粒和CaO‑MgO‑Al2O3‑SiO2
包覆层的质量比为1:x进行调节,其中0.02≤x≤0.12。
[0023] 较佳的,所述煅烧的温度为500~600℃,时间为2~4小时。
[0024] 第三方面,本发明提供了一种高耐电强度氧化钛基介质陶瓷块体,选用上述的核壳结构高耐电强度氧化钛基介质粉体作为原料,经过压制成型和烧结,得到所述高耐电强
度氧化钛基介质陶瓷块体。
[0025] 较佳的,所述压制成型的压力为80~300MPa;所述烧结的温度为1050~1250℃,时间为1~3小时。该核壳结构高耐电强度氧化钛基介质粉体通过无压或热压烧结,可制备介
电性能优异的块体陶瓷,其耐电强度可高达79.0kV/mm。
[0026] 较佳的,当烧结方式为无压烧结,压制成型的压力为180~300MPa,烧结温度为1150~1250℃,保温时间为1~3小时。
[0027] 较佳的,当烧结方式为热压烧结时,压制成型的压力为80~100MPa,烧结温度为1050~1150℃,保温时间为1~2小时,烧结过程中施加的单轴压强为60~90MPa。
[0028] 第四方面,本发明还提供一种介质陶瓷元件,将上述高耐电强度氧化钛基介质陶瓷块体经覆银工艺,得到所述介质陶瓷元件。
[0029] 有益效果:
[0030] 在本发明中,利用所得氧化钛介质陶瓷粉体及其制备技术,可大幅提高陶瓷块体的耐电强度,并使其保持较高的介电常数。本发明所开发的介质粉体是将CaO‑MgO‑Al2O3‑
SiO2多元氧化物以壳层的形式包覆在TiO2颗粒表面,粉体经无压烧结后所得陶瓷的耐电强
度可达68.0kV/mm,是纯TiO2陶瓷耐电强度的3.2倍。在采用热压烧结工艺后,其耐电强度可
高达79.0kV/mm;
[0031] 本发明中,所得核壳结构粉体及其陶瓷的制备技术在高压电源、高功率脉冲系统、共腔体天线、粒子束惯性约束聚变、电子束加速器、强X射线系统等领域具有重要的应用价
值。

附图说明

[0032] 图1为对比例1中氧化钛粉体(a)和实施例1中包裹后的核壳结构粉体(b)的TEM图,从图中对比可知,经包裹后,所得粉体具有明显的核壳结构,壳层厚度在5~10nm之间;
[0033] 图2为实施例3中包裹后的核壳结构粉体的TEM图,从图中可以看出,包覆层厚度不均匀,并出现了明显的团聚现象;
[0034] 图3为对比例1制备的介质陶瓷的断面SEM图;
[0035] 图4为实施例1制备的介质陶瓷的断面SEM图;
[0036] 图5为实施例2制备的介质陶瓷的断面SEM图;
[0037] 图6为实施例3制备的介质陶瓷的断面SEM图;
[0038] 图7为实施例4制备的介质陶瓷的断面SEM图;
[0039] 图8为实施例1、2、3和对比例1制备的介质陶瓷的介电常数(a)和介电损耗(b)随频率的变化图,由图中可以看出,相较于对比例1而言,实施例1、2、3的介电常数频率稳定性显
著提高,同时介电损耗明显下降;
[0040] 图9为实施例1、4制备的介质陶瓷的介电常数(a)和介电损耗(b)随频率的变化图;
[0041] 图10为实施例1、2、3、4和对比例1制备的介质陶瓷耐电强度的Weibull分布图;
[0042] 图11为实施例1、2、3和对比例1制备的介质陶瓷的介电常数(a)和介电损耗(b)随温度的变化图;
[0043] 图12为实施例1、4制备的介质陶瓷的介电常数(a)和介电损耗(b)随温度的变化图;
[0044] 图13为本发明充放电测试电路示意图;
[0045] 图14为实施例1制备的介质陶瓷的欠阻尼充放电图谱;
[0046] 图15为实施例2制备的介质陶瓷的欠阻尼充放电图谱;
