屋顶光伏并网装置、微网孤岛检测方法转让专利

申请号 : CN202010944248.9

文献号 : CN111817356B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 叶刚进王骏海杨翾江奕军李飞陈琳陈致远方响徐寅飞

申请人 : 杭州电力设备制造有限公司国网浙江省电力有限公司国网浙江省电力有限公司杭州供电公司

摘要 :

本发明公开了一种屋顶光伏并网装置、微网孤岛检测方法,其中,所述屋顶光伏并网装置连接于光伏逆变器与升压配变之间,至少包括接入模块、人机交互模块和中央控制器;所述微网孤岛检测方法包括:S1、计算微网与配电网PCC点处的瞬时有功功率和瞬时无功功率;S2、根据传输线路的电感和电容参数,计算视在功率参考值;S3、计算得出孤岛检测区域;S4、当瞬时有功功率和瞬时无功功率收敛到预先计算的视在功率参考值时,则检测到孤岛起始。本发明的光伏并网装置对光伏能源利用程度更高;本发明提出的微网孤岛检测方法成本低,不需要通信系统,检测时间快、准确率高、稳定性好,在微网内部发生故障时,该方法都不会发生误动作。

权利要求 :

1.一种应用于屋顶光伏并网装置的微网孤岛检测方法,所述屋顶光伏并网装置连接于光伏逆变器与升压配变之间,至少包括接入模块、人机交互模块和中央控制器;其中,所述接入模块至少用于提供光伏接入、安全并网接入和储能接入,包括至少一个光伏接入单元、安全并网接入单元和储能接入单元,所述光伏接入单元、安全并网接入单元和储能接入单元至少各包括一个断路器,通过中央控制器控制各个断路器的通断实现光伏接入单元、安全并网接入单元或储能接入单元的通断;

所述人机交互模块至少包括显示单元和操控单元,所述显示单元至少用于显示总发电量、总用电量、有功功率、无功功率、并网装置运行状态、功率因数、系统频率、三相相电压和三相相电流,所述操控单元至少用于切换界面和按键选择;

所述中央控制器至少包括计量模块、保护模块、通信模块、存储单元和处理器,所述计量模块至少用于计量总发电量、总用电量、有功功率、无功功率、功率因数、系统频率和三相电压电流,所述计量模块至少包括采样回路,所述采样回路用于采集电压和电流信号后并通过处理器计算得到计量总发电量、总用电量、有功无功功率、功率因数、系统频率和三相电压电流;所述保护模块至少用于提供过电压保护、低电压保护、过电流保护、防逆流保护、过负荷保护、合闸控制和防孤岛保护;所述通信模块至少用于实现中央控制器与外部终端之间的信息交互和远程通信,所述信息交互的数据至少包括直流电压、直流电流、交流电压、交流电流、有功功率、无功功率、功率因数和装置工作状态;所述存储单元至少用于存储处理器处理的数据和与外部终端之间的交互信息;所述处理器用于控制接入模块中各个断路器的通断、处理计量模块测量的数据、控制保护模块中的合闸操作、控制通过通信模块与外部终端之间的信息交互和远程通信,以及控制人机交互模块显示数据信息和接收用户通过人机交互模块输入的指令;

其特征在于,所述微网孤岛检测方法包括:

S1、计算微网与配电网PCC点处的瞬时有功功率和瞬时无功功率;

瞬时有功功率和瞬时无功功率分别通过下式计算:

P=vaia+vbib+vcic

Q=v′aia+v′bib+v′cib

其中,三相电压va,vb,vc和三相电流ia,ib,ic由PCC点采样得到,v′a、v′b、v′c为分别滞后va、vb、vc四分之一周期的值;

S2、根据传输线路的电感和电容参数,计算视在功率参考值;

视在功率参考值的计算如下:

其中,VPCC和 分别代表PCC点处的额定电压和传输线路阻抗;

S3、计算得出孤岛检测区域;

孤岛检测区域由下式得到:

其中,k1和k2取决于PCC点处电压的变化以及电流互感器和电压互感器的测量误差;

