摄像光学镜头转让专利

申请号 : CN202010917525.7

文献号 : CN111929822B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 范雪霜

申请人 : 诚瑞光学(苏州)有限公司

摘要 :

本发明提供了一种摄像光学镜头,摄像光学镜头共包含五片透镜,五片透镜由物侧至像侧依次为:具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜;且满足下列关系式:0.85≤f1/f≤1.10;‑3.00≤f2/f≤‑1.50;‑50.00≤(R5+R6)/(R5‑R6)≤‑5.00;1.50≤R7/R8≤3.50;0.70≤d7/d8≤1.20。该摄像光学镜头在具有良好的光学性能的同时,还满足广角化、超薄化的设计要求。

权利要求 :

1.一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含五片透镜,五片所述透镜由物侧至像侧依次为:具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜;

所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的轴上厚度为d7,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,所述第二透镜的物侧面的中心曲率半径为R3,所述第二透镜的像侧面的中心曲率半径为R4,所述第三透镜的物侧面的中心曲率半径为R5,所述第三透镜的像侧面的中心曲率半径为R6,所述第四透镜的物侧面的中心曲率半径为R7,所述第四透镜的像侧面的中心曲率半径为R8,且满足下列关系式:

0.85≤f1/f≤1.10;

‑3.00≤f2/f≤‑1.50;

‑50.00≤(R5+R6)/(R5‑R6)≤‑5.00;

1.50≤R7/R8≤3.50;

0.70≤d7/d8≤1.20;

0.53≤(R3+R4)/(R3‑R4)≤2.97。

2.根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的物侧面的中心曲率半径为R9,所述第五透镜的像侧面的中心曲率半径为R10,且满足下列关系式:

1.50≤(R9+R10)/(R9‑R10)≤8.00。

3.根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面的中心曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:‑3.50≤(R1+R2)/(R1‑R2)≤‑0.72;

0.05≤d1/TTL≤0.19。

4.根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:

0.02≤d3/TTL≤0.08。

5.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:

2.90≤f3/f≤42.35;

0.03≤d5/TTL≤0.11。

6.根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:

0.43≤f4/f≤4.51;

0.90≤(R7+R8)/(R7‑R8)≤7.47;

0.04≤d7/TTL≤0.23。

7.根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:‑14.83≤f5/f≤‑0.52;

0.03≤d9/TTL≤0.21。

8.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,且满足下列关系式:TTL/IH≤1.30。

9.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的视场角为FOV,且满足下列关系式:FOV≥85°。

10.根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:0.74≤f12/f≤2.55。

说明书 :

