具有高抗冲击性能的仿生纤维增强复合材料及其制备方法转让专利

申请号 : CN202010665141.0

文献号 : CN111806036B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 韩奇钢邵若伟韩志武

申请人 : 吉林大学

摘要 :

本发明公开了具有高抗冲击性能的仿生纤维增强复合材料及其制备方法,所述组合仿生的纤维复合材料由均为仿生纤维树脂层的正向螺旋纤维树脂层和反向螺旋纤维树脂层依次按照一定的比例交替铺叠后加压加热固化而成;所述正向螺旋纤维树脂层和反向螺旋纤维树脂层非同轴设置,且均沿各自中心轴线按周期均匀旋转叠置,所述仿生纤维树脂层由结构仿生的纤维材料经树脂浸润而成;所述仿生纤维树脂层包括仿蝎子螯结构纤维树脂层、仿螳螂虾颚足结构纤维树脂层以及仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层;本发明通过对纤维材料结构和铺层方式进行组合仿生,有效提高了纤维复合材料的抗冲击性能及层间韧性。

权利要求 :

1.具有高抗冲击性能的仿生纤维增强复合材料,其特征在于:由均为仿生纤维树脂层的正向螺旋纤维树脂层和反向螺旋纤维树脂层依次交替铺叠后加压加热固化而成;

所述正向螺旋纤维树脂层和反向螺旋纤维树脂层非同轴设置,且均沿各自中心轴线按周期均匀旋转叠置,所述仿生纤维树脂层由结构仿生的纤维材料浸润改性后的树脂而成,其中,所述结构仿生的纤维材料由形状为正弦曲线的正弦纤维与直纤维组成。

2.如权利要求1所述具有高抗冲击性能的仿生纤维增强复合材料,其特征在于:所述改性后的树脂由聚苯硫醚树脂、增强剂和二氧化硅粒子混合而成。

3.如权利要求1所述具有高抗冲击性能的仿生纤维增强复合材料,其特征在于:所述正向螺旋纤维树脂层和反向螺旋纤维树脂层为同一种仿生纤维树脂层或分别为两种不同的仿生纤维树脂层。

4.如权利要求1所述具有高抗冲击性能的仿生纤维增强复合材料,其特征在于:所述结构仿生的纤维材料为仿蝎子螯结构纤维材料,由单向正弦纤维与直纤维组成;

所述单向正弦纤维由三层振幅方向相同的正弦纤维组成,每层正弦纤维均垂直于其振荡方向排列;

所述直纤维为包覆在单向正弦纤维外侧的直纤维,所述直纤维垂直于单向正弦纤维的振荡方向铺排,并包覆在每层正弦纤维的外侧。

5.如权利要求1所述具有高抗冲击性能的仿生纤维增强复合材料,其特征在于:所述结构仿生的纤维材料为仿螳螂虾颚足结构纤维材料,由双向正弦纤维和双向直纤维组成;

所述双向正弦纤维由两组振幅方向相反的正弦纤维组成,且两组正弦纤维依次相互交叉地垂直于振荡方向排列;

所述双向直纤维为包覆在双向正弦纤维外侧的直纤维,所述直纤维垂直于双向正弦纤维的振荡方向铺排,并包覆在每层正弦纤维的外侧。

6.如权利要求1所述具有高抗冲击性能的仿生纤维增强复合材料,其特征在于:所述结构仿生的纤维材料为仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维材料,由凸包纤维、十字正弦纤维和垂直凸包短纤维组成;

所述十字正弦纤维由两组振荡方向相垂直的正弦纤维编织组成,且两组正弦纤维依次相互交叉且分别垂直于各自振荡方向排列;

所述凸包纤维是以十字正弦纤维的一组正弦纤维为经线,另一组正弦纤维为纬线依次交替编织,形成的截面为正弦曲线的凸包结构纤维;

所述垂直凸包短纤维为短纤维,并以捆束的方式呈放射状地铺排在凸包纤维的外侧,所述垂直凸包短纤维的截面外轮廓线与凸包纤维外侧轮廓曲线相匹配,所述垂直凸包短纤维包覆在十字正弦纤维和凸包纤维的外侧。

7.如权利要求4-6中任意一项所述具有高抗冲击性能的仿生纤维增强复合材料,其特征在于:所述结构仿生的纤维材料中,包覆在外侧的纤维柔度高于被包覆在内侧的纤维柔度,形成外软内硬的包覆结构。