S4、当瞬时有功功率和瞬时无功功率收敛到预先计算的视在功率参考值时,则检测到孤岛起始。

2.根据权利要求1所述的应用于屋顶光伏并网装置的微网孤岛检测方法,其特征在于,所述屋顶光伏并网装置还包括电源模块,所述电源模块用于为中央控制器供电。

3.根据权利要求1所述的应用于屋顶光伏并网装置的微网孤岛检测方法,其特征在于,所述通信模块至少采用RS-232、RS-485、SPI和CAN中的一种或多种。

4.根据权利要求1-3任一项所述的应用于屋顶光伏并网装置的微网孤岛检测方法,其特征在于,将PCC点处电压的变化设置为±20%,充分考虑孤岛发生后的稳态和瞬态下的电压偏差以及足够的裕量,将k1和k2设置为:k1=1.0×0.8×(1-3%)×(1-6%)=0.73

k2=1.0×1.2×(1+3%)×(1+6%)=1.31

k3设置为15,这三个系数k1、k2和k3仅取决于电压变化的极限以及IEC标准中定义的电流互感器和电压互感器的测量误差极限。

说明书 :

屋顶光伏并网装置、微网孤岛检测方法

技术领域

[0001] 本发明涉及光伏发电技术领域,具体涉及一种屋顶光伏并网装置、微网孤岛检测方法,尤其适用于0.4kV配电网下的屋顶光伏并网装置、微网孤岛检测方法。

背景技术

[0002] 光伏能源作为最具潜力的可再生能源,因其储量的无限性、存在的普遍性、利用的清洁性以及实用的经济性,越来越被人们所青睐。大力发展光伏产业、积极开发光伏能源,在全球范围内已经得到了空前重视,已成为各国可持续发展战略的重要组成部分。
[0003] 随着光伏技术的发展,电力市场改革的加深,大量具有屋顶光伏发电资质的小微企业可以通过光伏发电参与到电力市场中。现有的光伏并网装置针对的是10kV及以上的电压等级,不具备储能扩展接口,由于光伏发电的间歇性和不稳定性,不能对电网起到支撑作用,有时甚至会导致电网负荷及潮流的大幅波动;另外,由于传统的光伏并网装置针对的是10kV及以上的电压等级,当在0.4kV等级下时,传统光伏并网装置保护措施冗余、成本高,并且由于10kV及以上电压等级下,储能设备主要由电网侧提供,传统光伏并网装置不具有储能扩展接口,不能完成光伏发电与储能的联合调配。
[0004] 小微企业分布式光伏发电是一种小规模发电,其与储能、负荷共同构成一个微网,它们必须服从互联配电网的运行条件。当电网中断配电网与微网的连接时,光伏并网装置必须能准确检测孤岛状况并告知微网内的光伏发电减少出力,保证发电与消耗的平衡,这称为防孤岛保护。因此,孤岛检测对于电网和微网来说都非常重要。现有的孤岛检测方法主要分为远端检测与本地检测两种。远端检测主要依赖于通信系统,其不受电能质量及电力系统暂态响应的影响。本地检测主要分为主动检测与被动检测两种,主动检测通过向PCC(Point of Common Coupling,公共耦合点)注入少量失真电流来观测系统的响应,其可以检测到具有较小非检测区域的微网孤岛现象,被动检测主要基于孤岛成立之前和之后变量的变化,如果监测的变量(例如电压的大小、相角、频率或谐波)满足孤岛检测条件,则可以检测到孤岛。但是,现有的远端检测和本地检测也都存在不足之处。远端检测依赖于通信系统,建设成本较高。本地检测中的主动检测需要较长的检测时间,而且注入失真电流会影响电能质量。本地检测中的被动检测很难使用检测孤岛起始,原因是当发电功率与微网中的本地负载相同时,与电网的断开不会导致监测变量的显著变化,另外,当微网中发生故障时,由于监测变量的显著变化,该方法可能会出现误动作。

