一种现场评价掘进机掌子面岩土体完整性的快速方法转让专利

申请号 : CN202010823257.2

文献号 : CN111946397B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王金铭韩爱民施烨辉李彤程荷兰

申请人 : 南京工业大学南京坤拓土木工程科技有限公司

摘要 :

一种现场评价掘进机掌子面岩土体完整性的快速方法,主要包括测量并计算岩芯平均岩块长度、分界号、破碎长度贡献比、破碎数量贡献比、岩芯不完整度,结合掌子面中各地层的面积占比通用公式,得到全断面不完整性系数。岩芯不完整度可以区分界限岩块长度相同但岩芯总体分段数量不同的岩芯完整程度,克服了RQD(岩石质量指标)的缺点,以岩芯不完整度为基础之一的全断面不完整性系数可以用于评价全断面掘进施工掌子面的总体破碎程度。本方法可以在施工现场开展应用,所有指标和计算参数均可以现场测算得到,且指标设计原理清晰,测算过程简明且得到结果耗时少,指标计算评价结果符合现实规律,对于指导和完善掘进机智能化施工有着重要的工程意义。

权利要求 :

1.一种现场评价掘进机掌子面岩土体完整性的快速方法,其特征在于,包括以下步骤:步骤一:

定义在竖直方向上岩土体种类相同且分布深度上连续不中断的地层为同种地层;

在竖直方向上钻探取样,按照从浅到深的顺序对各种地层进行排序,地层序号为i,i=

1,2,3...a;两种地层之间的地层分界线简称界线,设界线为水平,界线编号的数值大小等于界线竖直方向上方紧邻地层的编号;

钻探取孔,将在i地层取得的岩芯中的分段岩块首先按长度从小到大排列,然后对长度相同的岩块按照取样深度从小到大排列,对所有岩块依次编号为ni,1、ni,2、…ni,j,记i地层的岩芯的总长度为li,total,记i地层的岩芯平均岩块长度为li,avg,li,avg的值如式(1):定义在该种地层的岩芯中的所有分段岩块中,不超过li,avg且最接近li,avg的实测分段岩块长度为分界长度,记作li,bd,定义所有长度等于li,bd的分段岩块中编号最大的分段岩块的编号为分界号,记作Ii,bd;

步骤二:

定义在i地层的岩芯所有分段岩块中,长度不超过li,bd的所有分段的长度之和与li,total的比值为破碎长度贡献比,记作Wi,len,Wi,len的值如式(2):步骤三:

定义在i地层的岩芯所有分段岩块中,不超过Ii,bd的所有分段的数量和与ni,j的比值为破碎数量贡献比,记作Wi,num,Wi,num的值如式(3):步骤四:

定义破碎长度贡献比与破碎数量贡献比的乘积为岩芯不完整度,i地层的岩芯不完整度记作Wi,Wi的值如式(4),岩芯不完整度可以区分RQD指标相同但岩芯总体分段数量不同的岩芯完整程度,克服了RQD指标的缺点;

Wi=Wi,len·Wi,num (4)步骤五:

定义掌子面中序值gmid,当掌子面圆心不在界线所在直线内时,gmid在数值上等同于掌子面上圆心所在地层的编号;当掌子面圆心在界线所在直线内时,gmid在数值上等同于掌子面上圆心所在界线的编号;

步骤六:

定义第i界线与圆心的竖直距离为界线高差,记作di;

定义i界线与掌子面圆周交点之间的这条弦所对应的圆心角为界线交角,记作θi,按式(5)计算,r为掌子面半径;

步骤七:

推导并应用以掌子面中序值判定为基础的掌子面中各地层的面积占比通用公式;

定义掌子面内i地层所占面积为i地层面积,记作Si,Si的计算方法须如下分类:

1、a=1情形:

若掌子面内共a种地层,且a=1,此时掌子面即为均质地层,此时无界线、界线高差、界线交角,仅存在S1,且S1在数值上等于掌子面面积,即此时的Si值如式(6):2

Si=π·r (6)

