用于保护半导体晶粒的封装加强件转让专利

申请号 : CN201980016011.X

文献号 : CN111788665B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 威廉姆·爱德华兹埃里克·托特马达胡苏丹·克里希南·伊扬格李元乔治·派迪拉昆文秀康泰久

申请人 : 谷歌有限责任公司

摘要 :

本说明书的主题通常涉及电子封装。在一些实施方式中,无盖电子封装包括具有表面的衬底和设置在衬底表面上的晶粒。晶粒具有外周,与衬底表面相邻的底表面和顶表面。该电子封装包括设置在衬底表面上的加强件。加强件包括第一表面和第二表面,第一表面与衬底表面相距第一距离,第二表面设置在晶粒和第一表面之间。第一距离大于衬底表面和晶粒的顶表面之间的距离。第二表面距衬底表面第二距离,该第二距离小于衬底表面与晶粒的顶表面之间的距离。

权利要求 :

1.一种无盖电子封装,其特征在于,包括:

具有表面的衬底;

晶粒,所述晶粒设置在所述衬底的所述表面上,所述晶粒具有外周,与所述衬底的所述表面相邻的底表面以及与所述底表面相对的顶表面;以及加强件,所述加强件设置在所述衬底的所述表面上,并且包围所述晶粒的所述外周的至少一部分,所述加强件包括:第一表面,所述第一表面与所述衬底的所述表面相距第一距离,所述第一距离大于所述衬底的所述表面与所述晶粒的所述顶表面之间的距离;以及第二表面,所述第二表面设置在所述晶粒和所述第一表面之间,所述第二表面与所述衬底的所述表面相距第二距离,其中,所述第二距离小于所述衬底的所述表面与所述晶粒的所述顶表面之间的距离;

倾斜表面,所述倾斜表面从所述第一表面延伸到所述第二表面,所述倾斜表面相对于所述第二表面呈小于90度的角度。

2.根据权利要求1所述的无盖电子封装,其特征在于,所述第一表面和所述第二表面与所述衬底的所述表面平行。

3.根据权利要求1所述的无盖电子封装,其特征在于,所述第一表面在所述晶粒的所述顶表面上方,并且所述第二表面在所述晶粒的所述顶表面下方。

4.根据权利要求1所述的无盖电子封装,其特征在于,所述第二表面比所述晶粒的所述顶表面更靠近所述衬底的所述表面0.02‑0.06毫米。

5.根据权利要求1所述的无盖电子封装,其特征在于,所述加强件包括在所述第一表面和所述第二表面之间的凹槽,所述凹槽包括比所述第二表面更靠近所述衬底的所述表面的第三表面。

6.根据权利要求1所述的无盖电子封装,其特征在于,所述加强件包括:具有第一厚度的第一加强件,所述第一厚度使得所述第二表面比所述晶粒的所述顶表面更靠近所述衬底的所述表面;以及第二加强件,所述第二加强件设置在所述第一加强件的一部分上,所述第二加强件的厚度使得所述第二表面比所述晶粒的所述顶表面更远离所述衬底的所述表面。

7.根据权利要求1所述的无盖电子封装,其特征在于,所述第一表面和所述第二表面是具有厚度变化的单个加强件的一部分,其中,在所述第一表面下方的所述加强件的厚度大于在所述第二表面下方的所述加强件的厚度。

8.一种电子封装,其特征在于,包括:

具有表面的衬底;

晶粒,所述晶粒设置在所述衬底的所述表面上,所述晶粒具有外周,与所述衬底的所述表面相邻的底表面以及与所述底表面相对的顶表面;以及加强件,所述加强件设置在所述衬底的所述表面上,并且包围所述晶粒的所述外周的至少一部分,所述加强件包括:第一部分,所述第一部分具有第一表面和在所述衬底的所述表面和所述第一表面之间延伸的第一厚度,所述第一厚度大于所述晶粒的厚度;以及第二部分,所述第二部分具有(i)设置在所述晶粒和所述第一表面之间的第二表面,以及(ii)在所述衬底的所述表面和所述第二表面之间延伸的第二厚度,所述第二厚度小于所述晶粒的所述厚度;