发明内容

[0005] 本发明为了克服以上技术的不足,面向具有屋顶光伏发电资质的小微企业,本发明提供了一种屋顶光伏并网装置、微网孤岛检测方法,为光伏发电系统提供保护控制、通信计量以及储能调配,且提出稳定、可靠的孤岛检测方法,使小微企业通过光伏发电参与电力市场,并能够与配电网可靠互联运行。
[0006] 术语解释:
[0007] 微网:是微电网(Micro-Grid)的简称,是指由分布式电源、储能装置、能量转换装置、负荷、监控和保护装置等组成的小型发配电系统。
[0008] 本发明克服其技术问题所采用的技术方案是:
[0009] 一种屋顶光伏并网装置,其连接于光伏逆变器与升压配变之间,至少包括接入模块、人机交互模块和中央控制器;其中,
[0010] 所述接入模块至少用于提供光伏接入、安全并网接入和储能接入,包括至少一个光伏接入单元、安全并网接入单元和储能接入单元,所述光伏接入单元、安全并网接入单元和储能接入单元至少各包括一个断路器,通过中央控制器控制各个断路器的通断实现光伏接入单元、安全并网接入单元或储能接入单元的通断;
[0011] 所述人机交互模块至少包括显示单元和操控单元,所述显示单元至少用于显示总发电量、总用电量、有功功率、无功功率、并网装置运行状态、功率因数、系统频率、三相相电压和三相相电流,所述操控单元至少用于切换界面和按键选择;
[0012] 所述中央控制器至少包括计量模块、保护模块、通信模块、存储单元和处理器,所述计量模块至少用于计量总发电量、总用电量、有功功率、无功功率、功率因数、系统频率和三相电压电流,所述计量模块至少包括采样回路,所述采样回路用于采集电压和电流信号后并通过处理器计算得到计量总发电量、总用电量、有功无功功率、功率因数、系统频率和三相电压电流;所述保护模块至少用于提供过电压保护、低电压保护、过电流保护、防逆流保护、过负荷保护、合闸控制和防孤岛保护;所述通信模块至少用于实现中央控制器与外部终端之间的信息交互和远程通信,所述信息交互的数据至少包括直流电压、直流电流、交流电压、交流电流、有功功率、无功功率、功率因数和装置工作状态;所述存储单元至少用于存储处理器处理的数据和与外部终端之间的交互信息;所述处理器用于控制接入模块中各个断路器的通断、处理计量模块测量的数据、控制保护模块中的合闸操作、控制通过通信模块与外部终端之间的信息交互和远程通信,以及控制人机交互模块显示数据信息和接收用户通过人机交互模块输入的指令。
[0013] 进一步地,还包括电源模块,所述电源模块用于为中央控制器供电。
[0014] 进一步地,所述通信模块至少采用RS-232、RS-485、SPI和CAN中的一种或多种。
[0015] 本发明还提供了一种应用于上述所述的屋顶光伏并网装置的微网孤岛检测方法,包括:
[0016] S1、计算微网与配电网PCC点处的瞬时有功功率和瞬时无功功率;
[0017] S2、根据传输线路的电感和电容参数,计算视在功率参考值;
[0018] S3、计算得出孤岛检测区域;
[0019] S4、当瞬时有功功率和瞬时无功功率收敛到预先计算的视在功率参考值时,则检测到孤岛起始。
[0020] 进一步地,步骤S1中,瞬时有功功率和瞬时无功功率分别通过下式计算:
[0021]
[0022]
[0023] 其中,三相电压 和三相电流 由PCC点采样得到, 、、 为分别滞后 、 、 四分之一周期的值。
[0024] 进一步地,步骤S2中,视在功率参考值的计算如下:
[0025]
[0026] 其中, 和 分别代表PCC点处的额定电压和传输线路阻抗。
[0027] 进一步地,步骤S3中,孤岛检测区域由下式得到:
[0028]
[0029] 其中, 和 取决于PCC点处电压的变化以及电流互感器和电压互感器的测量误差。
[0030] 进一步地,将PCC点处电压的变化设置为±20%,充分考虑孤岛发生后的稳态和瞬态下的电压偏差以及足够的裕量,将 和 设置为:
[0031]
[0032] 设置为15,这三个系数 、 和 仅取决于电压变化的极限以及IEC标准中定义的电流互感器和电压互感器的测量误差极限。
[0033] 本发明的有益效果是:
[0034] 1、目前已有的光伏能源并网装置是针对较高电压等级设计的,一般是10kV以上,在本发明所面临的0.4kV电压等级下,保护设备冗余、成本高;采用本发明的屋顶光伏并网装置,相对于传统光伏能源并网装置成本低,且本发明模块化和集成度高,可扩展性强。
[0035] 2、10kV及以上电压等级下,储能设备往往由电网侧提供,传统光伏能源并网装置不设置储能接口,而本发明可以通过扩展的储能接口,完成储能与光伏的协调工作,在电网不接收光伏能源的情况下,储存光伏发电的电能,相较于传统光伏能源并网装置,本发明对光伏能源利用程度更高。
[0036] 3、本发明提出的微网孤岛检测方法成本低,不需要通信系统,检测时间快、准确率高、稳定性好,在微网内部发生故障时,且无论故障出现的位置、类型、初始相角如何,本发明的孤岛检测方法都不会发生误动作。