摄像光学镜头

【技术领域】

[0001] 本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
【背景技术】
[0002] 近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导
体器件(Complementary Metal‑Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于
半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能
佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目
前市场上的主流。
[0003] 为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、或四片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩
小,且系统对成像品质的要求不断提高的情况下,五片式透镜结构逐渐出现在镜头设计当
中,常见的五片式透镜结构焦距分配、透镜间隔和透镜形状设置不充分,造成镜头超薄化和
广角化不充分,无法满足广角化、超薄化的设计要求。
[0004] 因此,有必要提供一种具有良好的光学性能且满足广角化、超薄化设计要求的摄像光学镜头。
【发明内容】
[0005] 本发明的目的在于提供一种摄像光学镜头,通过对镜头的焦距、透镜间隔以及透镜的形状进行合理优化配置,旨在解决传统的摄像光学镜头广角化、超薄化不充分的问题。
[0006] 本发明的技术方案如下:一种摄像光学镜头,所述摄像光学镜头共包含五片透镜,五片所述透镜由物侧至像侧依次为:具有正屈折力的第一透镜、具有负屈折力的第二透镜、
具有正屈折力的第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜;
[0007] 所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的轴上厚度为d7,所述第四透镜的像侧面到所述第五透镜的物侧面
的轴上距离为d8,所述第三透镜的物侧面的中心曲率半径为R5,所述第三透镜的像侧面的
中心曲率半径为R6,所述第四透镜的物侧面的中心曲率半径为R7,所述第四透镜的像侧面
的中心曲率半径为R8,且满足下列关系式:0.85≤f1/f≤1.10;‑3.00≤f2/f≤‑1.50;‑
50.00≤(R5+R6)/(R5‑R6)≤‑5.00;1.50≤R7/R8≤3.50;0.70≤d7/d8≤1.20。
[0008] 优选地,所述第五透镜的物侧面的中心曲率半径为R9,所述第五透镜的像侧面的中心曲率半径为R10,且满足下列关系式:1.50≤(R9+R10)/(R9‑R10)≤8.00。
[0009] 优选地,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面的中心曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,
且满足下列关系式:‑3.50≤(R1+R2)/(R1‑R2)≤‑0.72;0.05≤d1/TTL≤0.19。
[0010] 优选地,所述第二透镜的物侧面的中心曲率半径为R3,所述第二透镜的像侧面的中心曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,
且满足下列关系式:0.53≤(R3+R4)/(R3‑R4)≤2.97;0.02≤d3/TTL≤0.08。
[0011] 优选地,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:2.90≤f3/f≤42.35;0.03≤d5/TTL≤0.11。
[0012] 优选地,所述第四透镜的焦距为f4,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.43≤f4/f≤4.51;0.90≤(R7+R8)/(R7‑R8)≤7.47;0.04≤d7/TTL≤0.23。
[0013] 优选地,所述第五透镜的焦距为f5,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:‑14.83≤f5/f≤‑0.52;0.03≤d9/TTL≤0.21。
[0014] 优选地,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,且满足下列关系式:TTL/IH≤1.30。
[0015] 优选地,所述摄像光学镜头的视场角为FOV,且满足下列关系式:FOV≥85°。
[0016] 优选地,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:0.74≤f12/f≤2.55。
[0017] 本发明的有益效果在于:
[0018] 本发明提供的摄像光学镜头在具有良好光学性能的同时,满足广角化和超薄化的设计要求,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB
摄像镜头。
【附图说明】
[0019] 为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方
式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获
得其它的附图,其中:
[0020] 图1是第一实施方式的摄像光学镜头的结构示意图;
[0021] 图2是图1所示的摄像光学镜头的轴向像差示意图;
[0022] 图3是图1所示的摄像光学镜头的倍率色差示意图;
[0023] 图4是图1所示的摄像光学镜头的场曲及畸变示意图;
[0024] 图5是第二实施方式的摄像光学镜头的结构示意图;
[0025] 图6是图5所示的摄像光学镜头的轴向像差示意图;
[0026] 图7是图5所示的摄像光学镜头的倍率色差示意图;
[0027] 图8是图5所示的摄像光学镜头的场曲及畸变示意图;
[0028] 图9是第三实施方式的摄像光学镜头的结构示意图;
[0029] 图10是图9所示的摄像光学镜头的轴向像差示意图;
[0030] 图11是图9所示的摄像光学镜头的倍率色差示意图;