2、a>1且gmid=1情形:此时需据掌子面圆心是否出现在界线上分类讨论:当掌子面圆心在界线所在直线内时,若a=2,即掌子面内共2种地层,有1个界线,此时的Si值如式(7);若a>2,则掌子面内共a种地层,有a‑1个界线,此时的Si值如式(8):当掌子面圆心不在界线所在直线内时,若a=2,即掌子面内共2种地层,有1个界线,此时的Si值如式(9);若a>2,则掌子面内共a种地层,有a‑1个界线,此时的Si值如式(10):

3、a>1且gmid=a>1情形:由于界线编号总数在数值上等于地层总数减1,所以在这种情况下,不存在掌子面圆心在界线所在直线内的情况,所以只考虑掌子面圆心不在界线所在直线内的情况,此时的Si值如式(11):

4、a>2、gmid2时,下面根据掌子面圆心是否出现在界线上分两种情形讨论Si:当掌子面圆心在界线所在直线内时:若掌子面内共a种地层,则有a‑1个界线,假设圆心在gmid界线所在直线内,此时i地层面积如式(12):当掌子面圆心不在界线所在直线内时,若掌子面内共a种地层,则有a‑1个界线,假设圆心在gmid地层中,此时i地层面积如式(13):步骤八:

若掌子面内共a种地层,定义掌子面中各地层的面积占比与相应岩芯不完整度的乘积之和为全断面不完整性系数,记作Wf,Wf的的值如式(14):其中:Si:表示掌子面内i地层所占面积为i地层面积;

将全断面不完整性系数作为一种新的评价岩土体完整性的指标,全断面不完整性系数值越大,则该掌子面岩土体完整性越差;全断面不完整性系数可以用于评价全断面掘进施工掌子面的总体破碎程度。

说明书 :

