二硅化钼/碳化硅三维聚合物先驱体陶瓷及其制备方法转让专利

申请号 : CN202010722118.0

文献号 : CN111848172B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 姚荣迁黄雯燕郑艺浓韩宇宸韩浩哲安子一陈峰

申请人 : 厦门大学

摘要 :

二硅化钼/碳化硅三维聚合物先驱体陶瓷及其制备方法,涉及陶瓷材料制备。将先驱体PVG粉末置于石墨纸舟中在惰性气氛保护下高温裂解,将MoSi2和裂解后的SiC(rGO)p陶瓷颗粒、先驱体PVG粉末混合形成MoSi2/SiC(rGO)p/PVG混合物,然后在酒精介质中进行球磨混合均匀后置于烘箱中烘干;装入模具中模压成型,脱模后得素坯,放入惰性气氛管式炉内进行高温烧结,随炉冷却后即得到黑色的二硅化钼/碳化硅三维聚合物先驱体陶瓷,简称3D‑SiC(rGO,MoSi2x)纳米复合块体陶瓷,其中x为二硅化钼占整个素坯的质量分数。具有较高的热导率和电导率,良好成型性与成分均匀性;工艺简单经济。

权利要求 :

1.二硅化钼/碳化硅三维聚合物先驱体陶瓷的制备方法,其特征在于包括以下步骤:

1)将先驱体PVG粉末置于石墨纸舟中在惰性气氛保护下高温裂解,即得到裂解后的SiC(rGO)p陶瓷颗粒;所述PVG粉末高温裂解的温度为1300℃,升温速率为3~5℃/min,保温时间 为25~35min;

2)将MoSi2和步骤1)所得的裂解SiC(rGO)p陶瓷颗粒和先驱体PVG粉末混合形成MoSi2/SiC(rGO)p/PVG混合物;所述MoSi2、裂解SiC(rGO)p陶瓷颗粒与先驱体PVG粉末按质量百分比为MoSi25%~20%、裂解SiC(rGO)p陶瓷颗粒55%~40%、先驱体PVG粉末40%;

3)将步骤2)所得的MoSi2/SiC(rGO)p/PVG混合物在酒精介质中进行球磨混合均匀后置于烘箱中烘干得MoSi2/SiC(rGO)p/PVG粉末;

4)将烘干后的MoSi2/SiC(rGO)p/PVG粉末装入模具中模压成型,脱模后即得到MoSi2/SiC(rGO)p/PVG素坯;所述模压成型的压力为30~50MPa,保压时间为15~25s;

5)将步骤4)所得的MoSi2/SiC(rGO)p/PVG素坯放入惰性气氛管式炉内进行高温烧结,随炉冷却后即得到黑色的二硅化钼/碳化硅三维聚合物先驱体陶瓷,简称3D‑SiC(rGO,MoSi2x)纳米复合块体陶瓷,其中x为二硅化钼占整个素坯的质量分数。

2.如权利要求1所述二硅化钼/碳化硅三维聚合物先驱体陶瓷的制备方法,其特征在于在步骤1)中,所述惰性气氛为氩气,流速为60mL/min。

3.如权利要求1所述二硅化钼/碳化硅三维聚合物先驱体陶瓷的制备方法,其特征在于在步骤3)中,所述球磨时间为8~10h。

4.如权利要求1所述二硅化钼/碳化硅三维聚合物先驱体陶瓷的制备方法,其特征在于在步骤5)中,所述惰性气氛为氩气,流速为50~80mL/min。

5.如权利要求1所述二硅化钼/碳化硅三维聚合物先驱体陶瓷的制备方法,其特征在于在步骤5)中,所述高温烧结的温度为1300℃,升温速率为3~5℃/min,保温时间为25~

35min。

6.如权利要求1~5中任一项所述二硅化钼/碳化硅三维聚合物先驱体陶瓷的制备方法制备的二硅化钼/碳化硅三维聚合物先驱体陶瓷。

说明书 :