倾斜表面,所述倾斜表面从所述第一表面延伸至所述第二表面的倾斜表面,所述倾斜表面相对于所述第二表面呈小于90度的角度。

9.根据权利要求8所述的电子封装,其特征在于,所述第一表面和所述第二表面与所述衬底的所述表面平行。

10.根据权利要求8所述的电子封装,其特征在于,所述第一表面在所述晶粒的所述顶表面上方,并且所述第二表面在所述晶粒的所述顶表面下方。

11.根据权利要求8所述的电子封装,其特征在于,所述晶粒比所述第二部分厚0.02‑

0.06毫米。

12.根据权利要求8所述的电子封装,其特征在于,所述加强件包括在所述第一表面和所述第二表面之间的凹槽,所述凹槽包括比所述第二表面更靠近所述衬底的所述表面的第三表面。

13.一种无盖电子封装,其特征在于,包括:

具有表面的衬底;

晶粒,所述晶粒附着于所述衬底的所述表面,所述晶粒具有外周,与所述衬底的所述表面相邻的底表面以及与所述底表面相对的顶表面;以及加强件,所述加强件设置在所述衬底的所述表面上并包围所述晶粒的所述外周,所述加强件包括:第一表面,所述第一表面比所述晶粒的所述顶表面距离所述衬底的所述表面更远;以及第二表面,所述第二表面设置于所述晶粒和所述第一表面之间,所述第二表面比所述晶粒的所述顶表面距离所述衬底的所述表面更近;

倾斜表面,所述倾斜表面从所述第一表面延伸至所述第二表面的倾斜表面,所述倾斜表面相对于所述第二表面呈小于90度的角度。

14.根据权利要求13所述的无盖电子封装,其特征在于,所述第一表面在所述晶粒的所述顶表面上方,并且所述第二表面在所述晶粒的所述顶表面下方。

15.根据权利要求13所述的无盖电子封装,其特征在于,所述第二表面比所述晶粒的所述顶表面更靠近所述衬底的所述表面0.02‑0.06毫米。

16.根据权利要求13所述的无盖电子封装,其特征在于,所述加强件包括在所述第一表面和所述第二表面之间的凹槽,所述凹槽包括比所述第二表面更靠近所述衬底的所述表面的第三表面。

17.根据权利要求13所述的无盖电子封装,其特征在于,所述加强件包括:具有第一厚度的第一加强件,所述第一厚度使得所述第二表面比所述晶粒的所述顶表面更靠近所述衬底的所述表面;以及第二加强件,所述第二加强件设置在所述第一加强件的一部分上,所述第二加强件的厚度使得所述第二表面比所述晶粒的所述顶表面更远离所述衬底的所述表面。

说明书 :

用于保护半导体晶粒的封装加强件

技术领域

[0001] 本发明涉及一种用于保护半导体晶粒的封装加强件。

背景技术

[0002] 封装集成电路的方法多种多样。无盖电子封装是一种不包括在晶粒上安装的盖的封装。无盖电子封装允许散热器直接接触晶粒,这比包括盖的电子封装具有更好的热性能。然而,随着封装尺寸的增加,无盖电子封装设计遭遇越来越多的平整度的问题。日益增加的平整度问题可能会使封装组装困难,并导致成品良率降低。

