一种溶酶体靶向光敏剂及合成方法和在生物成像上的应用转让专利

申请号 : CN202010846395.2

文献号 : CN112028871B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王金辉赵玉芬胡静波王东伟

申请人 : 宁波大学

摘要 :

本发明涉及了一种溶酶体靶向光敏剂及合成方法和在生物成像上的应用。该溶酶体靶向光敏剂及(MP‑TPEDCH)以MP为溶酶体靶向基团,以TPEDCH为光敏分子,通过合成反应连接而成。该溶酶体靶向光敏剂可在水性介质中通过聚集诱导效应自发稳定的荧光,在激光照射下,激发其将电子转移给周围的氧分子从而生成活性氧,产生强烈的细胞毒性进而杀死肿瘤细胞,实现光动力治疗。本发明还涉及合成该溶酶体靶向光敏剂的方法,以及其在生物成像中的用途。

权利要求 :

1.一种溶酶体靶向光敏剂,其特征在于,结构式为:所述溶酶体靶向光敏剂的合成方法包括如下步骤:S1:以锌粉和四氯化钛作为偶联试剂,四氢呋喃为反应溶剂,由4,4'‑二甲氧基二苯甲酮和4‑溴苯甲酰苯经过麦克默里偶联(McMurry Coupling)反应,制得中间物1;

S2:以正丁基锂为溴‑锂交换试剂,将中间物1活化后与硼酸三甲酯反应,最后用盐酸水解制得中间物2;

S3:采用Suzuki偶联方法,以四(三苯基膦)钯为催化剂,碳酸钾为碱,中间物2和中间物

3为反应物,四氢呋喃和水为溶剂,制得中间物4;

S4:通过克脑文盖尔缩合(Knoevenagel Condensation)反应,将中间物4与丙二腈在四氯化钛作用下生成中间物5;

S5:将中间物5和三溴化硼置于冰浴中,将甲氧基水解得到含有两个羟基的中间物6;

S6:将中间物6与N‑(2‑氯乙基)吗啉盐酸盐,在含有碱和催化剂的溶剂中,通过亲核取代反应制得所述溶酶体靶向光敏剂;

其中中间物1、中间物2、中间物3、中间物4、中间物5和中间物6的结构式分别为:

2.如权利要求1所述的一种溶酶体靶向光敏剂,其特征在于,在步骤S2中,正丁基锂的浓度为2.5M,活化后的中间物1与硼酸三甲酯按摩尔比1:2反应,水解所用的盐酸浓度为3M。

3.如权利要求1所述的一种溶酶体靶向光敏剂,其特征在于,在步骤S3中,中间物2和中间物3的摩尔比为1:2,四氢呋喃和水的体积比为3:1;在步骤S4中,中间物4与丙二腈的摩尔比为1:3。

4.如权利要求1所述的一种溶酶体靶向光敏剂,其特征在于,在步骤S5中,中间物5和三溴化硼的摩尔比为1:3。

5.如权利要求1所述的一种溶酶体靶向光敏剂,其特征在于,在步骤S6中,通过亲核取代反应制备所述溶酶体靶向光敏剂时,中间物6与N‑(2‑氯乙基)吗啉盐酸盐的摩尔比为1:

2.2,所用的碱为碳酸铯,催化剂为碘化钾或碘化钠,在乙腈为溶剂下加热回流,并通过柱层析分离制得。

6.一种如权利要求1所述溶酶体靶向光敏剂在制备诱导活性氧产生并杀死肿瘤细胞的光动力药物或试剂中的用途。

说明书 :