二硅化钼/碳化硅三维聚合物先驱体陶瓷及其制备方法

技术领域

[0001] 本发明涉及陶瓷材料制备,尤其是涉及一种二硅化钼/碳化硅三维聚合物先驱体陶瓷及其制备方法。

背景技术

[0002] 碳化硅(silicon carbide,SiC)作为先进陶瓷材料,具有优良的力学性能、耐高温性能、抗热震性能、化学稳定性、耐腐蚀性等优异性能,在高温、高频率、高功率等恶劣的环
境条件下也表现出良好的性能,常被用于制作耐腐蚀材料、耐磨材料、耐高温构件、高精密
构件等,在微电子系统、机械、化工、冶金、航空航天、国防军工等领域都有着不可或缺的应
用。
[0003] 目前,SiC陶瓷可以通过常压烧结、热压烧结、反应烧结等制备方法得到。中国专利ZL200910098377.4公开一种固相常压烧结碳化硅陶瓷的制备方法,以亚微米级碳化硅粉、
石墨粉和碳化硼粉作为原料,经过球磨、喷雾造粒、模压成型以及真空烧结等工艺制得性能
优越、耐腐蚀的碳化硅块体陶瓷。中国专利ZL 201110438186.5公开一种采用热压烧结制备
碳纳米管增强增韧碳化硅陶瓷的方法,以碳化硅微粉、碳化硼微粉、碳粉、碳纳米管、粘结剂
以及分散剂为原料,经过球磨、搅拌、干燥粉碎等步骤后升温至1900~2200℃加压15~
35MPa,获得碳纳米管增强增韧碳化硅陶瓷。中国专利ZL 201610850564.3公开一种多步反
应烧结法制备低残硅的碳化硅陶瓷材料的方法,往碳化硅粉中混入不同碳源,添加酚醛树
脂或PVA机械混料,在1600~1700℃真空条件下烧结得到导热性能、高温力学性能更优的高
致密度碳化硅陶瓷,同时解决了碳化硅陶瓷中残留硅含量过高导致机械性能差的问题。然
而,上述方法通常需添加助剂,易引入杂质相,影响产品性能,并且所需的烧结温度较高,生
产成本较高。
[0004] 先驱体转化法是指通过化学合成制得可经热解转化成陶瓷的有机聚合物,再对其进行交联固化、高温裂解处理获得最终陶瓷产物的方法与工艺,具有分子结构可设计性、成
分可控且纯度高、良好可加工性、制备温度较低、无需添加烧结助剂、陶瓷产品性能良好等
独特优势。先驱体转化法是传统陶瓷工艺的发展与创新,在制备碳化硅陶瓷纤维、薄膜与涂
层中应用广泛。中国专利ZL 201710285798.2公开一种高耐温性的高结晶近化学计量比连
续SiC纤维的制备方法,将聚碳硅烷与异质元素化合物反应制得改性先驱体并对其进行纺
丝,之后在不熔化处理和烧结过程中引入硼化物得到连续致密SiC纤维。中国专利ZL 
201610281612.1公开一种碳纳米管—SiC薄膜的制备方法,提高SiC薄膜的高温抗氧化以及
抗烧蚀性能。尽管先驱体转化法的优势十分显著,但在制备碳化硅三维陶瓷方面仍存在许
多问题。聚碳硅烷先驱体在裂解中逸出大量小分子气体,使陶瓷内部产生大量孔洞影响致
密程度,或者发生收缩导致陶瓷产生大量裂纹,最终造成严重损坏无法成型,而且无定型
SiOxCy相和游离碳相的存在使得碳化硅陶瓷力学性能较差。中国专利ZL 201711494377.7
中公开一种利用氧化石墨烯‑乙烯基三乙氧基硅烷‑聚碳硅烷先驱体高温热解制备石墨烯/
碳化硅单片陶瓷的方法,在先驱体法制备碳化硅三维陶瓷领域取得了新突破,但所得单片
陶瓷综合性能不佳,限制了其应用。中国专利CN 110467467 A中公开一种共混再裂解方法,
使得石墨烯/碳化硅单片陶瓷具有较高的陶瓷产率以及较低的线形收缩率,但陶瓷耐高温
性、断裂韧性等功能特性有待提高。
[0005] 二硅化钼(MoSi2)作为一种金属间化合物,具有十分优异的高温性能,是目前最有3
潜力应用于高温环境的结构材料。MoSi2密度适中(6.24g/cm),高熔点(约2030℃),具有极
好的高温稳定性与抗氧化性。MoSi2与SiC具有良好的化学相容性及物理相容性且性能互
补,能够制备出性能优异的复合材料。中国专利ZL 201510714720.9中公开一种以Mo、Si、C、
SiC、B元素粉末为原料,通过模压成型、调整真空度并熔渗Si进行烧结得MoSi2/SiC复合多
孔陶瓷的制备方法。中国专利ZL 201610060631.1中公开一种SiC改性C/C‑MoSi2复合材料
的制备方法,通过多次水热渗透,使MoSi2、SiC颗粒渗透进入多孔C/C复合材料中,得结构致
密的SiC改性C/C‑MoSi2复合材料。中国专利ZL 201510714802.3中公开一种二硅化钼/碳化
硅/碳化硼三相强度复合陶瓷的制备方法,用MoSi2、C及B4C元素粉模压成型,并熔渗Si进行
真空烧结,得MoSi2/SiC/B4C三相强度复合陶瓷。上述方法将直接与SiC无机陶瓷粉末物理共
混制得复合陶瓷材料,不可避免会存在界面分离,严重影响力学性能尤其是断裂韧性。