8.如权利要求1所述具有高抗冲击性能的仿生纤维增强复合材料,其特征在于:所述正向螺旋纤维树脂层和反向螺旋纤维树脂层旋转叠置的周期为180°;

所述正向螺旋纤维树脂层和反向螺旋纤维树脂层的铺层比例分别为1:1、1:2、2:1、1:3或3:1。

9.如权利要求1所述具有高抗冲击性能的仿生纤维增强复合材料,其特征在于:所述仿生纤维树脂层中,纤维的重量百分比含量为40%~70%。

10.如权利要求1所述具有高抗冲击性能的仿生纤维增强复合材料的制备方法,其特征在于:所述制备方法的具体过程如下:

步骤一:将结构仿生的纤维材料浸润至改性后的树脂中形成正弦编织纤维树脂层;

步骤二:以若干层正弦编织纤维树脂层为一组,在将两组正弦编织纤维树脂层之间的中心轴线相间隔后,再将两组正弦编织纤维树脂层依次照一定的比例交替铺排,铺排过程中,一组正弦编织纤维树脂层从上至下依次正向旋转,另一组正弦编织纤维树脂层从上至下依次反向旋转,两组正弦编织纤维树脂层方向相反地交替旋转铺排形成双向螺旋纤维树脂层体;

步骤三:将双向螺旋纤维树脂层体至于模具型腔内,在预定温度为50-300℃,预定压力为1-30MPa的条件下对模具型腔内的双向螺旋纤维树脂层体进行固化处理,固化时间为4-

20小时。

说明书 :

具有高抗冲击性能的仿生纤维增强复合材料及其制备方法

技术领域

[0001] 本发明属于机械工程领域中的复合材料技术领域,具体涉及具有高抗冲击性能的仿生纤维增强复合材料及其制备方法。

背景技术

[0002] 随着航空航天技术、汽车领域以及轨道交通的发展,对轻质、高效材料的要求越来越高。纤维增强复合材料具有质量轻、力学性能好的特点,在现代工程技术领域的应用越来越广泛。由于传统的纤维增强复合材料的编织方式和单一的铺层方式,相较于金属材料,其在厚度方向的抗冲击性能没有得以提升,且其层间韧性较差。而飞机、高铁等高速运行的交通工具往往面临着冲击损伤的威胁,因此,如何使复合材料满足抗冲击性能的前提下,实现轻量化是工程材料轻量化设计面临的问题。
[0003] 科研人员在仿生学研究过程中发现自然界一些生物的结构具有防撞、抗冲击等特殊性能,其中包括:
[0004] 竹纤维双螺旋缠绕结构具有抗拉伸、压缩变形性能;
[0005] 蝎子螯的角质层的正弦结构具有抗冲击的性能;
[0006] 螳螂虾颚足甲壳素纤维的正向正弦和负向正弦交替排列的结构使得螳螂虾颚足具有均化应力以及耗散冲击能量的作用;
[0007] 小尾寒羊角鞘体凸包结构能有效防止小尾寒羊角在碰撞过程中产生裂纹以及防止裂纹扩展;
[0008] 野鸡的羽毛中间质硬而外层较软,这种“软包硬”结构具有吸收和反弹冲击能量的特点;
[0009] 通过对蝎子、螳螂虾、小尾寒羊和野鸡等生物的结构特性进行仿生,为纤维的结构提供了良好的思路;同时研究发现,通过对以上生物特性与竹子的生物特性进行组合仿生,为仿生纤维树脂层的铺层方式提供了良好的方法。