一种溶酶体靶向光敏剂及合成方法和在生物成像上的应用

技术领域

[0001] 本发明涉及药物化学技术领域,尤其涉及一种溶酶体靶向光敏剂、合成方法及其在生物成像上的应用。
技术背景
[0002] 溶酶体是真核细胞中的一种酸性亚细胞器,含有60多种酸性水解酶,可以促进各种细胞外源和内源性大分子物质(蛋白质、多糖、核酸等)的降解,并参与到细胞内分泌过程
的调节中,因而被称为细胞的消化器。近年来研究还发现,溶酶体在细胞信号传导、细胞迁
移、胆固醇稳态、激活细胞凋亡与组织重塑等方面也发挥重要作用。而当溶酶体内环境被破
坏时会导致细胞功能紊乱,并引发各种疾病,如神经退行性疾病、类风湿性关节炎、帕金森
症、阿兹海默症和癌症等。因此,实时监测细胞中溶酶体的活动对于研究溶酶体生理功能以
及器官的存活和生长至关重要。
[0003] 近年来溶酶体成像技术发展迅速,常见的有核磁共振成像、电子计算机断层扫描、正电子发射断层成像和单光子发射计算机断层成像超声成像等。然而,放射性成像手段不
仅具有难以避免的放射性风险,而且在特异性、灵敏度、分辨率等方面有一定的不足。以荧
光成像为代表的光学成像作为一种非入侵性的技术手段,对人体的危害风险更小、灵敏度
更高、响应时间更短,越来越受到科研工作者的密切关注。
[0004] 光动力治疗(Photodynamic Therapy,PDT)是指利用肿瘤组织内的光敏剂在特定波长的光线照射下,与组织内的氧发生光化学反应后,产生活性氧,对肿瘤组织和细胞中的
生物大分子造成破坏,最终使肿瘤细胞凋亡甚至坏死。近年来,由于其有效、安全、可协同
性、不产生耐药性、可重复性和相对较低的治疗成本等优点受到了极大关注。PDT主要包含
光敏剂、光源和氧三种非毒性组分。当用特定波长的激光照射肿瘤部位,聚集在肿瘤组织的
光敏剂活化,引发光化学反应,使周围的氧分子生成活性很强的单线态氧,产生细胞毒性进
而直接杀死肿瘤细胞;另一方面,通过作用于肿瘤组织的微血管形成血栓,导致肿瘤组织缺
血坏死;此外,在肿瘤细胞坏死过程中产生大量抗原,刺激肿瘤部位的免疫反应,从而损伤
和清除肿瘤细胞。截至目前,已发展出了一系列PDT药物,如首个获批的光动力药物卟吩姆
钠。此外,金丝桃素、核黄素、姜黄素等天然产物,BODIPY 和过渡金属配合物等人工合成染
料也被报道作为PDT潜在的光敏剂。然而,这些光敏剂大多含有四吡咯环、萘或二苯甲酮等
共轭结构,由于其强烈的π由于叠加效应,光敏分子很容易聚集导致淬灭荧光(Aggregation 
Caused Quenching, ACQ),影响光敏化效率。因此,设计一种能够克服ACQ的新型光敏分子
将成为光敏剂发展的新方向。
[0005] 近年来,聚集诱导发光(Aggregation‑Induced Emission,AIE)类化合物以其特有的优势,如良好的生物相容性、独特的荧光性能(在溶液中几乎不发光,而在聚集状态发光
大大增强)、抗光漂白等,在疾病诊断和治疗领域扮演着越来越重要的角色。与传统小分子
相反,AIE分子在聚集状态下由于分子内运动受阻,受到光激发后,能量损失较低,从而表现
出荧光增强的现象。鉴于AIE分子的特殊性质,可以将其应用于光敏剂,克服上述传统光敏
分子带来的ACQ效应,同时AIE光敏剂自身也可以作为细胞内的显影剂,示踪癌细胞和肿瘤
组织。