附图说明

[0037] 图1为本发明实施例1所述屋顶光伏并网装置的原理框图。
[0038] 图2为本发明实施例1所述屋顶光伏并网装置的主电路图。
[0039] 图3为本发明实施例2所述孤岛检测区域的示意图。
[0040] 图4为本发明实施例2所述微网正常运行时孤岛检测实验结果图。
[0041] 图5为本发明实施例2所述微网正常运行时孤岛检测断路器动作信号图。
[0042] 图6为本发明实施例2所述微网发生故障情况下孤岛检测实验结果图。
[0043] 图7为本发明实施例2所述微网发生故障情况下孤岛检测断路器动作信号图。

具体实施方式

[0044] 为了便于本领域人员更好的理解本发明,下面结合附图和具体实施例对本发明做进一步详细说明,下述仅是示例性的不限定本发明的保护范围。
[0045] 实施例1、
[0046] 本实施例提供了一种屋顶光伏并网装置,应用于光伏发电系统,可以为用户提供光伏发电并网服务、降低企业的用电成本、实现节能增效的标准化、集成化、便携化和智能化,该屋顶光伏并网装置安装于具有屋顶光伏发电资质的小微企业内部,连接于光伏逆变器与升压配变之间,是分布式光伏接入系统的保护控制、通信计量及智能管理的核心。如图1所示,本实施例应用于0.4kV配电网下的屋顶光伏并网装置至少包括接入模块、人机交互模块和中央控制器。
[0047] 本实施例中,所述接入模块至少用于提供光伏接入、安全并网接入和储能接入,包括至少一个光伏接入单元、安全并网接入单元和储能接入单元,还包括电操机构、母排和互感器,本实施例优选设置两路光伏接入单元、一路并网接入单元,并预留一路储能接入单元,如图2所示。所述光伏接入单元、安全并网接入单元和储能接入单元至少各包括一个断路器,具体地,每个光伏接入单元各至少包括断路器一,安全并网接入单元至少包括断路器二,储能接入单元至少包括断路器三,所述光伏接入口与断路器一之间还连接有AC/DC转换模块,用于将交流电转换为直流电,所述储能接入口与断路器三之间也连接有AC/DC转换模块,用于将交流电转换为直流电。通过中央控制器控制各个断路器的通断可以实现光伏接入单元、安全并网接入单元或储能接入单元的通断,其中,通过控制储能接入单元,使得电网在不接收光伏发电电能时,储能接入单元可以接收光伏发电电能,优化经济效益,该储能接入单元可以根据具体应用场景需求选择性开放。
[0048] 本实施例中,所述人机交互模块至少包括显示单元和操控单元,所述显示单元通过电阻显示屏实现,在上位软件中完成电阻显示屏UI设计,通过通用异步串口完成显示屏与中央控制器的通信,为用户提供直观的数据,达成用户与装置的良好信息交互。所述显示单元至少用于显示总发电量、总用电量、有功功率、无功功率、并网装置运行状态、功率因数、系统频率、三相相电压和三相相电流,还可以根据用户定制需求,提供电能质量信息监测等;所述操控单元至少用于切换界面和按键选择。
[0049] 本实施例中,所述中央控制器至少包括计量模块、保护模块、通信模块、存储单元和处理器。
[0050] 其中,所述计量模块主要采用电子式计量方式,至少用于计量总发电量、总用电量、有功功率、无功功率、功率因数、系统频率和三相电压电流,所述计量模块至少包括采样回路,所述采样回路用于采集电压和电流信号,数模转换后然后通过处理器计算得到计量总发电量、总用电量、有功无功功率、功率因数、系统频率和三相电压电流,一般用户主要是查看月度发电量、月度用电量信息,所述计量模块实现了用户与电力局之间的良好沟通渠道。
[0051] 所述保护模块至少用于提供过电压保护、低电压保护、过电流保护、防逆流保护、过负荷保护、合闸控制和防孤岛保护。具体是,当检测到过电压、低电压、过电流、逆流、过负荷时断开断路器,提供过电压保护、低电压保护、过电流保护、防逆流保护、过负荷保护;在输入合闸指令时,检测光伏支路与电网电压相对相位差以及电压幅值,达到并网标准后向断路器发送闭合指令,提供合闸控制;当检测到微网处于孤岛运行时,调整光伏出力维持系统平衡。
[0052] 所述通信模块至少用于实现中央控制器与外部终端之间的信息交互和远程通信,也就是实现光伏发电系统与上级终端之间的信息交互和远程通信,至少包括直流电压、直流电流、交流电压、交流电流、有功功率、无功功率、功率因数和装置工作状态的上送。作为优选的,本实施例所述通信模块至少采用RS-232、RS-485、SPI和CAN中的一种或多种通讯协议,可满足用户对于本装置多种场景应用的不同需求进行改造。