发明内容

[0010] 针对上述现有技术中存在的缺陷,本发明提供了具有高抗冲击性能的仿生纤维增强复合材料及其制备方法,通过采用结构仿生的纤维材料以及铺层方式,提高纤维复合材料的抗冲击性能及层间韧性,结合说明书附图,本发明所述技术方案如下:
[0011] 具有高抗冲击性能的仿生纤维增强复合材料,由均为仿生纤维树脂层的正向螺旋纤维树脂层和反向螺旋纤维树脂层依次交替铺叠后加压加热固化而成;
[0012] 所述正向螺旋纤维树脂层和反向螺旋纤维树脂层非同轴设置,且均沿各自中心轴线按周期均匀旋转叠置,
[0013] 所述仿生纤维树脂层由结构仿生的纤维材料浸润改性后的树脂而成,其中,所述结构仿生的纤维材料由形状为正弦曲线的正弦纤维与直纤维组成。
[0014] 进一步地,所述改性后的树脂由聚苯硫醚树脂、增强剂和二氧化硅粒子混合而成。
[0015] 进一步地,所述正向螺旋纤维树脂层和反向螺旋纤维树脂层为同一种仿生纤维树脂层或分别为两种不同的仿生纤维树脂层。
[0016] 进一步地,所述结构仿生的纤维材料为仿蝎子螯结构纤维材料,由单向正弦纤维与直纤维组成;
[0017] 所述单向正弦纤维由三层振幅方向相同的正弦纤维组成,每层正弦纤维均垂直于其振荡方向排列;
[0018] 所述直纤维为包覆在单向正弦纤维外侧的直纤维,所述直纤维垂直于单向正弦纤维的振荡方向铺排,并包覆在每层正弦纤维的外侧。
[0019] 进一步地,所述结构仿生的纤维材料为仿螳螂虾颚足结构纤维材料,由双向正弦纤维和双向直纤维组成;
[0020] 所述双向正弦纤维由两组振幅方向相反的正弦纤维组成,且两组正弦纤维依次相互交叉地垂直于振荡方向排列;
[0021] 所述双向直纤维为包覆在双向正弦纤维外侧的直纤维,所述直纤维垂直于双向正弦纤维的振荡方向铺排,并包覆在每层正弦纤维的外侧。
[0022] 进一步地,所述结构仿生的纤维材料为仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维材料,由凸包纤维、十字正弦纤维和垂直凸包短纤维组成;
[0023] 所述十字正弦纤维由两组振荡方向相垂直的正弦纤维编织组成,且两组正弦纤维依次相互交叉且分别垂直于各自振荡方向排列;
[0024] 所述凸包纤维是以十字正弦纤维的一组正弦纤维为经线,另一组正弦纤维为纬线依次交替编织,形成的截面为正弦曲线的凸包结构纤维;
[0025] 所述垂直凸包短纤维为短纤维,并以捆束的方式呈放射状地铺排在凸包纤维的外侧,所述垂直凸包短纤维的截面外轮廓线与凸包纤维外侧轮廓曲线相匹配,所述垂直凸包短纤维包覆在十字正弦纤维和凸包纤维的外侧。
[0026] 进一步地,所述结构仿生的纤维材料中,包覆在外侧的纤维柔度高于被包覆在内侧的纤维柔度,形成外软内硬的包覆结构。
[0027] 进一步地,所述正向螺旋纤维树脂层和反向螺旋纤维树脂层旋转叠置的周期为180°;
[0028] 所述正向螺旋纤维树脂层和反向螺旋纤维树脂层的铺层比例分别为1:1、1:2、2:1、1:3或3:1。
[0029] 进一步地,所述仿生纤维树脂层中,纤维的重量百分比含量为40%~70%。
[0030] 具有高抗冲击性能的仿生纤维增强复合材料的制备方法,所述制备方法的具体过程如下:
[0031] 步骤一:将结构仿生的纤维材料浸润至改性后的树脂中形成正弦编织纤维树脂层;
[0032] 步骤二:以若干层正弦编织纤维树脂层为一组,在将两组正弦编织纤维树脂层之间的中心轴线相间隔后,再将两组正弦编织纤维树脂层依次照一定的比例交替铺排,铺排过程中,一组正弦编织纤维树脂层从上至下依次正向旋转,另一组正弦编织纤维树脂层从上至下依次反向旋转,两组正弦编织纤维树脂层方向相反地交替旋转铺排形成双向螺旋纤维树脂层体;
[0033] 步骤三:将双向螺旋纤维树脂层体至于模具型腔内,在预定温度为50-300℃,预定压力为1-30MPa的条件下对模具型腔内的双向螺旋纤维树脂层体进行固化处理,固化时间为4-20小时。
[0034] 与现有技术相比,本发明的有益效果在于:
[0035] 1、本发明所述具有高抗冲击性能的仿生纤维增强复合材料中,仿生纤维树脂层中采用的仿蝎子螯结构纤维材料,增加纤维方向在厚度方向分量,结构简单,抗冲击性能较传统复合材料分提升140%。
[0036] 2、本发明所述具有高抗冲击性能的仿生纤维增强复合材料中,仿生纤维树脂层中采用的仿螳螂虾颚足结构纤维材料,在增加纤维方向在厚度方向分量的同时合理利用了正弦纤维均化应力的效果,抗冲击性能较传统复合材料提升200%,具有中等抗冲击性能。
[0037] 3、本发明所述具有高抗冲击性能的仿生纤维增强复合材料中,仿生纤维树脂层中采用的仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维材料,有效增加了纤维复合材料所受到的冲击力在厚度方向分量的同时具有防止裂纹产生和扩展的作用,抗冲击性能较传统复合材料提升400%,具有高等抗冲击性能。
[0038] 4、本发明所述具有高抗冲击性能的仿生纤维增强复合材料中,仿生纤维树脂层中采用软硬不同的两种纤维材料进组成,增加了限位树脂层的韧性。
[0039] 5、本发明所述具有高抗冲击性能的仿生纤维增强复合材料采用仿生纤维树脂层非同轴双螺旋铺层方式,可转变受到冲击产生的裂纹方向,增强复合材料的层间韧性。