发明内容

[0006] 基于上述背景,本发明要解决的技术问题是提供一种溶酶体靶向光敏剂及其合成方法,合成的光敏剂可用于体内外生物成像和光动力治疗。
[0007] 本发明具体采用的技术方案如下:
[0008] 第一方面,本发明提供了一种溶酶体靶向光敏剂,其结构式为:
[0009]
[0010] 作为优选,以荧光分子TPEDCH为母体,通过化学合成反应连接溶酶体靶向基团吗啉衍生物MP,得到所述溶酶体靶向光敏剂MP‑TPEDCH。
[0011] 第二方面,本发明提供了一种上述溶酶体靶向光敏剂的合成方法,其包括如下步骤:
[0012] S1:以锌粉和四氯化钛作为偶联试剂,四氢呋喃为反应溶剂,由4,4'‑二甲氧基二苯甲酮和4‑溴苯甲酰苯经过麦克默里偶联(McMurry Coupling)反应,制得中间物1;
[0013] S2:以正丁基锂为溴‑锂交换试剂,将中间物1活化后与硼酸三甲酯反应,最后用盐酸水解制得中间物2;
[0014] S3:采用Suzuki偶联方法,以四(三苯基膦)钯为催化剂,碳酸钾为碱,中间物2和中间物3为反应物,四氢呋喃和水为溶剂,制得中间物4;
[0015] S4:通过克脑文盖尔缩合(Knoevenagel Condensation)反应,将中间物4与丙二腈在四氯化钛作用下生成中间物5;
[0016] S5:将中间物5和三溴化硼置于冰浴中,将甲氧基水解得到含有两个羟基的中间物6;
[0017] S6:将中间物6与N‑(2‑氯乙基)吗啉盐酸盐,在含有碱和催化剂的溶剂中,通过亲核取代反应制得所述溶酶体靶向光敏剂;
[0018] 其中中间物1、中间物2、中间物3、中间物4、中间物5和中间物6的结构式分别为:
[0019]
[0020] 作为优选,在步骤S2中,正丁基锂的浓度为2.5M,活化后的中间物1与硼酸三甲酯按摩尔比1:2反应,水解所用的盐酸浓度为3M。
[0021] 作为优选,在步骤S3中,中间物2和中间物3的摩尔比为1:2,四氢呋喃和水的体积比为3:1;在步骤S4中,中间物4与丙二腈的摩尔比为1:3。
[0022] 作为优选,在步骤S5中,中间物5和三溴化硼的摩尔比为1:3。
[0023] 作为优选,在步骤S6中,通过亲核取代反应制备所述溶酶体靶向光敏剂MP‑TPEDCH时,中间物6与N‑(2‑氯乙基)吗啉盐酸盐的摩尔比为1:2.2,所用的碱为碳酸铯,催化剂为碘
化钾或碘化钠,在乙腈为溶剂下加热回流,并通过柱层析分离制得。
[0024] 第三方面,本发明提供了一种如上述第二方面中任一所述方法制备得到的溶酶体靶向光敏剂。
[0025] 本发明提供的上述任一方案所述酶体靶向光敏剂具有良好的溶酶体靶向性能。
[0026] 第四方面,本发明提供了一种上述任一方案所述溶酶体靶向光敏剂在监测和跟踪活细胞中溶酶体动态运动中的用途。
[0027] 第五方面,本发明提供了一种上述任一方案所述溶酶体靶向光敏剂在制备诱导活性氧产生并杀死肿瘤细胞的光动力药物或试剂中的用途。
[0028] 本发明提供的溶酶体靶向光敏剂,可在水性介质中通过聚集诱导效应自发稳定的荧光,在激光照射下,激发其将电子转移给周围的氧分子从而生成活性氧,产生强烈的细胞
毒性进而杀死肿瘤细胞,实现光动力治疗。本发明还提供了合成该溶酶体靶向光敏剂的方
法,以及其在生物成像中的用途。其他具体的技术效果将通过后续实施例进行展示。

附图说明

[0029] 图1为实施例中MP‑TPEDCH的核磁氢谱图(500MHz,Chloroform‑d);
[0030] 图2为实施例中MP‑TPEDCH的核磁碳谱(126MHz,Chloroform‑d);
[0031] 图3为实施例中MP‑TPEDCH的高分辨质谱(ESI‑HRMS);
[0032] 图4为MP‑TPEDCH在不同浓度的二甲基亚砜/水溶液中的荧光发射光谱图 (A)和不同浓度MP‑TPEDCH的荧光发射光谱图(B);
[0033] 图5为MP‑TPEDCH与溶酶体、线粒体和内质网共定位图片;
[0034] 图6为MP‑TPEDCH标记的溶酶体空间动态分布;
[0035] 图7为MP‑TPEDCH激光照射诱导ROS产生水平,(A)治疗方案,(B) ROS产生荧光信号图,(C)ROS荧光信号半定量分析结果;
[0036] 图8为MP‑TPEDCH的体外抗肿瘤活性,(A)碘化吡啶阳性荧光信号图, (B)碘化吡啶阳性细胞百分比,(C)Hoechst/PI双染MCF‑7细胞荧光照片。