[0047] 图16为实施例4制备的介质陶瓷的欠阻尼充放电图谱;
[0048] 图17为本实施例1所得氧化钛基介质粉体的结构模型。

具体实施方式

[0049] 以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
[0050] 在本公开中,针对应用需求和现有技术所存在的问题,采用化学溶液法制备了在高电压下可靠使用的具有核壳结构的TiO2基介质粉体材料。该核壳结构高耐电强度氧化钛
基介质粉体的化学组分可表示为:TiO2‑x(CaO‑MgO‑2Al2O3‑8SiO2)。其中,0.02wt%≤x≤
0.12wt%。
[0051] 以下示例性地说明高耐电强度氧化钛基介质粉体的制备方法。
[0052] 配制溶液A。根据组分设计,配制含有Ca2+、Mg2+、Al3+的混合溶液,记为溶液A。该溶2+ 2
液A中金属离子总浓度可为0.06~0.30mol/L。其中Ca 离子浓度可为0.01~0.05mol/L。Mg
+ 3+
离子浓度可为0.01~0.05mol/L。Al 离子浓度可为0.04~0.20mol/L。具体配置过程,将钙
盐、镁盐和铝盐溶于去离子水中,磁力搅拌均匀后备用。所用的钙盐、镁盐和铝盐,可为Ca、
Mg、Al的硝酸盐、氯化物、硫酸盐等无机可溶性盐。例如,钙、镁、铝盐选择Ca(NO3)2·4H2O、Mg
(NO3)2·6H2O及Al(NO3)3·9H2O。
[0053] 配制溶液B。将正硅酸四乙酯溶于无水乙醇中,控制正硅酸四乙酯的浓度在0.2~0.8mol/L,搅拌均匀后备用,记为溶液B。
[0054] 配制悬浊液C。将TiO2纳米粉体分散到去离子水中,得到均一稳定的悬浊液C。该混合过程可通过超声分散、磁力搅拌等方式。其中TiO2纳米粉体的粒径为40~150nm,所述悬
浊液C中TiO2纳米粉体和去离子水的质量比为1:5~1:15。
[0055] 将溶液A与溶液B依次注入悬浊液C中,同时伴以磁力搅拌、手动搅拌等混合过程,得到混合溶液D。其中,溶液A和溶液B的加入量可根据CaO‑MgO‑Al2O3‑SiO2包覆层中各金属
氧化物摩尔比进行调节。溶液A、溶液B和悬浊液C中TiO2纳米粉体的比例可为(10~310)mL:
(5~124)mL:20g,待混合溶液充分搅拌1~3小时后,将氨水匀速滴加到混合溶液中,控制pH
在7~10之间。所用氨水的浓度可为0.5~1.5moL/L,例如1.0moL/L。
[0056] 将混合溶液D在70~90℃(例如,80℃)下水浴加热,蒸发溶剂,直至变成粘稠的浆料。整个水浴加热的过程在持续的磁力搅拌下进行,以防止颗粒沉降。
[0057] 将粘稠的浆料进行烘干,使其充分干燥,去除乙醇和水分,得到粉体E。例如,可在80℃下充分干燥。
[0058] 将粉体E进行煅烧(或称热处理),制备得到以TiO2为核、CaO‑MgO‑Al2O3‑SiO2为壳的TiO2基介质粉体材料。其中,煅烧的制度包括:从室温缓慢升温至500~600℃,并保温2~
4小时,随炉冷却至室温。
[0059] 在可选的实施方式中,当2wt%≤x≤12wt%,基于TiO2颗粒的粒径在40~150nm之间,所得CaO‑MgO‑Al2O3‑SiO2包覆层的厚度可对应为0~20nm之间。
[0060] 在整个制备过程中,若是参照x含量更低进行制备,CaO‑MgO‑Al2O3‑SiO2包覆层含量较低,对二氧化钛纳米粉体包覆不足,对于耐电强度的提升不明显。若是参照x含量过量
进行制备,会导致CaO‑MgO‑Al2O3‑SiO2包覆层含量过高,过多的包覆层将无法附着在TiO2颗