附图说明

[0040] 图1a为竹纤维双螺旋缠绕结构示意图;
[0041] 图1b为蝎子螯的角质层的正弦结构示意图;
[0042] 图1c为螳螂虾颚足甲壳素纤维的正向正弦和负向正弦交替排列的结构示意图;
[0043] 图1d为小尾寒羊角鞘体凸包结构示意图;
[0044] 图1e为野鸡羽毛的“软包硬”结构示意图;
[0045] 图2a为正向螺旋纤维树脂层和反向螺旋纤维树脂层按照1:1铺层结构的示意图;
[0046] 图2b为正向螺旋纤维树脂层和反向螺旋纤维树脂层按照1:2铺层结构的示意图;
[0047] 图2c为正向螺旋纤维树脂层和反向螺旋纤维树脂层按照1:3铺层结构的示意图;
[0048] 图2d为正向螺旋纤维树脂层和反向螺旋纤维树脂层按照2:1铺层结构的示意图;
[0049] 图2e为正向螺旋纤维树脂层和反向螺旋纤维树脂层按照3:1铺层结构的示意图;
[0050] 图3a为本发明实施例1中,仿蝎子螯结构纤维树脂层结构示意图;
[0051] 图3b为仿蝎子螯结构纤维树脂层中,直纤维的编织结构示意图;
[0052] 图3c为仿蝎子螯结构纤维树脂层中,单向正弦纤维的编织结构示意图;
[0053] 图4a为本发明实施例2中,仿螳螂虾颚足结构纤维树脂层结构示意图;
[0054] 图4b为仿螳螂虾颚足结构纤维树脂层中,直纤维的编织结构示意图;
[0055] 图4c为仿螳螂虾颚足结构纤维树脂层中,双向正弦纤维的编织结构示意图;
[0056] 图5a为本发明实施例3中,仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层结构示意图;
[0057] 图5b为仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层中,凸包纤维的编织结构示意图;
[0058] 图5c为仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层中,十字正弦纤维的编织结构示意图;
[0059] 图5d为仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层中,垂直凸包短纤维的编织结构示意图;
[0060] 图中:
[0061] 1-仿蝎子螯结构纤维树脂层,
[0062] 2-仿螳螂虾颚足结构纤维树脂层,
[0063] 3-仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层,
[0064] 4-树脂基体;
[0065] 11-直纤维一,                      12-单向正弦纤维,
[0066] 21-直纤维二,                      22-双向正弦纤维;
[0067] 31-凸包纤维,                      32-十字正弦纤维,
[0068] 33-垂直凸包短纤维;
[0069] 41-正向螺旋纤维树脂层,            42-反向螺旋纤维树脂层。