发明内容

[0006] 本发明的目的在于针对现有技术存在的上述不足,提供一种具有高电导率和热导率、高陶瓷产率、高强度的结构/功能一体化的二硅化钼/碳化硅三维聚合物先驱体陶瓷,简
称3D‑SiC(rGO,MoSi2x)。
[0007] 本发明的另一目的在于提供适用于工业生产的简单且经济的上述二硅化钼/碳化硅三维聚合物先驱体陶瓷的制备方法。
[0008] 所述3D‑SiC(rGO,MoSi2x)纳米复合块体陶瓷材料是以聚合物先驱体PVG为原料,经高温裂解得到SiC(rGO)p陶瓷颗粒,采用球磨工艺将MoSi2结构/功能填料、经一次裂解的
SiC(rGO)p陶瓷颗粒与PVG粉末按一定比例均匀混合并粉碎,将共混体系压坯后对素坯进行
再裂解制备得到的。
[0009] 所述二硅化钼/碳化硅三维聚合物先驱体陶瓷制备方法,包括以下步骤:
[0010] 1)将先驱体PVG粉末置于石墨纸舟中在惰性气氛保护下高温裂解,即得到裂解后的SiC(rGO)p陶瓷颗粒;
[0011] 2)将MoSi2和步骤1)所得的裂解SiC(rGO)p陶瓷颗粒和先驱体PVG粉末混合形成MoSi2/SiC(rGO)p/PVG混合物;
[0012] 3)将步骤2)所得的MoSi2/SiC(rGO)p/PVG混合物在酒精介质中进行球磨混合均匀后置于烘箱中烘干得MoSi2/SiC(rGO)p/PVG粉末;
[0013] 4)将烘干后的MoSi2/SiC(rGO)p/PVG粉末装入模具中模压成型,脱模后即得到MoSi2/SiC(rGO)p/PVG素坯;
[0014] 5)将步骤4)所得的MoSi2/SiC(rGO)p/PVG素坯放入惰性气氛管式炉内进行高温烧结,随炉冷却后即得到黑色的二硅化钼/碳化硅三维聚合物先驱体陶瓷,简称3D‑SiC(rGO,
MoSi2x)纳米复合块体陶瓷,其中x为二硅化钼占整个素坯的质量分数。
[0015] 在步骤1)中,所述先驱体PVG粉末可采用自制的PVG粉末,制备方法参考本申请人在先专利ZL 201711494377.7;
[0016] 所述PVG粉末高温裂解的温度可为1300℃,升温速率可为3~5℃/min,保温时间可为25~35min;所述惰性气氛优选氩气,流速优选为60mL/min。
[0017] 在步骤2)中,所述填料MoSi2、裂解SiC(rGO)p陶瓷颗粒与先驱体PVG粉末按质量百分比可为MoSi25%~20%、裂解SiC(rGO)p陶瓷颗粒55%~40%、先驱体PVG粉末40%。
[0018] 在步骤3)中,所述球磨时间可为8~10h。
[0019] 在步骤4)中,所述模压成型的压力可为30~50MPa,保压时间可为15~25s。
[0020] 在步骤5)中,所述惰性气氛优选氩气,流速可为50~80mL/min;所述高温烧结的温度可为1300℃,升温速率可为3~5℃/min,保温时间可为25~35min。
[0021] 与现有技术相比,本发明的有益效益如下:
[0022] (1)本发明制备的3D‑SiC(rGO,MoSi2x)纳米复合块体陶瓷具有较高的热导率和电导率,且表现出高硬度、高断裂韧性的优异力学性能,优化了碳化硅先驱体陶瓷的综合性
能,有望拓展应用于超高温等复杂恶劣环境。
[0023] (2)本发明制备的3D‑SiC(rGO,MoSi2x)纳米复合块体陶瓷具有良好成型性与成分均匀性,体现为高陶瓷产率(>91%)以及较低线形收缩率(~6%),微观结构均匀致密,
MoSi2均匀分散在周围的β‑SiC/SiOxCy/Cfree体系,二者边界紧密相连。
[0024] (3)本发明方法工艺简单经济,陶瓷强度和孔隙率等性质可通过调整填料/裂解陶瓷/先驱体比例、烧结温度等技术参数进行调控,便于推广以实现工业化生产。