[0031] 图12是图9所示的摄像光学镜头的场曲及畸变示意图;
[0032] 图13是第四实施方式的摄像光学镜头的结构示意图;
[0033] 图14是图13所示的摄像光学镜头的轴向像差示意图;
[0034] 图15是图13所示的摄像光学镜头的倍率色差示意图;
[0035] 图16是图13所示的摄像光学镜头的场曲及畸变示意图。【具体实施方式】
[0036] 下面结合附图和实施方式对本发明作进一步说明。
[0037] 为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,
为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基
于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
[0038] (第一实施方式)
[0039] 请一并参阅图1至图4,本发明提供了第一实施方式的摄像光学镜头10。在图1中,左侧为物侧,右侧为像侧,摄像光学镜头10主要包括五个透镜,从物侧至像侧依次为光圈
S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5。第五透镜L5和像面Si
之间可设置有光学过滤片(filter)GF等光学元件。
[0040] 在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质。在其他可选的实施方式中,各
透镜也可以是其他材质。
[0041] 在本实施方式中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力。
[0042] 在本实施方式中,定义所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的轴上厚度为d7,所述第四透镜的像侧面到所
述第五透镜的物侧面的轴上距离为d8,所述第三透镜的物侧面的中心曲率半径为R5,所述
第三透镜的像侧面的中心曲率半径为R6,所述第四透镜的物侧面的中心曲率半径为R7,所
述第四透镜的像侧面的中心曲率半径为R8,满足下列关系式:
[0043] 0.85≤f1/f≤1.10                                 (1)
[0044] ‑3.00≤f2/f≤‑1.50                                (2)
[0045] ‑50.00≤(R5+R6)/(R5‑R6)≤‑5.00                    (3)
[0046] 1.50≤R7/R8≤3.50                               (4)
[0047] 0.70≤d7/d8≤1.20                                (5)
[0048] 其中,条件式(1)规定了第一透镜焦距与系统总焦距的比值,可以有效地平衡系统的球差以及场曲量。
[0049] 条件式(2)规定了第二透镜焦距与系统总焦距的比值,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
[0050] 条件式(3)规定了第三透镜的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。
[0051] 条件式(4)规定了第四透镜的形状,在此条件式范围内时,有利于补正轴上色像差。
[0052] 条件式(5)规定了第四透镜厚度与第四第五透镜间空气间隔的比值,在条件式范围内有助于压缩光学系统总长,实现超薄化效果。
[0053] 定义所述第五透镜L5的物侧面的中心曲率半径为R9,所述第五透镜L5的像侧面的中心曲率半径为R10,满足下列关系式:1.50≤(R9+R10)/(R9‑R10)≤8.00,规定了第五透镜
的形状,在此条件式范围内时,有利于补正轴外画角的像差。
[0054] 本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
[0055] 定义所述第一透镜L1物侧面的中心曲率半径为R1,所述第一透镜L1像侧面的中心曲率半径为R2,满足下列关系式:‑3.50≤(R1+R2)/(R1‑R2)≤‑0.72,合理控制第一透镜L1
的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足‑2.19≤(R1+R2)/(R1‑R2)
≤‑0.89。
[0056] 所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.05≤d1/TTL≤0.19,在条件式范围内,有利于实现超薄化。优选地,满足0.08≤
d1/TTL≤0.15。
[0057] 本实施方式中,第二透镜L2的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
[0058] 定义所述第二透镜L2的物侧面的中心曲率半径为R3,所述第二透镜L2的像侧面的中心曲率半径为R4,满足下列关系式:0.53≤(R3+R4)/(R3‑R4)≤2.97,规定了第二透镜L2
的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。优选地,满
足0.85≤(R3+R4)/(R3‑R4)≤2.37。
[0059] 所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d3/TTL≤0.08,在条件式范围内,有利于实现超薄化。优选地,满足0.04≤
d3/TTL≤0.06。
[0060] 本实施方式中,第三透镜L3的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
[0061] 定义所述第三透镜L3的焦距为f3,所述摄像光学镜头10整体的焦距为f,满足下列关系式:2.90≤f3/f≤42.35,通过光焦度的合理分配,使得系统具有较佳的成像品质和较
低的敏感性。优选地,满足4.63≤f3/f≤33.88。
[0062] 所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d5/TTL≤0.11,在条件式范围内,有利于实现超薄化。优选地,满足0.05≤