具体实施方式

[0070] 为清楚、完整地描述本发明所述技术方案及其具体工作过程,结合说明书附图,本发明的具体实施方式如下:
[0071] 实施例1:(仿蝎子螯结构纤维树脂层)
[0072] 本实施例1公开了一种具有高抗冲击性能的仿生纤维增强复合材料及其制备方法。
[0073] 本发明所述具有高抗冲击性能的仿生纤维增强复合材料的铺层结构采用基于竹纤维双螺旋缠绕结构的仿生结构,如图1a所示。
[0074] 所述仿生纤维增强复合材料由正向螺旋纤维树脂层41和反向螺旋纤维树脂层42依次按照一定的比例交替铺叠后加压加热固化而成;
[0075] 所述正向螺旋纤维树脂层41和反向螺旋纤维树脂层42均为仿生纤维树脂层。
[0076] 其中,以垂直于正向螺旋纤维树脂层41中心的中心线为轴,以180°为一个旋转周期,正向螺旋纤维树脂层41之间依次正向旋转36°,即所述正向螺旋纤维树脂层41以五层为一个周期;以垂直于反向螺旋纤维树脂层42中心的中心线为轴,以180°为一个旋转周期,反向螺旋纤维树脂层42之间依次反向旋转36°,即所述反向螺旋纤维树脂层42以五层为一个周期;所述正向螺旋纤维树脂层41的旋转轴线与反向螺旋纤维树脂层42的旋转轴线向平行,且正向螺旋纤维树脂层41的旋转轴线与反向螺旋纤维树脂层42的旋转轴线之间的距离为4mm;
[0077] 如图2a-2e所示,所述正向螺旋纤维树脂层41和反向螺旋纤维树脂层42的铺层比例分别为1:1、1:2、2:1、1:3和3:1。
[0078] 如图2a至图2c所示,一个周期的正向螺旋纤维树脂层41与一至三个周期的反向螺旋纤维树脂层42依次交替铺叠形成一个周期的双向螺旋纤维树脂层体;如图2d和图2e所示,二至三个周期的正向螺旋纤维树脂层41与一个周期的反向螺旋纤维树脂层42依次交替铺叠形成一个周期的双向螺旋纤维树脂层体;
[0079] 所述仿生纤维增强复合材料由一个周期的双向螺旋纤维树脂层体依次铺叠后加压加热固化而成。
[0080] 如图3a所示,所述仿生纤维树脂层为仿蝎子螯结构纤维树脂层1;
[0081] 所述仿蝎子螯结构纤维树脂层1由仿蝎子螯结构纤维材料浸润改性后的树脂而成,所述树脂浸润仿蝎子螯结构纤维材料,并填充仿蝎子螯结构纤维材料中的间隙形成树脂基体4。仿蝎子螯结构纤维树脂层3的厚度为1.2mm,其中:
[0082] 所述改性后的树脂由聚苯硫醚(PPS)树脂、增强剂和二氧化硅粒子按8:2:1的体积比例通过机械搅拌制备而成。
[0083] 如图3b和图3c所示,所述仿蝎子螯结构纤维材料在仿蝎子螯结构纤维树脂层中的重量百分比含量为68.8%;
[0084] 如图1b所示,所述仿蝎子螯结构纤维材料的结构为基于蝎子螯的角质层的正弦结构的仿生结构;
[0085] 所述仿蝎子螯结构纤维材料由直纤维一11和单向正弦纤维12组成;
[0086] 所述直纤维一11为形状为直线形且柔度相对较高的凯夫拉纤维;所述单向正弦纤维12由形状为正弦曲线且振幅方向相同的三层正弦纤维组成,每层正弦纤维由多根正弦纤维沿着垂直于振荡的方向排列组成,所述正弦纤维的振幅为0.2mm,振荡周期为4mm,所述单向正弦纤维采用柔度相对较低的碳纤维;
[0087] 所述单向正弦纤维12铺敷于仿蝎子螯结构纤维树脂层3的中间位置,所述直纤维一11垂直于单向正弦纤维12振荡的方向铺排,且包覆铺排在单向正弦纤维12的外侧,并夹铺在每两层正弦纤维之间,以实现直纤维一11包覆在每层正弦纤维的外侧,形成内硬外软的包覆结构。
[0088] 上述仿生纤维增强复合材料的制备方法具体如下:
[0089] 步骤一:将仿蝎子螯结构纤维材料浸润至改性后的树脂中形成仿蝎子螯结构纤维树脂层;
[0090] 步骤二:以五层仿蝎子螯结构纤维树脂层为一组,将两组仿蝎子螯结构纤维树脂层之间的竖直中心轴线之间相隔4mm,两组仿蝎子螯结构纤维树脂层之间依次交替铺排,且其中一组仿蝎子螯结构纤维树脂层从上至下依次正向旋转36°,另一组仿蝎子螯结构纤维树脂层从上至下依次反向旋转36°,两组仿蝎子螯结构纤维树脂层反向交替旋转铺排形成一组双向螺旋纤维树脂层体;
[0091] 步骤三:将三组双向螺旋纤维树脂层体自上至下铺叠至模具型腔内,在120℃的预定温度和20MPa的预定压力下对模具型腔内的双向螺旋纤维树脂层体进行固化4个小时,即制成仿生纤维增强复合材料。