附图说明

[0025] 图1为本发明实施例1~3制备的3D‑SiC(rGO,MoSi2x)(x=5%、10%、20%)陶瓷样品实物图。
[0026] 图2为本发明实施例1~3制备的3D‑SiC(rGO,MoSi2x)(x=5%、10%、20%)陶瓷红‑1
外(FTIR)谱图。在图2中,横坐标为波数(cm )。
[0027] 图3为本发明实施例1~3制备的3D‑SiC(rGO,MoSi2x)(x=5%、10%、20%)陶瓷的X射线衍射(XRD)图谱。在图3中,横坐标为2θ(°)。
[0028] 图4为本发明实施例1~3制备的3D‑SiC(rGO,MoSi2x)(x=5%、10%、20%)陶瓷的‑1
拉曼(Raman)光谱图。在图4中,横坐标为拉曼位移(cm )。
[0029] 图5为本发明实施例1~3制备的3D‑SiC(rGO,MoSi2x)(x=5%、10%、20%)陶瓷表面扫描电子显微镜(SEM)图。在图5中,(a)对应3D‑SiC(rGO,MoSi2 5%);(b)对应3D‑SiC(rGO,
MoSi2 10%);(c)对应3D‑SiC(rGO,MoSi2 20%)。

具体实施方式

[0030] 以下实施例将结合附图对本发明作进一步的说明。
[0031] 本发明所制备的3D‑SiC(rGO,MoSi2x)陶瓷完整性良好,表面致密,无肉眼可见的裂纹或孔洞。
[0032] 图1给出素坯中含不同比例MoSi2制得的3D‑SiC(rGO,MoSi2x)陶瓷样品实物图。本发明所述3D‑SiC(rGO,MoSi2x)陶瓷的红外(FTIR)谱图(图2)显示,体系中存在Si–C(780cm
‑1 ‑1
)以及Si–O–Si(1080cm )结构,两峰的强度比ISi–O–Si/ISi–C随着MoSi2含量的增加而逐渐减
少。本发明所述3D‑SiC(rGO,MoSi2x)陶瓷在X射线衍射(XRD)图(图3)中具有SiC、MoSi2、
Mo5Si3和Mo4.8Si3C0.6特征峰,其中2θ=35.9°/60.1°/71.9°处的衍射峰分别对应β‑SiC的
(111)/(220)/(311)晶面,随着MoSi2含量的增加,衍射峰峰强度有略微增强。所述3D‑SiC
‑1
(rGO,MoSi2x)陶瓷在拉曼(Raman)光谱图(图4)中具有以下特征:1350cm (D峰)特征峰归属
‑1
于无定形碳,1610cm (G峰)归属于排列相对有序的石墨结构碳,随着MoSi2含量的增加,D峰
与G峰的比值增大。所述3D‑SiC(rGO,MoSi2x)陶瓷在扫描电子显微镜(SEM)图(图5)中具有以
下特征:3D‑SiC(rGO,MoSi2x)陶瓷表面较为致密,随着MoSi2含量的增加,陶瓷表面的颗粒逐
渐增多、增大。
[0033] 表1为3D‑SiC(rGO,MoSi2x)陶瓷的基本物理参数(陶瓷产率与线形收缩率)、力学性能(硬度与断裂韧性)以及功能特性(热导率与电导率)。