发明内容

[0003] 本说明书描述了无盖电子封装,该封装具有多表面加强件,可保护半导体晶粒不受损坏并保持封装平整。
[0004] 通常,本说明书中描述的主题的一个创新方面可以在无盖电子封装中实现,所述无盖电子封装包括具有表面的衬底和设置在该衬底表面上的晶粒。晶粒可以具有外周,与衬底表面相邻的底表面以及与底表面相对的顶表面。无盖电子封装还可以包括设置在衬底表面上并且包围晶粒的外周的至少一部分的加强件。加强件可包括第一表面,该第一表面与衬底表面相距第一距离。第一距离可以大于衬底表面和晶粒的顶表面之间的距离。加强件还可包括第二表面,该第二表面设置在晶粒和第一表面之间。第二表面可以与衬底表面相距第二距离。第二距离可以小于衬底表面和晶粒的顶表面之间的距离。
[0005] 这些和其他实施例都可以可选地包括以下一项或多项特征。在一些方面,第一表面和第二表面与衬底表面基本平行。第一表面可以在晶粒的顶表面上方,第二表面可以在晶粒的顶表面下方。第二表面可以比晶粒的顶表面更靠近衬底表面。在一个方面,与晶粒的顶表面相比,第二表面距离衬底表面的距离可以大约更靠近0.02~0.06毫米。
[0006] 在一些方面,加强件包括从第一表面延伸到第二表面的倾斜表面。倾斜表面可以相对于第二表面呈小于90度的角度。在一些方面,加强件包括在第一表面和第二表面之间的凹槽。凹槽可包括比第二表面更靠近衬底表面的第三表面。
[0007] 在一些方面,加强件包括具有第一厚度的第一加强件和设置在第一加强件的一部分上的第二加强件。该第一厚度使第二表面比晶粒的顶表面更靠近衬底表面。第二加强件可以具有使得第二表面比晶粒的顶表面更远离衬底表面的厚度。
[0008] 在一些方面,第一表面和第二表面是具有厚度变化的单个加强件的一部分。在第一表面下方的加强件的厚度可以大于在第二表面下方的加强件的厚度。
[0009] 通常,本说明书中描述的主题的另一个创新方面可以在电子封装中实现,该电子封装包括具有表面的衬底和设置在该衬底表面上的晶粒。晶粒可以具有外周,与衬底表面相邻的底表面以及与底表面相对的顶表面。电子封装还可以包括设置在衬底表面上并且包围晶粒的外周的至少一部分的加强件。加强件可包括第一部分,该第一部分具有第一表面和在衬底表面和第一表面之间延伸的第一厚度。第一厚度可以大于晶粒的厚度。加强件还可包括第二部分,该第二部分具有(i)设置在晶粒与第一表面之间的第二表面,以及(ii)在衬底表面与第二表面之间延伸的第二厚度。第二厚度可以小于晶粒的厚度。
[0010] 这些实施例和其他实施例都可以可选地包括以下一项或多项特征。在一些方面,第一表面和第二表面与衬底表面基本平行。第一表面可以在晶粒的顶表面上方,第二表面可以在晶粒的顶表面下方。晶粒可以比第二部分厚0.02~0.06毫米。
[0011] 在一些方面,加强件包括从第一表面延伸到第二表面的倾斜表面。倾斜表面可以相对于第二表面呈小于90度的角度。在一些方面,加强件包括在第一表面和第二表面之间的凹槽。凹槽可包括比第二表面更靠近衬底表面的第三表面。
[0012] 通常,本说明书中描述的主题的另一个创新方面可以在无盖电子封装中实现,所述无盖电子封装包括具有表面的衬底和附着于该衬底表面的晶粒。晶粒可以具有外周,与衬底表面相邻的底表面以及与底表面相对的顶表面。无盖电子封装还可以包括设置在衬底表面上并包围晶粒的外周的加强件。加强件可以包括第一表面和第二表面,该第一表面比晶粒的顶表面更远离衬底表面,该第二表面设置在晶粒和第一表面之间。第二表面可以比晶粒的顶表面更靠近衬底表面。
[0013] 这些和其他实施例都可以可选地包括以下一项或多项特征。在一些方面,第一表面在晶粒的顶表面上方,而第二表面在晶粒的顶表面下方。第二个表面比晶粒的顶表面更靠近衬底表面0.02‑0.06毫米。
[0014] 在一些方面,加强件包括从第一表面延伸到第二表面的倾斜表面。倾斜表面可以相对于第二表面呈小于90度的角度。
[0015] 在一些方面,加强件包括在第一表面和第二表面之间的凹槽。凹槽可包括第三表面,该第三表面比第二表面更靠近衬底表面。
[0016] 在一些方面,所述加强件包括具有第一厚度的第一加强件和设置在所述第一加强件的一部分上的第二加强件。所述第一厚度使所述第二表面比所述晶粒的顶表面更靠近所述衬底表面。第二加强件可以具有使得第二表面比晶粒的顶表面更远离衬底表面的厚度。
[0017] 可以实施本说明书中描述的主题的特定方面,以实现以下优点中的一个或多个。电子封装可以包括多个表面(例如,以阶梯状布置),以防止封装翘曲,同时还保护半导体晶粒在散热器安装期间不受损坏。加强件的第一部分可以更厚并且在晶粒的顶表面上方延伸以提供更好的防翘曲保护。加强件的第二部分可以设置在晶粒和加强件的第一部分之间,可以具有在晶粒的顶表面下方的表面。第二部分提供用于散热器的支撑架,该支撑架防止散热器首先接触晶粒并损坏晶粒,例如,如果散热器相对于晶粒的顶表面成一定角度接近晶粒。通过使第二部分的表面低于晶粒的顶表面,散热器也可以平放在晶粒上,与在散热器和晶粒之间留有空间的情况下相比,散热器和晶粒之间的热接触更好。这样可以在晶粒和散热器之间提供更好的热传递。因此,本文所述的电子封装允许较大的加强件,其可以提供更好的抗翘曲保护,同时,也保护晶粒不受在晶粒的顶表面上方延伸的加强件的影响而导致的损坏。
[0018] 本说明书中描述的主题的一种或多种实施方式的细节在附图和下面的描述中进行阐述。根据说明书,附图和权利要求书,本发明的其他特征,方面和优点将变得显而易见。