具体实施方式

[0037] 下面结合附图和具体实施方式对本发明做进一步阐述和说明。
[0038] 本发明设计了一种溶酶体靶向光敏剂MP‑TPEDCH,结构如式(I)所示
[0039]
[0040] 上述溶酶体靶向光敏剂包含荧光分子TPEDCH和溶酶体靶向基团吗啉衍生物MP,二者通过化学反应合成。该化合物在纯有机溶剂中几乎没有荧光,而在水溶液由于产生强烈
荧光,可利用荧光成像监测细胞中溶酶体的动态活动。同时,当用激光照射溶酶体活动异常
部位,激发光敏剂MP‑TPEDCH将电子转移给周围的氧分子从而生成活性氧,产生强烈的细胞
毒性进而杀死肿瘤细胞,实现光动力治疗。
[0041] 下面通过实施例说明该溶酶体靶向光敏剂的制备过程和技术效果。
[0042] 实施例
[0043] 本实施例中,上述光敏剂的合成路径如下:
[0044]
[0045] 其中:上述结构式下部的粗体数字代表中间物的序号,后续为了便于叙述直接以该序号代替结构式。
[0046] 本实施例的MP‑TPEDCH的合成方法具体包括如下步骤:
[0047] 1.向100mL干燥的圆底烧瓶中加入4,4'‑二甲氧基二苯甲酮(1.96g,8.1 mmol)、4‑溴苯甲酰苯(2.74g,10.5mmol)和锌粉(3.05g,47mmol),在氩气保护下加入40mL干燥的四氢
呋喃。混合液冷却至‑78℃,在搅拌下滴加2.5mL四氯化钛,滴加完毕后将体系逐渐升至室
温,并加热回流16小时。反应结束后,冷却至室温,在冰浴下缓慢滴加50mL饱和碳酸氢钠水
溶液,反应液用乙酸乙酯萃取,合并有机相,水洗、饱和食盐水洗、无水硫酸钠干燥、过滤、减
压浓缩得黄色粗产品,柱层析分离得到淡黄色固体,即中间物1,收率37%,采用核磁氢谱、
1
碳谱和高分辨质谱进行结构表征。H NMR(500MHz,Chloroform‑d)δ7.24–7.18 (m,2H),
7.13–7.07(m,3H),7.04–6.97(m,2H),6.91(dddd,J=18.2,10.0,5.7,1.8 Hz,6H),6.64
13
(ddd,J=18.0,8.7,1.7Hz,4H),3.76(s,3H),3.73(s,3H). C NMR (126MHz,Chloroform‑d)
δ158.27,158.18,143.78,143.30,140.77,137.90,136.01, 135.92,133.04,132.55,
132.51,131.33,130.84,127.80,126.29,120.01,113.20, 113.02,77.22,55.11,
+
55.08.HR‑MS(ESI):m/z C28H23O2Br,calcd for[M+H] 471.0954,found 471.0953.
[0048] 2.将中间物1(0.94g,2.0mmol)溶解于20mL干燥的四氢呋喃中,置于‑78℃的冷阱中并不断搅拌,然后在氩气保护下滴加正丁基锂(2.5M in hexane,1.30mL, 3.2mmol)。反
应3小时后向其中滴加硼酸三甲酯(0.45mL,4.0mmol),滴加完毕后,体系缓慢升至室温。5小
时后反应液用盐酸(3M,10mL)淬灭,室温下继续搅拌8 小时,体系用乙酸乙酯(50mL)和食盐
水(100mL)分液。分离有机相,水洗、饱和食盐水洗、无水硫酸钠干燥、过滤、减压浓缩得淡黄
色粗产品,柱层析分离得到白色固体,即中间物2,收率45%,采用核磁氢谱、碳谱和高分辨
1
质谱进行结构表征。H NMR(500MHz,Chloroform‑d)δ7.89(d,J=7.8Hz,1H),7.21–7.05 
(m,6H),7.04–6.99(m,2H),6.98–6.90(m,4H),6.64(t,J=7.5Hz,4H),3.74(s, 3H),3.73
13
(s,3H). C NMR(126MHz,Chloroform‑d)δ158.18,144.01,136.15, 136.09,134.98,
132.87,132.62,132.58,131.39,131.37,131.06,130.97,127.75, 126.19,113.09,
113.01,77.22,55.10,55.08.
[0049] 3.向干燥的三颈烧瓶中加入4‑溴苯甲酰氯(1.32g,6mmol)和无水三氯化铝 (1.04g,7.8mmol),氩气保护下加入10mL干燥的二氯甲烷。冰浴下滴加噻吩(0.50 g,6mmol)