[0034] 表1
[0035]
[0036] 以下给出具体的制备方法实施例。
[0037] 实施例1
[0038] 1、将2g PCS粉末溶解于40mL二甲苯中,将0.02g GO粉末分散于40mL纯净水中,将上述两种溶液超声分散30min。往PCS溶液中加入0.05mL卡斯特铂金催化剂,在GO分散液中
加入2mL乙烯基三乙氧基硅烷以及浓度为5wt%适量稀盐酸将溶液pH值调节至1~3。
[0039] 2、将上述两种溶液混合入烧杯中置于60℃恒温水浴锅中进行水浴加热,并用30rpm速度进行磁力搅拌,保温30min。反应结束后静置5min分层,取上层产物在70℃真空条
件下进行减压蒸馏,得到PVG固体并研磨成粉末。
[0040] 3、取部分PVG粉末置于石墨纸舟中在氩气气氛保护下1300℃高温裂解,升温速度4℃/min,保温时间30min,氩气流速60mL/min,获得裂解后的SiC(rGO)p陶瓷颗粒。
[0041] 4、取0.05g MoSi2和0.55g裂解SiC(rGO)p陶瓷颗粒混入0.4g先驱体PVG粉末形成MoSi2/SiC(rGO)p/PVG混合物,将混合物在酒精介质中进行球磨9h使其混合均匀,并在烘箱
中烘干。
[0042] 5、称取0.5g共混体系粉末倒入圆形模具中,在40MPa压力下保压20s压制成型,脱模后得到MoSi2/SiC(rGO)p/PVG素坯。
[0043] 6、将MoSi2/SiC(rGO)p/PVG素坯放入氩气气氛(流速:60mL/min)管式炉内,以4℃/min升温速度加热至1300℃并保温30min,最后随炉冷却,即得黑色陶瓷圆片3D‑SiC(rGO,
MoSi25%)。
[0044] 实施例2
[0045] 1、将2g PCS粉末溶解于40mL二甲苯中,将0.02g GO粉末分散于40mL纯净水中,将上述两种溶液超声分散30min。往PCS溶液中加入0.05mL卡斯特铂金催化剂,在GO分散液中
加入2mL乙烯基三乙氧基硅烷以及浓度为5wt%适量稀盐酸将溶液pH值调节至1~3。
[0046] 2、将上述两种溶液混合入烧杯中置于60℃恒温水浴锅中进行水浴加热,并用30rpm速度进行磁力搅拌,保温30min。反应结束后静置5min分层,取上层产物在70℃真空条
件下进行减压蒸馏,得到PVG固体并研磨成粉末。
[0047] 3、取部分PVG粉末置于石墨纸舟中在氩气气氛保护下1300℃高温裂解,升温速度4℃/min,保温时间30min,氩气流速60mL/min,获得裂解后的SiC(rGO)p陶瓷颗粒。
[0048] 4、取0.1g MoSi2和0.5g裂解SiC(rGO)p陶瓷颗粒混入0.4g先驱体PVG粉末形成MoSi2/SiC(rGO)p/PVG混合物,将混合物在酒精介质中进行球磨9h使其混合均匀,并在烘箱
中烘干。