一种现场评价掘进机掌子面岩土体完整性的快速方法

技术领域

[0001] 本发明涉及工程地质勘探技术领域,具体地说,涉及一种岩体完整性判识方法。

背景技术

[0002] 掘进机全断面掘进,岩体完整性控制着掌子面岩块的受力边界,是影响破岩刀具受力和掘进速率的关键地质参数之一。掘进机智能控制技术的应用前提就是准确识别和量
化评价掌子面地层的属性参数。
[0003] 然而,目前尚缺乏评价适用于掘进机施工现场复合地层掌子面全断面岩体完整性的指标及定量计算方法。所以,建立根植于工程钻探资料、计算步骤明确、结果定量、可用于
复合地层的掌子面完整性评价方法可以在施工现场为管理人员提供掘进机掌子面岩土体
完整性指标参数,方便把现场快速测得的量化评价结果直接输入掘进机智能控制设备或算
法系统中作为掘进参数预测及优化的计算条件,有效降低了取得掌子面地层完整程度定量
指标值的工作时间,是解决智能掘进系统现场应用难题的有效方法之一,对于指导和完善
掘进机智能化施工有着重要的工程意义。
[0004] 目前存在的岩土体完整性评价方法有:
[0005] 1(深部岩体完整性的评价方法,申请号:CN201910856342.6)利用钻孔摄像测试对岩体进行测试,直观地反应孔内的地质特征,不受饼化及结构面组合等因素的影响。
[0006] 2(一种岩体完整性判识方法,申请号:CN201910101758.7)利用预设神经网络模型确定所述待分析隧道掌子面所对应的岩体在各类岩体完整性程度的概率,将岩体在各类岩
体完整性程度的概率与预设决策阈值进行比较,根据比较结果确定所述待分析隧道掌子面
所对应的岩体的岩体完整性程度。
[0007] 3(隧道施工期岩体完整性系数Kv的计算方法,申请号: CN201710854056.7)根据岩石室内试验、隧道施工现场岩体纵波波速测试结果,绘制岩体孔深‑波速曲线图,进而在
隧道施工阶段现场快速计算出不同孔深岩体完整性系数Kv。
[0008] 4(岩体完整性的定量描述方法,申请号:CN201611114304.6)通过地质编录,获取岩体内节理裂隙的素描图,将其转换为数字格式的图形文件,利用盒覆盖法对图形文件中
的裂隙进行覆盖,然后结合分形理论得出岩体的分形维数与盒覆盖的尺寸和数量的关系,
从而得出岩体的分形维数,通过分形维数可以与岩体完整性与其岩体强度、变形等对应关
系曲线建立基础,进而预测岩体的强度指标。
[0009] 5(工程围岩完整性系数Kv的地应力修正取值方法,申请号: CN201010600886.5)目的是研究一种解决采用声波法测试围岩完整性系数Kv偏差与失真很大的工程围岩完整
性系数Kv的地应力修正取值方法,采用声波法测试出围岩完整性系数KV值。
[0010] 6(秦云东,张泽裕,王志修,刘尉俊,张长洪.基于双指标深部高应力岩体完整性的评价研究[J].中国矿业,2020,29(S1):476‑480.)采用岩芯钻探法与现场声波测试技术,对
围岩体进行完整性评价。
[0011] 7(黄侃,倪浩,李明.地震反射波映像法在工程围岩完整性分析中的应用 [J].黑龙江交通科技,2017,40(12):174‑175.)采用SWS多波列数字图像工程勘探与工程检测仪对
工程围岩完整性进行了分析。
[0012] 8(工程地质手册[M].北京:中国建筑工业出版社,2018.)中采用RQD 指标用于现场定量评价岩体完整性,但RQD指标无法区分长度大于10cm岩块长度相同但岩芯总体分段
数量不同的岩芯完整程度,且RQD指标不能用于评价全断面掘进施工掌子面的总体破碎程
度。