附图说明

[0019] 图1A是示例电子封装的截面图。
[0020] 图1B是图1A的示例电子封装的俯视图。
[0021] 图1C是图1A的示例电子封装的局部截面图。
[0022] 图1D是图1A的电子封装的剖视图,其中,散热器被安装在电子封装上。
[0023] 图1E是图1A的电子封装的剖视图,其中,安装有散热器。
[0024] 图2是另一示例电子封装的剖视图。
[0025] 各附图中的相似的附图标记和名称指示类似的元素。

具体实施方式

[0026] 一种电子封装,也称为集成电路(IC)封装,包括衬底和设置在该衬底表面上的一个或多个晶粒。每个晶粒中可以包括在半导体材料上制造的集成电路。电子封装还可以包括一个或多个加强件,以防止电子封装的部件翘曲。例如,在电子封装的不同组件中存在热膨胀系数(CTE)不匹配的情况。当温度变化时,例如在封装组装处理期间,CTE不匹配会导致电子封装翘曲,弯曲或扭曲,从而导致不平整的电子封装。平整度问题会使焊接处理更加困难,从而导致电子封装与电路板或其他安装表面之间的焊接不良。
[0027] 加强件可以防止电子封装翘曲。可以将加强件附着到衬底的周边,例如围绕晶粒的周边。加强件可具有比衬底更高的弹性模量,以防止衬底翘曲。通常,随着加强件的尺寸的增加,例如随着加强件的厚度的增加,防翘曲性得到改善。但是,加强件的尺寸可能会受到衬底尺寸和封装组装处理特性的限制。
[0028] 如果加强件在晶粒顶表面(即与衬底表面相对的表面)上方延伸,则加强件可提供更好的防翘曲保护。但是,这可能会使在不损坏晶粒的情况下安装散热器变得更加困难。例如,如果散热器以一定角度安装(例如,相对于晶粒的顶表面不平整),则散热器会损坏晶粒。在某些情况下,由于电子封装的几何形状,当散热片接近晶粒时,安装散热器的人可能无法看出散热器有多平整。
[0029] 本文所述的加强件具有多个表面和/或变化的厚度,以允许加强件的一部分在晶粒的顶表面上方延伸,同时还可以保护晶粒在散热器安装期间不受到损坏。例如,加强件可包括在晶粒的顶表面上方的第一表面和在晶粒的顶表面下方的第二表面。第二表面可以设置在晶粒和第一表面之间。以此种方式,在散热器以一定角度接近晶粒的情况下,第二表面可以为散热器提供支撑架,同时还允许更大的加强件。
[0030] 在一些实施例中,无盖电子封装包括具有表面的衬底和设置在该衬底表面上的晶粒。晶粒具有外周,与衬底表面相邻的底表面以及顶表面。该电子封装包括设置在衬底表面上的加强件。加强件包括第一表面和第二表面,第一表面与衬底表面相距第一距离,第二表面设置在晶粒和第一表面之间。第一距离大于衬底表面和晶粒的顶表面之间的距离。第二表面与衬底表面相距第二距离,该第二距离小于衬底表面与晶粒的顶表面之间的距离。
[0031] 图1A‑1E描绘了示例电子封装100。每个图中的相对尺寸仅是说明性的,并且不一定按比例绘制。图1A是示例电子封装100的截面图。电子封装100包括衬底110和设置在(例如,附着到)衬底110的表面111上的晶粒120。尽管在图1A中示出了一个晶粒120,但是,可以在衬底110的表面111上设置多个晶粒。
[0032] 电子封装件100还包括用于将电子封装件110附着到安装表面(例如附着到印刷电路板)的互连引脚。电子封装100可以是不包括晶粒120上方的盖的无盖电子封装。例如,电子封装可以是无盖球栅阵列(BGA)封装。
[0033] 电子封装100还包括设置在(例如,附着到)衬底110的表面111上的加强件130。通常,加强件130可以由弹性模量比衬底110的弹性模量更高的材料制成。例如,加强件130可以由金属(例如,铝,铜或钢),陶瓷,复合材料或其他合适的材料制成。如下面参考附图2所示,加强件130可以是单个加强件结构或彼此耦合的多个加强件结构。