粒表面,而是会自身产生团聚,在经烧结后,这些团聚的低介玻璃相将会严重影响所得陶瓷
的耐电强度(参见实施例3和附图2)
[0061] 在本发明一实施方式中,可将核壳结构高耐电强度氧化钛基介质粉体作为原料,进行高耐电强度介质陶瓷块体的制备。可先将核壳结构高耐电强度氧化钛基介质粉体压制
成型,得到生坯(或素坯),再经烧结,得到所述高耐电强度介质陶瓷块体。
[0062] 在可选的实施方式中,烧结的温度可为1050~1250℃,保温时间为1~3小时。压制成型的压力可为80~300MPa。应注意,本发明所得粉体性能优异,可直接进行压制成型。但
是也可在压制成型之前,额外加入不超过粉体质量5wt%的粘结剂进行造粒。该粘结剂可为
聚乙烯醇、聚乙烯缩丁醛、去离子水等。
[0063] 根据不同烧结的方式,压制成型的压力、烧结温度和时间可进行适当调节。
[0064] 例如,当采用无压烧结方法时,生坯的干压成型压强为180~300MPa。烧结温度为1150~1250℃。保温时间为1~3小时。该粉体采用无压烧结工艺,其陶瓷块体耐电强度可高
达68.0kV/mm,是纯TiO2陶瓷耐电强度的3.2倍。
[0065] 例如,当采用热压烧结方法时,生坯干压成型压强为80~100MPa。热压烧结的烧结温度为1050~1150℃,保温时间为1~2小时,且在保温期间施加的单轴压强为60~90MPa。
[0066] 将烧结后的高耐电强度介质陶瓷块体加工成所需尺寸,经覆银工艺后,得到所述的介质陶瓷元件。粉体采用热压烧结工艺,其陶瓷块体耐电强度可进一步提高到79.0kV/
mm。
[0067] 在本发明中,所得核壳结构高耐电强度氧化钛基介质粉体及其陶瓷的制备方法,有望应用于高压绝缘、功率传输、器件封装等领域。
[0068] 下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发
明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的
工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适
的范围内选择,而并非要限定于下文示例的具体数值。
[0069] 实施例1:核壳结构介质粉体,无压烧结
[0070] 氧化钛基介质材料的组成为TiO2‑4wt%(CaO‑MgO‑2Al2O3‑8SiO2)。按照上述化学式组成称量原料并进行烧制。
[0071] (1)按上述包覆层中CaO、MgO、Al2O3的摩尔占比配制溶液A:称取适量的Ca(NO3)2·4H2O,Mg(NO3)2·6H2O,Al(NO3)3·9H2O加入到一定量去离子水中,磁力搅拌均匀,搅拌速度
2+
为600rpm。所制备溶液中阳离子总浓度为0.06mol/L。其中,Ca 的离子浓度为0.01mol/L,
2+ 3+
Mg 的离子浓度为0.01mol/L,Al 的离子浓度为0.04mol/L;
[0072] (2)配制溶液B:称取适量Si(OC2H5)4加入到一定量无水乙醇中,玻璃棒搅拌均匀,所制备溶液B中Si(OC2H5)4的浓度为0.2mol/L;
[0073] (3)配制悬浊液C:称取适量的TiO2纳米粉体,按照粉体:去离子水=1:10的质量比将二氧化钛纳米粉体分散在去离子水中。超声分散30min后进行磁力搅拌,搅拌速度为
800rpm,使其形成均一稳定的悬浊液C;
[0074] (4)按照组成TiO2‑4wt%(CaO‑MgO‑2Al2O3‑8SiO2)确定溶液A、B和TiO2纳米粉体的用量分别是103mL、41mL、20g。将溶液A和溶液B依次注入悬浊液C中,同时伴以磁力搅拌,得