[0092] 本实施例1中,仿蝎子螯结构纤维树脂层3中的单向正弦纤维12为蝎子螯的角质层的正弦结构,起到均化应力以及耗散冲击能量的作用;采用柔性较高的直纤维一11包覆在柔性较低的单向正弦纤维12的外侧,起到增强材料强度和增加冲击能量吸收的作用;而双向螺旋纤维树脂层体则是采用仿竹材中的纤维双螺缠绕结构的仿生结构,具有抗压缩变形性能。
[0093] 实施例2:(仿螳螂虾颚足结构纤维树脂层)
[0094] 本实施例2公开了一种具有高抗冲击性能的纤维增强复合材料组合仿生结构及其成形方法。
[0095] 本发明所述具有高抗冲击性能的仿生纤维增强复合材料的铺层结构采用基于竹纤维双螺旋缠绕结构的仿生结构,如图1a所示。
[0096] 所述仿生纤维增强复合材料由正向螺旋纤维树脂层41和反向螺旋纤维树脂层42依次按照一定的比例交替铺叠后加压加热固化而成;
[0097] 所述正向螺旋纤维树脂层41和反向螺旋纤维树脂层42均为仿生纤维树脂层。
[0098] 其中,以垂直于正向螺旋纤维树脂层41中心的中心线为轴,以180°为一个旋转周期,正向螺旋纤维树脂层41之间依次正向旋转36°,即所述正向螺旋纤维树脂层41以五层为一个周期;以垂直于反向螺旋纤维树脂层42中心的中心线为轴,以180°为一个旋转周期,反向螺旋纤维树脂层42之间依次反向旋转36°,即所述反向螺旋纤维树脂层42以五层为一个周期;所述正向螺旋纤维树脂层41的旋转轴线与反向螺旋纤维树脂层42的旋转轴线向平行,且正向螺旋纤维树脂层41的旋转轴线与反向螺旋纤维树脂层42的旋转轴线之间的距离为4mm;
[0099] 如图2a-2e所示,所述正向螺旋纤维树脂层41和反向螺旋纤维树脂层42的铺层比例分别为1:1、1:2、2:1、1:3和3:1。
[0100] 如图2a至图2c所示,一个周期的正向螺旋纤维树脂层41与一至三个周期的反向螺旋纤维树脂层42依次交替铺叠形成一个周期的双向螺旋纤维树脂层体;
[0101] 如图2d和图2e所示,二至三个周期的正向螺旋纤维树脂层41与一个周期的反向螺旋纤维树脂层42依次交替铺叠形成一个周期的双向螺旋纤维树脂层体;
[0102] 所述仿生纤维增强复合材料由一个周期的双向螺旋纤维树脂层体依次铺叠后加压加热固化而成。
[0103] 如图4a所示,所述仿生纤维树脂层为仿螳螂虾颚足结构纤维树脂层2;
[0104] 所述仿螳螂虾颚足结构纤维树脂层2由仿螳螂虾颚足结构纤维材料浸润改性后的树脂而成,所述树脂浸润仿螳螂虾颚足结构纤维材料,并填充仿螳螂虾颚足结构纤维材料中的间隙形成树脂基体4。仿螳螂虾颚足结构纤维树脂层2的厚度为0.8mm,其中:
[0105] 所述改性后的树脂由聚苯硫醚(PPS)树脂、增强剂和二氧化硅粒子按8:2:1的体积比例通过机械搅拌制备而成。
[0106] 如图4b和图4c所示,所述仿螳螂虾颚足结构纤维材料在仿螳螂虾颚足结构纤维树脂层中的重量百分比含量为50%;
[0107] 如图1c所示,所述仿螳螂虾颚足结构纤维材料的结构为基于螳螂虾颚足甲壳素纤维的正向正弦和负向正弦交替排列结构的仿生结构;
[0108] 所述仿螳螂虾颚足结构纤维材料由直纤维二21和双向正弦纤维22组成;
[0109] 所述直纤维二21为形状为直线形且柔度相对较高的凯夫拉纤维;所述双向正弦纤维22形状为正弦曲线且振幅方向为正的正弦纤维与形状为正弦曲线且振幅方向为负的反向正弦纤维依次相互交替编织铺排组成,且双向正弦纤维22的铺排方向垂直于正向正弦纤维和反向正弦纤维的振幅方向;所述双向正弦纤维22的振幅为0.2mm,振荡周期为2mm;所述双向正弦纤维22采用柔度相对较低的碳纤维;
[0110] 所述双向正弦纤维22铺敷于仿螳螂虾颚足结构纤维树脂层2的中间位置,所述直纤维二21垂直于双向正弦纤维22振荡的方向铺排,且包覆铺排在双向正弦纤维22的外侧,并夹铺在双向正弦纤维22的正向正弦纤维与反向正弦纤维与之间,以实现直纤维二21包覆在正向正弦纤维与反向正弦纤维的外侧,形成内硬外软的包覆结构;
[0111] 上述组合仿生的纤维复合材料的制备方法具体如下:
[0112] 步骤一:将仿螳螂虾颚足结构纤维材料浸润至改性后的树脂中形成仿螳螂虾颚足结构纤维树脂层;
[0113] 步骤二:以五层仿螳螂虾颚足结构纤维树脂层为一组,将两组仿螳螂虾颚足结构纤维树脂层之间的竖直中心轴线之间相隔4mm,两组仿螳螂虾颚足结构纤维树脂层之间依次交替铺排,且其中一组仿螳螂虾颚足结构纤维树脂层从上至下依次正向旋转36°,另一组仿螳螂虾颚足结构纤维树脂层从上至下依次反向旋转36°,两组仿螳螂虾颚足结构纤维树脂层反向交替旋转铺排形成一组双向螺旋纤维树脂层体;