[0034] 参考图1B,加强件130可以包围晶粒120的外周的至少一部分。晶粒120的外周包括晶粒120的四个侧面121A‑121D。在该示例中,加强件130包围晶粒120的整个外周。在另一些实施例中,加强件130可以仅包围晶粒120的外周的一部分。例如,加强件130可以安装在晶粒120的一个或多个侧面上,例如在两个或三个侧面上。在另一个示例中,加强件130可以通过在晶粒120的每个侧面121A‑121C上具有相应的加强件130,但是在每个相邻的加强件之间具有一定空间,来大体上围绕晶粒120的外周。
[0035] 在图1A‑1E的示例中,加强件130邻近晶粒120的每个侧面121A‑121D。例如,晶粒120的每个侧面121A‑121D可接触加强件130的相应部分。在一些实施例中,在加强件130和晶粒120的侧面121A‑121D之间存在空间。
[0036] 图1C是图1A的示例电子封装的一部分160的局部截面图。如图1C所示,加强件130包括第一表面131和第二表面132。第一表面131可以在晶粒120的顶表面122上方,而第二表面在晶粒120的顶表面122下方。晶粒120的顶表面122是与衬底110的表面111相邻的表面123相对的表面。术语“顶表面”便于随后的讨论,但是顶表面122根据电子封装110的方向,可能不一定总是在晶粒120的顶部。例如,如果电子封装翻转,则顶表面122会在表面123下方。
[0037] 术语“上方”用于表明第一表面131离衬底110的表面111的距离大于晶粒120的顶表面122与衬底110的表面111之间的距离。类似地,术语“下面”用于表明第二表面132与衬底110的表面111的距离比晶粒120的顶表面122与衬底110的表面111之间的距离更短。在电子封装110的不同取向中,例如,如果电子封装110从图示的取向上下颠倒,则第一表面131的高度可以低于晶粒120的顶表面122的高度。然而,与晶粒120的顶表面122和衬底110的表面111之间的距离相比,第一表面131离衬底110的表面111的距离仍然更远。
[0038] 在第一表面131和衬底110的表面111之间的加强件130的附加厚度提供了更好的抗翘曲保护,从而使得衬底得以保持平整。如本文中所使用的,加强件130的一部分的厚度表示衬底110的表面111与加强件130的与衬底110的表面111相对的部分的表面之间的距离。抗翘曲的保护随着加强件的厚度增加而提高。在该示例中,加强件130的在第一表面131和衬底110的表面111之间的部分比加强件130的在第二表面132和衬底110的表面111之间的部分厚。
[0039] 当散热器被安装在电子封装100上时,第二表面132为散热器提供了支撑架。如下面参考图1D中详细描述的,如果散热器相对于晶粒120的顶表面122以一定角度接近晶粒120,则散热器更可能与第二表面122的一部分接触(例如,在晶粒120的一侧),而不是与晶粒120本身接触。这保护晶粒120不受散热器影响而造成损坏。
[0040] 为了提供支撑架,第二表面132在晶粒120的顶表面122下方。也就是说,第二表面132与衬底110的表面111的距离比晶粒120的顶表面122和衬底110的表面111之间的距离更短。如下面参考图1E所示,这允许散热器平整地静止在晶粒120上。