发明内容

[0013] 本发明解决的技术问题是:一种现场评价掘进机掌子面岩土体完整性的快速方法,可以在施工现场开展应用,所有指标和计算参数均可以现场测算得到,且指标设计原理
清晰,测算过程简明且得到结果耗时少,指标计算评价结果符合现实规律,对于指导和完善
掘进机智能化施工有着重要的工程意义;
[0014] 为了解决上述技术问题,本发明提出的技术方案是:一种现场评价掘进机掌子面岩土体完整性的快速方法,包括以下步骤:
[0015] 步骤一:
[0016] 定义在竖直方向上岩土体种类相同且分布深度上连续不中断的地层为同种地层;
[0017] 在竖直方向上钻探取样,按照从浅到深的顺序对各种地层进行排序,地层序号为i,i=1,2,3...a;两种地层之间的地层分界线简称界线,设界线为水平,界线编号的数值大
小等于界线竖直方向上方紧邻地层的编号;
[0018] 钻探取孔,将在i地层取得的岩芯中的分段岩块首先按长度从小到大排列,然后对长度相同的岩块按照取样深度从小到大排列,对所有岩块依次编号为ni,1、 ni,2、…ni,j,记i
地层的岩芯的总长度为li,total,记i地层的岩芯平均岩块长度为li,avg, li,avg的值如式(1):
[0019]
[0020] 定义在该种地层的岩芯中的所有分段岩块中,不超过li,avg且最接近li,avg的实测分段岩块长度为分界长度,记作li,bd,定义所有长度等于li,bd的分段岩块中编号最大的分段
岩块的编号为分界号,记作Ii,bd;
[0021] 步骤二:
[0022] 定义在i地层的岩芯所有分段岩块中,长度不超过li,bd的所有分段的长度之和与li,total的比值为破碎长度贡献比,记作Wi,len,Wi,len的值如式(2):
[0023]
[0024] 步骤三:
[0025] 定义在i地层的岩芯所有分段岩块中,不超过Ii,bd的所有分段的数量和与ni,j的比值为破碎数量贡献比,记作Wi,num,Wi,num的值如式(3):
[0026]
[0027] 步骤四:
[0028] 定义破碎长度贡献比与破碎数量贡献比的乘积为岩芯不完整度,i地层的岩芯不完整度记作Wi,Wi的值如式(4),岩芯不完整度可以区分RQD指标相同但岩芯总体分段数量不
同的岩芯完整程度,克服了RQD指标的缺点。
[0029] Wi=Wi,len·Wi,num   (4)
[0030] 步骤五:
[0031] 定义掌子面中序值gmid,当掌子面圆心不在界线所在直线内时,gmid在数值上等同于掌子面上圆心所在地层的编号;当掌子面圆心在界线所在直线内时, gmid在数值上等同
于掌子面上圆心所在界线的编号;
[0032] 步骤六:
[0033] 定义第i界线与圆心的竖直距离为界线高差,记作di;
[0034] 定义i界线与掌子面圆周交点之间的这条弦所对应的圆心角为界线交角,记作θi,按式(5)计算,r为掌子面半径;
[0035]
[0036] 进一步地,还包括,
[0037] 步骤七:
[0038] 推导并应用以掌子面中序值判定为基础的掌子面中各地层的面积占比通用公式;
[0039] 定义掌子面内i地层所占面积为i地层面积,记作Si,Si的计算方法须如下分类:
[0040] 1、a=1情形:
[0041] 若掌子面内共a种地层,且a=1,此时掌子面即为均质地层,此时无界线、界线高差、界线交角,仅存在S1,且S1在数值上等于掌子面面积,即此时的Si值如式(6):
[0042] Si=π·r2   (6)
[0043] 2、a>1且gmid=1情形:
[0044] 此时需据掌子面圆心是否出现在界线上分类讨论:
[0045] 当掌子面圆心在界线所在直线内时,若a=2,即掌子面内共2种地层,有1 个界线,此时的Si值如式(7);若a>2,则掌子面内共a种地层,有a‑1个界线,此时的Si值如式(8):
[0046]
[0047]
[0048] 当掌子面圆心不在界线所在直线内时,若a=2,即掌子面内共2种地层,有 1个界线,此时的Si值如式(9);若a>2,则掌子面内共a种地层,有a‑1个界线,此时的Si值如式(10):
[0049]
[0050]
[0051] 3、a>1且gmid=a>1情形:
[0052] 由于界线编号总数在数值上等于地层总数减1,所以在这种情况下,不存在掌子面圆心在界线所在直线内的情况,所以只考虑掌子面圆心不在界线所在直线内的情况,此时
的Si值如式(11):
[0053]
[0054] 4、a>2、gmid2时,下面根据掌子面圆心是否出现在界线上分两种情形讨论Si:
[0055] 当掌子面圆心在界线所在直线内时:若掌子面内共a种地层,则有a‑1个界线,假设圆心在gmid界线所在直线内,此时i地层面积如式(12):
[0056]
[0057] 当掌子面圆心不在界线所在直线内时,若掌子面内共a种地层,则有a‑1个界线,假设圆心在gmid地层中,此时i地层面积如式(13):
[0058]
[0059] 步骤八:
[0060] 若掌子面内共a种地层,定义掌子面中各地层的面积占比与相应岩芯不完整度的乘积之和为全断面不完整性系数,记作Wf,Wf的的值如式(14):
[0061]
[0062] 其中:Si:表示掌子面内i地层所占面积为i地层面积;
[0063] 将全断面不完整性系数作为一种新的评价岩土体完整性的指标,全断面不完整性系数值越大,则该掌子面岩土体完整性越差。全断面不完整性系数可以用于评价全断面掘
进施工掌子面的总体破碎程度。