的干燥二氯甲烷溶液,升温至室温,继续搅拌3小时。反应结束后,向体系中加入碎冰块淬灭
反应,反应液用37%浓盐酸酸化,二氯甲烷萃取,有机相水洗、饱和食盐水洗、无水硫酸钠干
燥、过滤、减压浓缩、柱层析分离得到黄色固体,即中间物3,收率93%,采用核磁氢谱、碳谱
和高分辨质谱进行结构表征。1H NMR(500MHz,Chloroform‑d)δ7.78–7.69(m,3H),7.68–
7.58(m,3H), 7.18(dd,J=5.0,3.8Hz,1H).13C NMR(126MHz,Chloroform‑d)δ187.06,
143.18, 136.86,134.79,134.58,131.75,130.71,128.07,127.27.
[0050] 4.向干燥的单口烧瓶中加入上述中间物2(160mg,0.37mmol)和中间物3 (197mg,0.74mmol),溶解在四氢呋喃和水的混合溶液中(v/v=3/1,8mL),然后加入碳酸钾(511mg,
3.7mmol)和四(三苯基膦)钯(21mg,0.0185mmol)。反应回流 24小时后冷却至室温,加入乙
酸乙酯和水分液。分离有机相,水洗、饱和食盐水洗、无水硫酸钠干燥、过滤、减压浓缩、柱层
析分离得到黄色固体,即中间物 4,收率61%,采用核磁氢谱、碳谱和高分辨质谱进行结构
1
表征。H NMR(500MHz, Chloroform‑d)δ7.95–7.89(m,2H),7.72(dd,J=4.9,1.1Hz,1H),
7.71–7.66(m, 3H),7.45–7.38(m,2H),7.17(dd,J=5.0,3.8Hz,1H),7.16–7.09(m,5H),
7.07(dd, J=8.0,1.7Hz,2H),7.01–6.93(m,4H),6.72–6.61(m,4H),3.75(s,3H),3.74(s, 
13
3H). C NMR(126MHz,Chloroform‑d)δ158.24,158.15,144.68,144.49,140.72, 138.52,
137.10,136.54,136.23,134.58,134.04,132.63,132.61,132.02,131.45, 129.82,
127.94,127.79,126.73,126.41,126.24,113.15,113.02,55.12,55.10. HR‑MS(ESI):m/z 
+ +
C39H30O3S,[M+H] calcd 579.1988,found 579.1981; [M+Na] calcd 601.1808,found 
601.1806.
[0051] 5.向干燥的两口烧瓶中加入上述中间物4(130mg,0.22mmol)和丙二腈(44 mg,0.66mmol)的5mL干燥二氯甲烷溶液,氩气保护冰浴下滴加四氯化钛(85μL, 0.77mmol),搅
拌30分钟后加入吡啶(62μL,0.77mmol)继续反应30分钟。然后加热至40℃,回流5小时,反应
完体系冷却至室温,加入10mL水淬灭反应,反应液由黑色变成棕色。分液,二氯甲烷萃取,合
并有机相,然后用水洗、饱和食盐水洗、无水硫酸钠干燥、过滤、减压浓缩、柱层析分离得到
1
橙色固体,即中间物 5,收率87%,采用核磁氢谱、碳谱和高分辨质谱进行结构表征。H NMR
(500MHz, Chloroform‑d)δ7.81(dd,J=10.6,4.5Hz,2H),7.70(d,J=8.1Hz,2H),7.51(d,J
= 8.1Hz,2H),7.41(d,J=8.0Hz,2H),7.23(d,J=4.6Hz,1H),7.16–7.09(m,5H), 7.08–
7.04(m,2H),6.97(dd,J=15.5,8.4Hz,4H),6.65(t,J=9.3Hz,4H),3.75(s, 3H),3.74(s,
13
3H). C NMR(126MHz,Chloroform‑d)δ158.27,144.79,144.07, 140.85,138.69,138.44,
136.60,136.40,136.18,136.00,132.64,132.61,132.09, 131.44,130.31,128.95,
127.81,126.94,126.38,126.27,113.16,113.03,55.13,55.10.