[0049] 5、称取0.5g共混体系粉末倒入圆形模具中,在40MPa压力下保压20s压制成型,脱模后得到MoSi2/SiC(rGO)p/PVG素坯。
[0050] 6、将MoSi2/SiC(rGO)p/PVG素坯放入氩气气氛(流速:60mL/min)管式炉内,以4℃/min升温速度加热至1300℃并保温30min,最后随炉冷却,即得黑色陶瓷圆片3D‑SiC(rGO,
MoSi210%)。
[0051] 实施例3
[0052] 1、将2g PCS粉末溶解于40mL二甲苯中,将0.02g GO粉末分散于40mL纯净水中,将上述两种溶液超声分散30min。往PCS溶液中加入0.05mL卡斯特铂金催化剂,在GO分散液中
加入2mL乙烯基三乙氧基硅烷以及浓度为5wt%适量稀盐酸将溶液pH值调节至1~3。
[0053] 2、将上述两种溶液混合入烧杯中置于60℃恒温水浴锅中进行水浴加热,并用30rpm速度进行磁力搅拌,保温30min。反应结束后静置5min分层,取上层产物在70℃真空条
件下进行减压蒸馏,得到PVG固体并研磨成粉末。
[0054] 3、取部分PVG粉末置于石墨纸舟中在氩气气氛保护下1300℃高温裂解,升温速度4℃/min,保温时间30min,氩气流速60mL/min,获得裂解后的SiC(rGO)p陶瓷颗粒。
[0055] 4、取0.2g MoSi2和0.4g裂解SiC(rGO)p陶瓷颗粒混入0.4g先驱体PVG粉末形成MoSi2/SiC(rGO)p/PVG混合物,将混合物在酒精介质中进行球磨9h使其混合均匀,并在烘箱
中烘干。
[0056] 5、称取0.5g共混体系粉末倒入圆形模具中,在40MPa压力下保压20s压制成型,脱模后得到MoSi2/SiC(rGO)p/PVG素坯。
[0057] 6、将MoSi2/SiC(rGO)p/PVG素坯放入氩气气氛(流速:60mL/min)管式炉内,以4℃/min升温速度加热至1300℃并保温30min,最后随炉冷却,即得黑色陶瓷圆片3D‑SiC(rGO,
MoSi220%)。
[0058] 上述实施例仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之
内。本发明进一步提高碳化硅复合陶瓷的结构/功能一体化特性,将MoSi2作为结构/功能填
料,结合聚合物先驱体聚碳硅烷‑乙烯基三乙氧基硅烷‑氧化石墨烯(PCS‑VTES‑GO,简称
PVG)与陶瓷颗粒SiC(rGO)p。其中,先驱体PVG烧结所形成的β‑SiC/SiOxCy/rGO网络骨架结
构有助于增强二硅化钼/石墨烯/碳化硅陶瓷结构特性。利用填料/裂解陶瓷/先驱体共混烧
结创新技术,在保证高陶瓷产率与低线形收缩率的同时,能够有效提升碳化硅先驱体复合
陶瓷的高温力学性能与高温耐氧化性能,赋予碳化硅复合陶瓷较好的热导率与电导率功能
特性,在高温结构件、半导体器件、高温传感器等方面具有极大的应用价值。