附图说明

[0064] 下面结合附图对本发明的作进一步说明。
[0065] 图1是掌子面是仅有一种地层的示意图。
[0066] 图2是掌子面内共2种地层,有1个界线示意图。
[0067] 图3是掌子面内共a种地层,有a‑1个界线,且掌子面圆心在界线所在直线内时示意图。
[0068] 图4是界线以及界线交角示意图。
[0069] 图5是则掌子面内共a种地层,有a‑1个界线,且掌子面圆心不在界线所在直线内时示意图。
[0070] 图6是掌子面圆心不在界线所在直线内的情况示意图。
[0071] 图7是掌子面为全断面均质地层的实施例1的示意图。
[0072] 图8是掌子面从上到下依次为地层1、地层2、地层3的实施例2的示意图。
[0073] 图9是掌子面从上到下依次为地层1、地层2的实施例3示意图。
[0074] 图10是掌子面从上到下依次为地层1、地层2、地层3的实施例4示意图。
[0075] 图11是掌子面从上到下依次为地层1、地层2、地层3、地层4的实施例5 示意图。
[0076] 图12是掌子面从上到下依次为地层1、地层2、地层3、地层4实施例6示意图。
[0077] 图13是掌子面从上到下依次为地层1、地层2、地层3的实施例7示意图。
[0078] 具体实施方法
[0079] 针对现有技术中存在的不足,本发明提出一种现场评价掘进机掌子面岩土体完整性的快速方法,详细步骤如下所示。
[0080] 步骤一:
[0081] 定义在竖直方向上岩土体种类相同且分布深度上连续不中断的地层为同种地层。
[0082] 在竖直方向上钻探取样,按照从浅到深的顺序对各种地层进行排序,地层序号为i,i=1,2,3...a。两种地层之间的地层分界线简称界线,如图4所示,设界线为水平,界线编
号的数值大小等于界线竖直方向上方紧邻地层的编号。
[0083] 钻探取孔,将在i地层取得的岩芯中的分段岩块首先按长度从小到大排列,然后对长度相同的岩块按照取样深度从小到大排列,对所有岩块依次编号为1、 2、3…ni,j,记i地
层的岩芯的总长度为li,total,记i地层的岩芯平均岩块长度为li,avg, li,avg的值如式(1):
[0084]
[0085] 定义在该种地层的岩芯中的所有分段岩块中,不超过li,avg且最接近li,avg的实测分段岩块长度为分界长度,记作li,bd,定义所有长度等于li,bd的分段岩块中编号最大的分段
岩块的编号为分界号,记作Ii,bd。
[0086] 步骤二:
[0087] 定义在i地层的岩芯所有分段岩块中,长度不超过li,bd的所有分段的长度之和与li,total的比值为破碎长度贡献比,记作Wi,len,Wi,len的值如式(2):
[0088]
[0089] 步骤三:
[0090] 定义在i地层的岩芯所有分段岩块中,不超过Ii,bd的所有分段的数量和与ni,j的比值为破碎数量贡献比,记作Wi,num,Wi,num的值如式(3):
[0091]
[0092] 步骤四:
[0093] 定义破碎长度贡献比与破碎数量贡献比的乘积为岩芯不完整度,i地层的岩芯不完整度记作Wi,Wi的值如式(4),岩芯不完整度可以区分RQD指标相同但岩芯总体分段数量不
同的岩芯完整程度,克服了RQD指标的缺点。
[0094] Wi=Wi,len·Wi,num   (4)
[0095] 步骤五:
[0096] 定义掌子面中序值gmid,当掌子面圆心不在界线所在直线内时,gmid在数值上等同于掌子面上圆心所在地层的编号;当掌子面圆心在界线所在直线内时, gmid在数值上等同
于掌子面上圆心所在界线的编号。
[0097] 步骤六:
[0098] 定义第i界线与圆心的竖直距离为界线高差,记作di,如图4。
[0099] 定义i界线与掌子面圆周交点之间的这条弦所对应的圆心角为界线交角,记作θi,(θi为弧度制),如图4所示,按式(5)计算,r为掌子面半径。
[0100]