到混合溶液D。注入完成后使混合溶液充分搅拌1小时,然后配制浓度为1.0mol/L的氨水,以
0.8ml/min的速度滴加到混合后的溶液中,直至pH为7;
[0075] (5)滴加结束后,将混合溶液D在80℃下水浴加热,蒸发溶剂直至变成粘稠的浆料,整个过程在持续的磁力搅拌下进行以防止颗粒沉降。将所得粘稠浆料放在80℃的干燥箱使
其完全干燥;
[0076] (6)将步骤(5)中所得粉体以2℃/min的升温速率升温至600℃,保温2小时,随炉冷却至室温,排除其中残余的有机物。即得到目标粉体,如图1中(b);
[0077] (7)将步骤(6)所得粉体过40目筛,在200MPa的压强下干压成型,制成直径为13mm的生坯;
[0078] (8)将步骤(7)中所得的生坯以2℃/min的升温速率升温至1200℃,保温2小时,随炉冷却至室温,得到陶瓷样品;
[0079] (9)将得到的陶瓷样品双面磨至0.2mm后超声清洗、烘干、丝网印刷银浆后再次烘干,以2℃/min的升温速率升温至750℃下保温30分钟即得到覆有电极的介质陶瓷样品。该
实施例所制备的介质陶瓷的介电性能如表1。
[0080] 实施例2:核壳结构介质粉体,无压烧结
[0081] 氧化钛基介质材料的组成为TiO2‑8wt%(CaO‑MgO‑2Al2O3‑8SiO2)。按照上述化学式组成重复实施例1的制备方法。
[0082] (1)按上述包覆层中CaO、MgO、Al2O3的摩尔占比配制溶液A:称取适量的Ca(NO3)2·4H2O,Mg(NO3)2·6H2O,Al(NO3)3·9H2O加入到一定量去离子水中,磁力搅拌均匀,搅拌速度
2+
为600rpm。所制备溶液中阳离子总浓度为0.18mol/L;其中,Ca 的离子浓度为0.03mol/L,
2+ 3+
Mg 的离子浓度为0.03mol/L,Al 的离子浓度为0.12mol/L;
[0083] (2)配制溶液B:称取适量Si(OC2H5)4加入到一定量无水乙醇中,玻璃棒搅拌均匀,所制备溶液B中Si(OC2H5)4的浓度为0.4mol/L;
[0084] (3)配制悬浊液C:称取适量的TiO2纳米粉体,按照粉体:去离子水=1:10的质量比将二氧化钛纳米粉体分散在去离子水中。超声分散30min后进行磁力搅拌,搅拌速度为
800rpm,使其形成均一稳定的悬浊液C;
[0085] (4)按照组成TiO2‑8wt%(CaO‑MgO‑2Al2O3‑8SiO2)确定溶液A、B和TiO2纳米粉体的用量分别是69mL、41mL、20g。将溶液A和溶液B依次注入悬浊液C中,同时伴以磁力搅拌,得到
混合溶液D。注入完成后使混合溶液充分搅拌2小时,然后配制浓度为1.0mol/L的氨水,以
0.8ml/min的速度滴加到混合后的溶液中,直至pH为7;
[0086] (5)滴加结束后,将混合溶液D在80℃下水浴加热,蒸发溶剂直至变成粘稠的浆料,整个过程在持续的磁力搅拌下进行以防止颗粒沉降。将所得粘稠浆料放在80℃的干燥箱使
其完全干燥;
[0087] (6)将步骤(5)中所得粉体以2℃/min的升温速率升温至600℃,保温2小时,随炉冷却至室温,排除其中残余的有机物;
[0088] (7)将步骤(6)所得粉体过40目筛,在200MPa的压强下干压成型,制成直径为13mm的生坯;
[0089] (8)将步骤(7)中所得的生坯以2℃/min的升温速率升温至1200℃,保温2小时,随炉冷却至室温,得到陶瓷样品;
[0090] (9)将得到的陶瓷样品双面磨至0.2mm后超声清洗、烘干、丝网印刷银浆后再次烘干,以2℃/min的升温速率升温至750℃下保温30分钟即得到覆有电极的介质陶瓷样品。该