d5/TTL≤0.09。
[0063] 本实施方式中,第四透镜L4的物侧面于近轴处为凹面,像侧面于近轴处为凸面。
[0064] 定义所述第四透镜L4的焦距为f4,所述摄像光学镜头10整体的焦距为f,满足下列关系式:0.43≤f4/f≤4.51,规定了第四透镜焦距与系统焦距的比值,在条件式范围内有助
于提高光学系统性能。优选地,满足0.69≤f4/f≤3.61。
[0065] 所述第四透镜L4物侧面的中心曲率半径为R7,所述第四透镜L4像侧面的中心曲率半径为R8,满足下列关系式:0.90≤(R7+R8)/(R7‑R8)≤7.47,规定了第四透镜L4的形状,在
范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足1.44
≤(R7+R8)/(R7‑R8)≤5.98。
[0066] 所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d7/TTL≤0.23,在条件式范围内,有利于实现超薄化。优选地,满足0.07≤
d7/TTL≤0.18。
[0067] 本实施方式中,第五透镜L5的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
[0068] 定义所述第五透镜L5的焦距为f5,所述摄像光学镜头10整体的焦距为f,满足下列关系式:‑14.83≤f5/f≤‑0.52,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平
缓,降低公差敏感度。优选地,满足‑9.27≤f5/f≤‑0.65。
[0069] 所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d9/TTL≤0.21,在条件式范围内,有利于实现超薄化。优选地,满足0.04≤
d9/TTL≤0.17。
[0070] 本实施方式中,摄像光学镜头10的视场角FOV大于或等于85°,从而实现广角化。
[0071] 本实施方式中,摄像光学镜头10的光学总长为TTL,摄像光学镜头10的像高为IH,满足TTL/IH≤1.30,从而实现超薄化。
[0072] 本实施方式中,所述摄像光学镜头10整体的焦距为f,所述第一透镜L1与所述第二透镜L2的组合焦距为f12,满足下列关系式:0.74≤f12/f≤2.55,在条件式范围内,可消除
所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统
组小型化。优选的,满足1.19≤f12/f≤2.04。
[0073] 当本发明所述摄像光学镜头10的焦距、各透镜的焦距和中心曲率半径满足上述关系式时,可以使摄像光学镜头10具有良好光学性能,同时能够满足了大光圈、广角化、超薄
化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用
的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
[0074] 此外,本实施方式提供的摄像光学镜头10中,各透镜的表面可以设置为非球面,非球面容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用
的数目,因此可以有效降低摄像光学镜头10的总长度。在本实施方式中,各个透镜的物侧面
和像侧面均为非球面。
[0075] 值得一提的是,由于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5具有如前所述的结构和参数关系,因此,摄像光学镜头10能够合理分配各透镜的光焦度、
间隔和形状,并因此校正了各类像差。
[0076] 下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、中心曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
[0077] TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm。
[0078] 光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
[0079] 另外,各透镜的物侧面和像侧面中的至少一个上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
[0080] 以下示出了图1所示的摄像光学镜头10的设计数据。
[0081] 表1列出了本发明第一实施方式中构成摄像光学镜头10的第一透镜L1~光学过滤片GF的物侧面中心曲率半径和像侧面中心曲率半径R、各透镜的轴上厚度以及相邻两透镜
间的距离d、折射率nd及阿贝数νd。需要说明的是,本实施方式中,R与d的单位均为毫米
(mm)。
[0082] 【表1】
[0083]
[0084] 上表中各符号的含义如下。
[0085] S1:光圈;
[0086] R:光学面中心处的曲率半径;
[0087] R1:第一透镜L1的物侧面的中心曲率半径;
[0088] R2:第一透镜L1的像侧面的中心曲率半径;
[0089] R3:第二透镜L2的物侧面的中心曲率半径;
[0090] R4:第二透镜L2的像侧面的中心曲率半径;
[0091] R5:第三透镜L3的物侧面的中心曲率半径;
[0092] R6:第三透镜L3的像侧面的中心曲率半径;
[0093] R7:第四透镜L4的物侧面的中心曲率半径;
[0094] R8:第四透镜L4的像侧面的中心曲率半径;
[0095] R9:第五透镜L5的物侧面的中心曲率半径;
[0096] R10:第五透镜L5的像侧面的中心曲率半径;
[0097] R11:光学过滤片GF的物侧面的中心曲率半径;
[0098] R12:光学过滤片GF的像侧面的中心曲率半径;
[0099] d:透镜的轴上厚度、透镜之间的轴上距离;
[0100] d0:光圈S1到第一透镜L1的物侧面的轴上距离;
[0101] d1:第一透镜L1的轴上厚度;
[0102] d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
[0103] d3:第二透镜L2的轴上厚度;
[0104] d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