[0101] 步骤七:
[0102] 推导并应用以掌子面中序值判定为基础的掌子面中各地层的面积占比通用公式。
[0103] 定义掌子面内i地层所占面积为i地层面积,记作Si,Si的计算方法须如下分类。
[0104] 1、a=1情况。
[0105] 若掌子面内共a种地层,且a=1,如图1所示,此时掌子面即为均质地层,此时无界线、界线高差、界线交角,仅存在S1,且S1在数值上等于掌子面面积,即此时的Si值如式(6)。
[0106] Si=π·r2   (6)
[0107] 2、a>1且gmid=1情况。
[0108] 此时需据掌子面圆心是否出现在界线上分类讨论:
[0109] 当掌子面圆心在界线所在直线内时,若a=2,即掌子面内共2种地层,有1 个界线,如图2所示,此时的Si值如式(7)。若a>2,则掌子面内共a种地层,有a‑1个界线,如图3所示,
此时的Si值如式(8)。
[0110]
[0111]
[0112] 当掌子面圆心不在界线所在直线内时,若a=2,即掌子面内共2种地层,有 1个界线,如图4所示,此时的Si值如式(9)。若a>2,则掌子面内共a种地层,有a‑1个界线,如图5所
示,此时的Si值如式(10)。
[0113]
[0114]
[0115] 3、a>1且gmid=a>1情况。
[0116] 由于界线编号总数在数值上等于地层总数减1,所以在这种情况下,不存在掌子面圆心在界线所在直线内的情况,所以只考虑掌子面圆心不在界线所在直线内的情况。如图6
所示,此时的Si值如式(11)。
[0117]
[0118] 4、a>2、gmid2时,下面根据掌子面圆心是否出现在界线上分两种情况讨论Si。
[0119] 当掌子面圆心在界线所在直线内时:若掌子面内共a种地层,则有a‑1个界线,假设圆心在gmid界线所在直线内,此时i地层面积如式(12)
[0120]
[0121] 当掌子面圆心不在界线所在直线内时,若掌子面内共a种地层,则有a‑1个界线,假设圆心在gmid地层中,此时i地层面积如式(13),
[0122]
[0123] 步骤八:
[0124] 若掌子面内共a种地层,定义掌子面中各地层的面积占比与相应岩芯不完整度的乘积之和为全断面不完整性系数,记作Wf,Wf的的值如式(14):
[0125]
[0126] 其中:Si表示掌子面内i地层所占地层面积;具体计算方法参见步骤七。
[0127] 将全断面不完整性系数作为一种新的评价岩土体完整性的指标,全断面不完整性系数值越大,则该掌子面岩土体完整性越差。全断面不完整性系数可以用于评价全断面掘
进施工掌子面的总体破碎程度。
[0128] 算例
[0129] 实施例1
[0130] 盾构机掘进掌子面为全断面均质地层,掌子面半径R=0.3m,如图7。此时 a=1,根2 2 2
据式(6),可得:S1=π·r=π·0.3≈0.282743m。
[0131] 实施例2
[0132] 掌子面从上到下依次为地层1、地层2、地层3,其高度分别为0.5m、0.3m、 0.2m,盾构机掘进掌子面半径R=0.5m,如图8。根据式(8),可得:
[0133] 当i=1时,
[0134] 当i=2时,根据式(1)可得:
[0135] 当i=3时,根据式(8)可得:
[0136]
[0137] 实施例3
[0138] 掌子面从上到下依次为地层1、地层2,其高度分别为0.4m、0.2m,盾构机掘进掌子面半径R=0.3m,如图9。根据式(5),可得:
[0139]
[0140] 根据式(9),可得:
[0141] 当i=1时,
[0142]
[0143] 当i=2时,
[0144]
[0145] 实施例4
[0146] 掌子面从上到下依次为地层1、地层2、地层3,其高度分别为0.1、0.2m、 0.5m,盾构机掘进掌子面半径R=0.4m,如图10。根据式(5)可得:
[0147] 当i=1时,
[0148] 当i=2时,