[0114] 步骤三:将两组双向螺旋纤维树脂层体自上至下铺叠至模具型腔内,在120℃的预定温度和20MPa的预定压力下对模具型腔内的双向螺旋纤维树脂层体进行固化4个小时,即制成仿生纤维增强复合材料。
[0115] 本实施例2中,仿螳螂虾颚足结构纤维树脂层2中的双向正弦纤维22为仿螳螂虾颚足甲壳素纤维正弦排列的仿生结构,起到均化应力以及耗散冲击能量的作用;采用柔性较高的直纤维二21包覆在柔性较低的双向正弦纤维22的外侧,起到增强材料强度和增加冲击能量吸收的作用;而双向螺旋纤维树脂层体则是采用仿竹材中的纤维双螺缠绕结构的仿生结构,具有抗压缩变形性能。
[0116] 实施例3:(仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层)[0117] 本实施例3公开了一种具有高抗冲击性能的纤维增强复合材料组合仿生结构及其成形方法。
[0118] 本发明所述具有高抗冲击性能的仿生纤维增强复合材料的铺层结构采用基于竹纤维双螺旋缠绕结构的仿生结构,如图1a所示。
[0119] 所述仿生纤维增强复合材料由正向螺旋纤维树脂层41和反向螺旋纤维树脂层42依次按照一定的比例交替铺叠后加压加热固化而成;
[0120] 所述正向螺旋纤维树脂层41和反向螺旋纤维树脂层42均为仿生纤维树脂层。
[0121] 其中,以垂直于正向螺旋纤维树脂层41中心的中心线为轴,以180°为一个旋转周期,正向螺旋纤维树脂层41之间依次正向旋转36°,即所述正向螺旋纤维树脂层41以五层为一个周期;以垂直于反向螺旋纤维树脂层42中心的中心线为轴,以180°为一个旋转周期,反向螺旋纤维树脂层42之间依次反向旋转36°,即所述反向螺旋纤维树脂层42以五层为一个周期;所述正向螺旋纤维树脂层41的旋转轴线与反向螺旋纤维树脂层42的旋转轴线向平行,且正向螺旋纤维树脂层41的旋转轴线与反向螺旋纤维树脂层42的旋转轴线之间的距离为4mm;
[0122] 如图2a-2e所示,所述正向螺旋纤维树脂层41和反向螺旋纤维树脂层42的铺层比例分别为1:1、1:2、2:1、1:3和3:1。
[0123] 如图2a至图2c所示,一个周期的正向螺旋纤维树脂层41与一至三个周期的反向螺旋纤维树脂层42依次交替铺叠形成一个周期的双向螺旋纤维树脂层体;如图2d和图2e所示,二至三个周期的正向螺旋纤维树脂层41与一个周期的反向螺旋纤维树脂层42依次交替铺叠形成一个周期的双向螺旋纤维树脂层体;
[0124] 所述组合仿生的纤维复合材料由一个周期的双向螺旋纤维树脂层体依次铺叠后加压加热固化而成。
[0125] 所述仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层1由仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维材料浸润改性后的树脂而成,所述树脂浸润仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维材料,并填充仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维材料中的间隙形成树脂基体4。仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层1的厚度为0.6mm其中:
[0126] 所述改性后的树脂由聚苯硫醚(PPS)树脂、增强剂和二氧化硅粒子按8:2:1的体积比例通过机械搅拌制备而成。
[0127] 如图5b、图5c和图5d所示,所述仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维材料在仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层中的重量百分比含量为43.5%;
[0128] 如图1d和图1e所示,所述仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维材料的结构为基于小尾寒羊角鞘体凸包结构和野鸡羽毛中间质硬而外层较软结构的仿生结构;