[0041] 加强件的第二表面132比晶粒120的顶表面122距衬底110的表面111的距离更近。例如,加强件130的第二表面132可以在晶粒120的顶表面122下方0.02‑0.06毫米。也就是说,衬底110的表面111和晶粒120的顶表面122之间的距离171可以比衬底110的表面111与第二表面132之间的距离172长0.02~0.06毫米。加强件130的第二表面132和晶粒120的顶表面122距离衬底110的表面111的距离越近,散热器在接触晶粒120之前先接触加强件130的第二表面132的一部分的可能性越大。但是,如果设计距离太短,则制造缺陷可能会导致第二表面132高于晶粒120的顶表面122,进而导致散热器和晶粒120之间的热接触减少。
[0042] 在一些实施例中,加强件130的第一表面131和加强件130的第二表面132基本平行。即,表面131和132可以是平行的或在表面131和132之间具有小于5度的夹角。类似地,表面131和132可以与晶粒120的顶表面122基本平行。
[0043] 加强件130还包括导入引导部(lead‑in draft)133和凹槽134。导入引导部133提供从加强件130的第一表面131朝向晶粒120的倾斜表面。如果散热器在加强件130的第一表面131附近接近晶粒120,则导入引导部130有助于将散热器朝向电子封装100的中心引导。导入引导部130相对于第一表面的斜度可以小于90度,即不垂直于第一表面131。
[0044] 凹槽134可以帮助确保散热器平整地静止在晶粒120上。例如,如果加强件130的第二表面122延伸到导入引导部134,则散热器的一端可以静止在导入引导部133上。这将导致散热器相对于晶粒120的顶表面122呈非零角度,从而导致散热器与晶粒120之间的热接触较少。
[0045] 图1D是图1A的电子封装100的剖视图,其中,散热器150被安装在电子封装100上。散热器150包括基部154(例如,铜基)和鳍片阵列153。在该示例中,散热器150以一定角度接近晶粒120。散热片150的基座154的底表面不与晶粒120的顶表面122平行。在散热器150的任何部分接触晶粒120之前,散热片150的第一侧151接触加强件130的第二表面132的一部分。第一侧151接触加强件130的第二表面132之后,散热器150的第二侧152可以继续朝着衬底130的另一侧上的加强件130的第二表面132移动,直到散热器150的基座154平整地静止在晶粒120的顶表面122上。可以使用机械装置(例如弹簧加载的螺钉)和粘合剂(例如热粘合剂)或其他合适的附加技术,来将散热器150附着到电子封装100。
[0046] 如果相对电子封装110的一侧,散热器150更靠近晶粒120,则散热器150的一侧可以接触导入引导部133。导入引导部133可以引导散热器的一侧朝向电子封装100的中心。在该示例中,散热片150的与导入引导部接触的一侧可以位于凹槽134上方。
[0047] 图1E是图1A的电子封装100的截面图,其中,电子封装100上安装有散热器150。散热器150的基座154静止在晶粒120的顶表面122上。在该示例中,散热器150比晶粒120长。因此,散热器150的一部分在加强件130的第二表面132上延伸。当加强件130的第二表面132在晶粒120的顶表面122下方时,在散热器150的基座154和加强件130的第二表面132之间存在间隙。该间隙有助于确保散热器150的基座154平放在晶粒120的顶表面122上。例如,如果加强件130的第二表面132在晶粒120的顶表面122上方,则散热器150的基座154将至少在晶粒120的顶表面122的一些部分中不会直接接触晶粒120的顶表面122。
[0048] 电子封装件100中的加强件130的构造还提供了较宽的窗口,相对于加强件包括单个厚度的设计,散热器150可以安装在该窗口中。这允许鳍片阵列153被降低到更靠近晶粒120的顶表面122。这还通过最小化散热器的基座154的厚度来降低散热器的热阻,这允许来自晶粒120的更高的热通量(瓦特/平方毫米)。