[0149] 根据式(11)可得:
[0150] 当i=1时,
[0151]
[0152] 当i=2时,
[0153]
[0154] 当i=3时,
[0155]
[0156] 实施例5
[0157] 掌子面从上到下依次为地层1、地层2、地层3、地层4,其高度分别为0.1m、 0.4m、0.2m、0.3m,盾构机掘进掌子面半径R=0.4m,如图11。根据式(5)可得:
[0158] 当i=1时,
[0159] 当i=2时,
[0160] 当i=3时,
[0161] 根据式(12)可得:
[0162] 当i=1时,
[0163]
[0164] 当i=2时,
[0165]
[0166] 当i=3时,
[0167]
[0168] 当i=4时,
[0169]
[0170] 实施例6
[0171] 掌子面从上到下依次为地层1、地层2、地层3、地层4,其高度分别为0.1、0.7m、0.2m、0.2m,盾构机掘进掌子面半径R=0.4m,如图12。根据式(5)可得:
[0172] 当i=1时,
[0173] 当i=2时,
[0174] 当i=3时,
[0175] 根据式(13)可得:
[0176] 当i=1时,
[0177]
[0178] 当i=2时,
[0179]
[0180] 当i=3时,
[0181]
[0182] 当i=4时,
[0183]
[0184] 实施例7
[0185] 掌子面从上到下依次为地层1、地层2、地层3,如图13,其高度分别为0.4m、 0.4m、0.4m,盾构机掘进掌子面半径R=0.6m,在3种地层中分别进行1次取样长度为0.4m的钻进取
样,在地层1中取得的岩芯中共有6个分段,其长度的值从小到大排列如下:0.02m、0.03m、
0.05m、0.05m、0.05m、0.2m;在地层2中取得的岩芯中共有4个分段,其长度的值从小到大排
列如下:0.05m、0.05m、0.1m、 0.2m;在地层3中取得的岩芯中共有3个分段,其长度的值从小
到大排列如下0.1m、0.1m、0.2m。若按照既有工程规范中的RQD指标计算方法,3个地层的 
RQD值均为50%,没有区分度,但显然3个地层在完整性上存在差异。
[0186] 根据式(5)可得:
[0187] 当i=1时,
[0188] 当i=2时,
[0189] 根据式(13)可得:
[0190] 当i=1时,
[0191]
[0192] 当i=2时,
[0193]
[0194] 当i=3时,
[0195]
[0196] 在地层1中,根据式(1)可知: 由l1,bd及I1,bd的定义可知,在此地层中,l1,bd=0.05m,I1,bd=5,根据式(2)可得:
根据式(3)可得: 根据式(4)可得:W1=W1,len·W1,num≈0.5·0.8333
≈0.4167。
[0197] 在地层2中,根据式(1)可知: 由l2,bd及I2,bd的定义可知,在此地层中,l2,bd=0.1m,I2,bd=3,根据式(2)可得: 根据式
(3)可得: 根据式(4)可得:W2=W2,len·W2,num=0.5·0.75=0.375。
[0198] 在地层3中,根据式(1)可知: 由l3,bd及 I3,bd的定义可知,在此地层中,l3,bd=0.1m,I3,bd=2,根据式(2)可得: 根据
式(3)可得: 根据式(4)可得:W3=W3,len·W3,num≈0.5·0.6667≈
0.3334。
[0199] 由上述结果可知W1>W2>W3,本技术提出的岩芯不完整度指标能够区分RQD指标相同的试样在破碎程度上的差异;同时,W1>W2>W3也体现了岩芯中块体数量对岩芯不完整程度的
影响和贡献,W1>W2>W3的数值大小关系能够区分反应地层1、地层2、地层3这3种地层中岩芯
不完整程度的实际大小关系,岩芯不完整度指标的设计符合现实规律。
[0200] 根据式(14)可得:
[0201]