[0105] d5:第三透镜L3的轴上厚度;
[0106] d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
[0107] d7:第四透镜L4的轴上厚度;
[0108] d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
[0109] d9:第五透镜L5的轴上厚度;
[0110] d10:第五透镜L5的像侧面到光学过滤片GF的物侧面的轴上距离;
[0111] d11:光学过滤片GF的轴上厚度;
[0112] d12:光学过滤片GF的像侧面到像面Si的轴上距离;
[0113] nd:d线的折射率;
[0114] nd1:第一透镜L1的d线的折射率;
[0115] nd2:第二透镜L2的d线的折射率;
[0116] nd3:第三透镜L3的d线的折射率;
[0117] nd4:第四透镜L4的d线的折射率;
[0118] nd5:第五透镜L5的d线的折射率;
[0119] ndg:光学过滤片GF的d线的折射率;
[0120] vd:阿贝数;
[0121] v1:第一透镜L1的阿贝数;
[0122] v2:第二透镜L2的阿贝数;
[0123] v3:第三透镜L3的阿贝数;
[0124] v4:第四透镜L4的阿贝数;
[0125] v5:第五透镜L5的阿贝数;
[0126] vg:光学过滤片GF的阿贝数。
[0127] 表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
[0128] 【表2】
[0129]
[0130] 在表2中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
[0131] y=(x2/R)/{1+[1‑(k+1)(x2/R2)]1/2}+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+16 18 20
A16x +A18x +A20x                                  (6)
[0132] 其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度(非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
[0133] 为方便起见,各个透镜面的非球面使用上述公式(6)中所示的非球面。但是,本发明不限于该公式(6)表示的非球面多项式形式。
[0134] 表3、表4示出本实施例的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2
的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代
表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反
曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距
离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距
离。
[0135] 【表3】
[0136]   反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4 反曲点位置5P1R1 0 / / / / /
P1R2 1 0.495 / / / /
P2R1 1 0.725 / / / /
P2R2 0 / / / / /
P3R1 2 0.295 0.835 / / /
P3R2 2 0.275 0.895 / / /
P4R1 2 1.045 1.175 / / /
P4R2 2 0.965 1.225 / / /
P5R1 5 0.455 1.745 2.005 2.145 2.325
P5R2 2 0.605 2.605 / / /
[0137] 【表4】
[0138]
[0139]
[0140] 另外,在后续的表17中,还列出了第一、二、三、四实施方式中各种参数与条件式中已规定的参数所对应的值。
[0141] 如表17所示,第一实施方式满足各条件式。
[0142] 图2、图3分别示出了波长为650nm、610nm、550nm、510nm、470nm、435nm的光经过摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为550nm的光经过摄像
光学镜头10后的场曲及畸变示意图。图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
[0143] 在本实施方式中,所述摄像光学镜头10的入瞳直径ENPD为1.410mm,全视场像高IH为3.282mm,对角线方向的视场角FOV为85.40°,摄像光学镜头10满足广角化、超薄化的设计
要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
[0144] (第二实施方式)
[0145] 图5是第二实施方式中摄像光学镜头20的结构示意图,第二实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式也相同,故对于相同的部分此处不再
赘述,以下仅列出不同点。
[0146] 表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
[0147] 【表5】
[0148]
[0149]
[0150] 表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
[0151] 【表6】
[0152]
[0153]
[0154] 表7、表8示出摄像光学镜头20中各透镜的反曲点及驻点设计数据。
[0155] 【表7】
[0156]  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.695 /
P1R2 1 0.105 /
P2R1 0 / /
P2R2 0 / /
P3R1 2 0.255 0.775
P3R2 2 0.305 0.915
P4R1 1 1.145 /
P4R2 2 0.935 1.305