实施例所制备的介质陶瓷的介电性能如表1。
[0091] 实施例3:核壳结构介质粉体,无压烧结
[0092] 氧化钛基介质材料的组成为TiO2‑12wt%(CaO‑MgO‑2Al2O3‑8SiO2),按照上述化学式组成重复实施例1的制备方法。
[0093] (1)按上述包覆层中CaO、MgO、Al2O3的摩尔占比配制溶液A:称取适量的Ca(NO3)2·4H2O,Mg(NO3)2·6H2O,Al(NO3)3·9H2O加入到一定量去离子水中,磁力搅拌均匀,搅拌速度
2+
为600rpm。所制备溶液中阳离子总浓度为0.30mol/L;其中,Ca 的离子浓度为0.05mol/L,
2+ 3+
Mg 的离子浓度为0.05mol/L,Al 的离子浓度为0.20mol/L;
[0094] (2)配制溶液B:称取适量Si(OC2H5)4加入到一定量无水乙醇中,玻璃棒搅拌均匀,所制备溶液B中Si(OC2H5)4的浓度为0.6mol/L;
[0095] (3)配制悬浊液C:称取适量的TiO2纳米粉体,按照粉体:去离子水=1:10的质量比将二氧化钛纳米粉体分散在去离子水中。超声分散30min后进行磁力搅拌,搅拌速度为
800rpm,使其形成均一稳定的悬浊液C;
[0096] (4)按照组成TiO2‑12wt%(CaO‑MgO‑2Al2O3‑8SiO2)确定溶液A、B和TiO2纳米粉体的用量分别是62mL、41mL、20g。将溶液A和溶液B依次注入悬浊液C中,同时伴以磁力搅拌,得到
混合溶液D。注入完成后使混合溶液充分搅拌3小时,然后配制浓度为1.0mol/L的氨水,以
0.8ml/min的速度滴加到混合后的溶液中,直至pH为7;
[0097] (5)滴加结束后,将混合溶液D在80℃下水浴加热,蒸发溶剂直至变成粘稠的浆料,整个过程在持续的磁力搅拌下进行以防止颗粒沉降。将粘稠浆料放在80℃的干燥箱使其完
全干燥;
[0098] (6)将步骤(5)中所得粉体以2℃/min的升温速率升温至600℃,保温2小时,随炉冷却至室温,排除其中残余的有机物,所得粉体如图2所示;
[0099] (7)将步骤(6)所得粉体过40目筛,在200MPa的压强下干压成型,制成直径为13mm的生坯;
[0100] (8)将步骤(7)中所得的生坯以2℃/min的升温速率升温至1200℃,保温2小时,随炉冷却至室温,得到陶瓷样品;
[0101] (9)将得到的陶瓷样品双面磨至0.2mm后超声清洗、烘干、丝网印刷银浆后再次烘干,以2℃/min的升温速率升温至750℃下保温30分钟即得到覆有电极的介质陶瓷样品。该
实施例所制备的介质陶瓷的介电性能如表1。
[0102] 实施例4:核壳结构介质粉体,热压烧结
[0103] 氧化钛基介质材料的组成为:TiO2‑4wt%(CaO‑MgO‑2Al2O3‑8SiO2)。
[0104] (1)将实施例1中步骤(6)所得粉体过40目筛,在100MPa的压强下干压成型,制成直径为13mm的生坯;
[0105] (2)将步骤(1)所得生坯装入模具,并加入氧化锆颗粒填充固定。将模具置于炉腔内,以2℃/min的升温速率升温至1150℃下进行烧结,保温1小时,在保温期间施加80MPa的
单轴压强,随炉冷却至室温后,制得高耐电强度氧化钛基介质陶瓷;
[0106] (3)将得到的陶瓷样品双面磨至0.2mm后超声清洗、烘干、丝网印刷银浆后再次烘干,以2℃/min的升温速率升温至750℃下保温30分钟即得到覆有电极的介质陶瓷样品。该
实施例所制备的介质陶瓷的介电性能如表1。
[0107] 对比例1:纯TiO2纳米粉体,无压烧结