[0049] 图2是另一示例电子封装200的剖视图。示例电子封装200包括衬底210和设置在(例如,附着到)衬底210的表面211上的晶粒120。尽管在图2中只示出了一个晶粒220,但是可以在衬底210的表面211上设置多个晶粒。电子封装200还包括用于将电子封装210附着到安装表面(例如附着到印刷电路板)的互连引脚。
[0050] 电子封装200还包括设置在(例如,附着到)衬底210的表面211上的加强件230。类似于图1A‑1E的加强件130,加强件230可以由弹性模量比衬底210的弹性模量更高的材料制成。
[0051] 在该示例中,加强件230由两个加强件231和233制成。类似于图1A‑1E的加强件130,加强件231设置在衬底210的表面211上,并且可以包围晶粒220的外周的至少一部分。
加强件231具有表面232,例如,在晶粒220的顶表面222下方的平整表面。也就是说,加强件
232的表面232与衬底210的表面211的距离比晶粒220的顶表面222和衬底210的表面211之间的距离更短。类似于图1A‑1E中强件130的第二表面132,加强件231的表面232提供了用于散热器的支撑架。
[0052] 加强件233可以设置在(例如,附接到)加强件231的表面232上。加强件233提供防止电子封装230翘曲的附加保护。例如,加强件231的尺寸和加强件233的尺寸的组合比单独的加强件231提供更好的抗翘曲保护。
[0053] 加强件233可以沿着加强件231的整个周边设置并且包围晶粒220的至少一部分。例如,如图2所示,加强件233可以设置在加强件231的外边缘上。加强件233可在衬底210的每一侧上覆盖加强件231的外边缘。例如,如果衬底是类似于图1A‑1E的衬底110的矩形形状,则加强件231可以沿着所有四个侧面延伸,并且加强件233可以在所有四个侧面上设置在加强件231上。
[0054] 加强件233可以包括类似于图1A‑1E的导入引导部133倾斜的导入引导部235。尽管未示出,但是加强件231可包括与图1A‑1E的凹槽134相似的凹槽。例如,加强件231可以包括凹槽,在该凹槽中导入引导部235接触到加强件231的表面232。
[0055] 本说明书中描述的主题和操作的实现可以在数字电子电路中,或在计算机软件,固件或硬件中实施,包括本说明书中公开的结构及其等同结构,或以一种或多种的组合更多。
[0056] 虽然本说明书包含许多特定的实现细节,但是这些细节不应被解释为对任何发明或可能要求保护的范围的限制,而应理解为对特定发明的特定实现的特定特征的描述。在本说明书中,在单独的实施例的上下文中描述的某些特征也可以在单个实施例中组合实施。相反,在单个实施例的上下文中描述的各种特征也可以分别在多个实施例中或以任何合适的子组合来实施。而且,尽管以上可以将特征描述为以某些组合起作用并且甚至最初如此声称,但是在某些情况下,可以从组合中删除所要求保护的组合中的一个或多个特征,并且可以将所要求保护的组合用于子组合或子组合变体。
[0057] 类似地,虽然在附图中以特定顺序描绘了操作,但是这不应被理解为要求以所示的特定顺序或顺序顺序执行这些操作,或者执行所有图示的操作以获得理想的结果。因此,已经描述了本主题的特定实施例。其他实施例在所附权利要求的范围内。在某些情况下,可以以不同于权利要求中所描述的操作的顺序执行操作,但仍然实现期望的结果。另外,附图中描绘的过程不一定需要按所示的特定顺序或连续顺序来实现期望的结果。在某些实施例中,多任务和并行处理可能是有利的。