P5R1 2 0.205 1.365
P5R2 2 0.495 2.585
[0157] 【表8】
[0158]   驻点个数 驻点位置1 驻点位置2P1R1 0 / /
P1R2 1 0.175 /
P2R1 0 / /
P2R2 0 / /
P3R1 2 0.455 0.855
P3R2 2 0.515 1.005
P4R1 0 / /
P4R2 0 / /
P5R1 1 0.365 /
P5R2 1 1.265 /
[0159] 另外,在后续的表17中,还列出了第二实施方式中各种参数与条件式中已规定的参数所对应的值,显然,本实施方式的摄像光学镜头满足上述的条件式。
[0160] 图6、图7分别示出了波长为650nm、610nm、550nm、510nm、470nm、435nm的光经过摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为550nm的光经过摄
像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场
曲。
[0161] 在本实施方式中,所述摄像光学镜头20的入瞳直径ENPD为1.389mm,全视场像高IH为3.282mm,对角线方向的视场角FOV为86.10°,摄像光学镜头20满足广角化、超薄化的设计
要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
[0162] (第三实施方式)
[0163] 图9是第三实施方式中摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式也相同,故对于相同的部分此处不再
赘述,以下仅列出不同点。
[0164] 表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
[0165] 【表9】
[0166]
[0167] 表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
[0168] 【表10】
[0169]
[0170] 表11、表12示出摄像光学镜头30中各透镜的反曲点及驻点设计数据。
[0171] 【表11】
[0172]
[0173]
[0174] 【表12】
[0175]   驻点个数 驻点位置1 驻点位置2P1R1 0 / /
P1R2 1 0.535 /
P2R1 2 0.085 0.435
P2R2 0 / /
P3R1 1 0.535 /
P3R2 1 0.605 /
P4R1 0 / /
P4R2 0 / /
P5R1 1 0.625 /
P5R2 1 1.295 /
[0176] 另外,在后续的表17中,还列出了第三实施方式中各种参数与条件式中已规定的参数所对应的值。显然,本实施方式的摄像光学镜头满足上述的条件式。
[0177] 图10、图11分别示出了波长为650nm、610nm、550nm、510nm、470nm、435nm的光经过摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为550nm的光经过
摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的
场曲。
[0178] 在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为1.382mm,全视场像高IH为3.282mm,对角线方向的视场角FOV为87.40°,所述摄像光学镜头30满足广角化、超薄化的
设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
[0179] (第四实施方式)
[0180] 图13是第四实施方式中摄像光学镜头40的结构示意图,第四实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式也相同,故对于相同的部分此处不再
赘述,以下仅列出不同点。
[0181] 表13、表14示出本发明第四实施方式的摄像光学镜头40的设计数据。
[0182] 【表13】
[0183]
[0184] 表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。
[0185] 【表14】
[0186]
[0187]
[0188] 表15、表16示出摄像光学镜头40中各透镜的反曲点及驻点设计数据。
[0189] 【表15】
[0190]  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 1 0.695 / /
P1R2 1 0.255 / /
P2R1 0 / / /
P2R2 0 / / /
P3R1 2 0.275 0.815 /
P3R2 2 0.295 0.935 /
P4R1 1 1.175 / /
P4R2 3 0.925 1.305 1.425
P5R1 2 0.275 1.385 /
P5R2 2 0.485 2.475 /
[0191] 【表16】
[0192]
[0193]
[0194] 另外,在后续的表17中,还列出了第四实施方式中各种参数与条件式中已规定的参数所对应的值。显然,本实施方式的摄像光学镜头满足上述的条件式。
[0195] 图14、图15分别示出了波长为650nm、610nm、550nm、510nm、470nm、435nm的光经过摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示出了,波长为550nm的光经过
摄像光学镜头40后的场曲及畸变示意图。图16的场曲S是弧矢方向的场曲,T是子午方向的
场曲。
[0196] 在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为1.393mm,全视场像高IH为3.282mm,对角线方向的视场角FOV为86.00°,所述摄像光学镜头40满足广角化、超薄化的
设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
[0197] 【表17】
[0198]
[0199]
[0200] 以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范
围。