[0108] (1)利用TiO2粉体(70nm)为原料,采用去离子水和氧化锆球为球磨介质,按照料:球:去离子水=1:3:3的质量比湿法球磨24小时,烘干后过40目筛,将所得的粉料以2℃/min
的升温速率升至1000℃下保温2小时,随炉冷却至室温,得到合成后的介质陶瓷粉体;
[0109] (2)将合成好的陶瓷粉体,按照料:球:去离子水=1:3:1.6的质量比湿法球磨24小时后出料烘干,过40目筛得到球磨后的粉体。在所得粉体中加入粘结剂(聚乙烯醇,PVA)进
行造粒,其中聚乙烯醇溶液的浓度为7%,所述粘结剂的加入量为粉体总质量的6%,随后在
200MPa的压强下干压成型,制成直径13mm的生坯;
[0110] (3)将步骤(2)得到的陶瓷生坯以2℃/min的升温速率升至800℃,保温2小时,随炉冷却至室温,排除生坯中的有机物;
[0111] (4)将排塑后的生坯以2℃/min的升温速率升至1200℃,保温2小时,随炉冷却至室温,得到陶瓷样品;
[0112] (5)将得到的陶瓷样品双面磨至0.2mm后超声清洗、烘干、丝网印刷银浆后再次烘干,以2℃/min的升温速率升温至750℃,保温30分钟后随炉冷却至室温,即得到覆有电极的
介质陶瓷样品。该对比例所制备的介质陶瓷的介电性能如表1。
[0113] 表1为本发明制备的氧化钛基介质陶瓷的耐电强度、介电常数和介电损耗:
[0114] 样品 x 耐电强度(kV/mm) 介电常数 介电损耗对比例1 0 21.5 128.2 0.027
实施例1 4wt% 68.0 79.6 0.010
实施例2 8wt% 56.8 68.6 0.007
实施例3 12wt% 46.8 57.9 0.006
实施例4 4wt% 79.0 69.8 0.011
[0115] 表1中介电常数和介电损耗是在室温下、1kHz时测试得到。
[0116] 表1为本发明实施例1、2、3、4和对比例1制备的氧化钛基介质陶瓷的耐电强度以及在室温,1kHz下的介电常数和介电损耗。由表1可知,本发明制得的氧化钛基介质陶瓷具有
更高的耐电强度。其中,实施例1的耐电强度达到68.0kV/mm,是纯TiO2陶瓷耐电强度的3.2
倍。当采用热压工艺对烧结过程进一步优化后,所得介质陶瓷的耐电强度进一步提高。其中
实施例4的耐电强度高达79.0kV/mm,是纯TiO2陶瓷耐电强度的3.7倍。此外,相较于对比例
而言,实施例1~4的介电损耗均有减小。实施例2、3的介电损耗分别为0.007和0.006,与对
比例相比减小了一个数量级。
[0117] 参见图13,开关K打向位置1时,电源对电容器C(测试样品)充电,直到其达到饱和。然后将开关K打向位置2,电容C通过电阻R放电。为了测试样品的欠阻尼充放电性能,负载电
阻R=0,电路中的寄生电阻为0.5Ω,寄生电容为1nf。
[0118] 由图14‑16可知,实施例1、2、4在放电过程中,放电周期均小于25ns且放电周期保持不变,证明本发明所制备介质陶瓷具有极快的放电速度和良好的电容稳定性。由于实施
例4制备的介质陶瓷耐电强度显著增加,其在充放电测试过程中可以承受更高的电场强度。
[0119] 综上实验结果可见:本发明采用化学溶液法制备的氧化钛基介质粉体,通过在氧化钛表面形成厚度均匀的低介壳层,可以有效提高陶瓷的耐电强度。本发明开发的氧化钛
基介质陶瓷材料,其耐电强度可高达79.0kV/mm,且介电常数频率稳定性良好,介电损耗较
低,同时具有优异的充放电性能,非常适合应用在高压电源、高功率脉冲系统、粒子束惯性
约束聚变、电子束加速器、强X射线技术等领域。此外,本发明的材料无铅环保,属于环境友
好型材料。