[0129] 所述仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维材料由凸包纤维31、十字正弦纤维32和垂直凸包短纤维33组成;
[0130] 所述十字正弦纤维32由形状均为正弦曲线,且振荡方向相垂直的横向正弦纤维与纵向正向纤维依次交替铺排组成,其中,横向正弦纤维与纵向正弦纤维分别沿与各自的振荡方向相垂直的方向铺排;所述十字正弦纤维32的横向正弦纤维与纵向正向纤维的振幅为0.4mm,振荡周期为4mm;所述十字正弦纤维32采用柔度相对较低的碳纤维;
[0131] 所述十字正弦纤维32铺敷于仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层3的中间位置,所述凸包纤维31是以十字正弦纤维32的纵向正弦纤维为经线,以横向正弦纤维为纬线依次交替编织,形成的截面为正弦曲线的凸包结构,所述凸包纤维31截面的正弦曲线的振幅为0.4mm,振荡周期为4mm,所述凸包纤维31的凸起位置与十字正弦纤维32的横向正弦纤维的波峰与纵向正弦纤维波峰相交的位置相对应,或与十字正弦纤维32的横向正弦纤维的波谷与纵向正弦纤维波谷相交的位置相对应,故凸包纤维31的凸起处以螺旋状与十字正弦纤维32相互铺排编织,以实现凸包纤维31铺敷在十字正弦纤维32的侧面;
[0132] 所述垂直凸包短纤维33采用短纤维以捆束的方式呈放射状地铺排在凸包纤维31的外侧,且垂直凸包短纤维33的外轮廓曲线与凸包纤维31外侧轮廓曲线相匹配,即垂直凸包短纤维33的截面外轮廓线为振幅为0.4mm,振荡周期为4mm的正弦曲线;
[0133] 所述垂直凸包短纤维33包覆在凸包纤维31与十字正弦纤维32外侧,形成内硬外软的包覆结构;
[0134] 上述组合仿生的纤维复合材料的制备方法具体如下:
[0135] 步骤一:将仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维材料浸润至改性后的树脂中形成仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层;
[0136] 步骤二:以五层仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层为一组,将两组仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层之间的竖直中心轴线之间相隔4mm,两组仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层之间依次交替铺排,且其中一组仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层从上至下依次正向旋转36°,另一组仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层从上至下依次反向旋转36°,两组仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层反向交替旋转铺排形成一组凸包螺旋纤维树脂层体;
[0137] 步骤三:将一组凸包螺旋纤维树脂层体放置于模具型腔内,在120℃的预定温度和20MPa的预定压力下对模具型腔内的双向螺旋纤维树脂层体进行固化4个小时,即制成仿生纤维增强复合材料。
[0138] 本实施例3中,仿小尾寒羊角鞘体和野鸡羽毛组合结构的纤维树脂层3中的十字正弦纤维32为仿螳螂虾颚足甲壳素纤维正弦排列的仿生结构,起到均化应力以及耗散冲击能量的作用;采用的凸包纤维13和垂直凸包短纤维33为仿小尾寒羊角鞘体凸包结构的仿生结构,以有效防止碰撞过程中产生裂纹以及防止裂纹扩展;采用柔性较高的垂直凸包短纤维33包覆在柔性较低的凸包纤维31与十字正弦纤维32的外侧,形成仿野鸡羽毛的“软包硬”的仿生结构,起到吸收和反弹冲击能量的作用;而双向螺旋纤维树脂层体则是采用仿竹材中的纤维双螺缠绕结构的仿生结构,具有抗压缩变形性能。
[0139] 尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
[0140] 以上所述本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所作出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。