[0053] 所述存储单元至少用于存储处理器处理的数据和与外部终端之间的交互信息。
[0054] 所述处理器用于控制接入模块中各个断路器的通断、处理计量模块测量的数据、控制保护模块中的合闸操作、控制通过通信模块与外部终端之间的信息交互和远程通信,以及控制人机交互模块显示数据信息和接收用户通过人机交互模块输入的指令。作为优选的,本实施例所述的处理器采用单片机或ARM。
[0055] 综上,本实施例所述的屋顶光伏并网装置至少包括五大模块,分别是计量模块、保护模块、通信模块、接入模块和人机交互模块,不仅按照行业标准满足0.4KV光伏并网的基本要求,也可以按照用户特用的需求增加电能质量管理等功能。
[0056] 作为本实施例优选的方案,所述屋顶光伏并网装置还包括电源模块,所述电源模块用于为中央控制器供电。
[0057] 此外,本实施例所述的屋顶光伏并网装置除了基本五大模块之外,还包括扩展模块,所述扩展模块可以实现充放电控制、经济优化控制等,可以降低用电成本,优化经济效益。
[0058] 实施例2、
[0059] 本实施例提供了一种应用于实施例1所述的屋顶光伏并网装置的微网孤岛检测方法,包括如下步骤:
[0060] 第一步、计算微网与配电网PCC点处的瞬时有功功率和瞬时无功功率。
[0061] 瞬时有功功率 和瞬时无功功率 分别通过下式计算:
[0062]
[0063]
[0064] 其中,三相电压 和三相电流 由PCC点采样得到,、 、 为分别滞后 、 、 四分之一周期的值。
[0065] 第二步、根据传输线路的电感和电容参数,计算视在功率参考值。
[0066] 当微网与配电网连接断开时,有功功率 和无功功率 取决于PCC处的电压以及线路的阻抗。由于传输线路中几乎没有电阻,因此有功功率 几乎变为零,无功功率 与传输线路的串联电感和并联电容相关,无功功率 不为零。由于传输线路的参数已知,因此可以计算出这些恒定的有功功率和无功功率。如果计算出的瞬时有功功率和无功功率收敛到预先计算的常数值,则将检测到孤岛起始。视在功率参考值的计算如下:
[0067]
[0068] 其中, 和 分别代表PCC点处的额定电压和传输线路阻抗。
[0069] 第三步、计算得出孤岛检测区域。
[0070] 所述孤岛检测区域,如图3所示,具体由下式得到:
[0071]
[0072] 其中, 和 取决于PCC点处电压的变化以及电流互感器和电压互感器的测量误差。将PCC点处电压的变化设置为±20%,充分考虑孤岛发生后的稳态和瞬态下的电压偏差以及足够的裕量,因此,将 和 设置为:
[0073]
[0074] 设置为15,这三个系数 、 和 仅取决于电压变化的极限以及IEC标准中定义的电流互感器和电压互感器的测量误差极限。因此,当所提出的微网孤岛检测方法应用于其它微网时, 、 和 将不会改变,只需考虑新的传输线路参数来计算 即可。
[0075] 第四步、当瞬时有功功率和瞬时无功功率收敛到预先计算的视在功率参考值时,则检测到孤岛起始。具体是,微网处于孤岛运行模式时,并网点的瞬时有功功率收敛于零,而由于串联电感和并联电容的影响,瞬时无功功率有一定的微小值,据此可得到瞬时有功无功功率坐标系下的孤岛检测区间,当功率轨迹 移动到孤岛检测区域中时,检测到孤岛起始。
[0076] 微网正常运行时,实验结果如图4和5所示,可知,在33.33ms时发生孤岛,工作状态能够收敛至检测区间,并在55.86ms时能够准确检测到孤岛运行。
[0077] 当微网中发生故障时,实验结果如图6和7所示,可知,检测区域仍然正确,工作点不会收敛至检测区域,因此不会发生误动作。
[0078] 经PSCAD/EMTDC仿真以及实验验证,本实施例所述的微网孤岛检测方法都可以快速并准确地检测到微网孤岛运行的开始;并且无论故障出现的位置、类型、初始相角如何,本方法都不会产生误动。
[0079] 以上仅描述了本发明的基本原理和优选实施方式,本领域人员可以根据上述描述做出许多变化和改进,这些变化和改进应该属于本发明的保护范围。