[0052] 6.向干燥的两口烧瓶中加入上述中间物5(115mg,0.18mmol)的6mL干燥二氯甲烷溶液,冰浴下滴加三溴化硼的的干燥二氯甲烷溶液(1.0M,0.54mmol),体系升温至室温搅拌
5小时。然后冰浴下加入10mL水淬灭反应,反应液用二氯甲烷萃取,合并有机相,水洗、饱和
食盐水洗、无水硫酸钠干燥、过滤、减压浓缩的橙红色固体,即中间物6,收率87%,产物未经
1
进一步纯化直接用于下一步反应。H NMR(500MHz,Chloroform‑d)δ7.85–7.77(m,2H),7.69
(d,J=8.2Hz, 2H),7.50(d,J=8.0Hz,2H),7.41(d,J=8.2Hz,2H),7.24(t,J=4.5Hz,1H),
7.12 (dt,J=7.5,3.5Hz,5H),7.07–7.03(m,2H),6.92(dd,J=14.6,8.6Hz,4H),6.58 (dd,
13
J=9.8,8.5Hz,4H). C NMR(126MHz,Chloroform‑d)δ154.31,154.21, 144.68,144.48,
143.97,140.71,138.67,138.57,136.45,136.28,136.07,132.82, 132.79,132.07,
131.41,130.32,128.97,127.81,126.95,126.40,126.32,114.74, 114.60.HR‑MS(ESI):m/
z C40H26N2O2S,M calcd 598.1715,found 598.1711.
[0053] 7.向干燥的单口烧瓶中加入上述中间物6(60mg,0.1mmol)和N‑(2‑氯乙基) 吗啉盐酸盐(41mg,0.22mmol)的5mL乙腈溶液,搅拌下加入碳酸铯(195mg,0.6 mmol)和碘化钾
(3.3mg,0.02mmol),加热至80℃回流24小时,点板监测反应直至原料6消耗完。冷却至室温,
旋干溶剂,然后加入二氯甲烷和水分液,有机相用水洗、饱和食盐水洗、无水硫酸钠干燥、过
滤、减压浓缩、柱层析分离得到红色固体MP‑TPEDCH(结构式如式1),收率67%,采用核磁氢
1
谱、碳谱和高分辨质谱进行结构表征,结果分别如图1、图2、图3所示。H NMR(500MHz, 
Chloroform‑d)δ7.83(dd,J=5.0,1.2Hz,1H),7.81(dd,J=4.0,1.1Hz,1H),7.70(d, J=
8.4Hz,2H),7.55–7.49(m,2H),7.41(d,J=8.4Hz,2H),7.25–7.23(m,1H), 7.12(dt,J=
8.4,3.6Hz,5H),7.05(dd,J=7.9,1.8Hz,2H),6.99–6.91(m,4H),6.68 –6.62(m,4H),4.04
(d,J=2.5Hz,4H),3.74–3.70(m,8H),2.76(t,J=5.7Hz,4H), 2.56(dt,J=7.6,2.7Hz,
13
8H). C NMR(126MHz,Chloroform‑d)δ164.82,157.43, 144.73,144.45,144.02,140.73,
138.58,136.63,136.42,136.34,136.03,134.58, 132.64,132.61,132.08,131.42,
130.32,128.97,127.81,126.92,126.39,126.29, 123.30,114.05,113.79,113.68,
+
111.36,66.92,66.91,65.59,57.92,57.70,54.11. HR‑MS(ESI):m/z C52H48N4O4S,[M+H]
calcd 825.3469,found 825.3468.
[0054] 将上述制得的MP‑TPEDCH溶于不同比例的二甲基亚砜/水混合溶液,随着混合溶液中水的的比例不断增加,MP‑TPEDCH产生AIE效应,荧光强度也随之增强(图4A),且荧光呈浓
度依赖性(图4B)。
[0055] 以人乳腺癌(MCF‑7)细胞为模型细胞,通过市售溶酶体、线粒体与内质网探针标记细胞器,考察MP‑TPEDCH的靶向分布特性。结果如图5所示, MP‑TPEDCH的荧光信号与市售溶
酶体的荧光探针信号高度重合,采用ImageJ 软件进行共定位分析,得到两者的共定位相关
系数值为0.97;而MP‑TPEDCH 与线粒体和内质网的共定位相关系数值为0.61和0.41,表明
面MP‑TPEDCH具有较好的溶酶体靶向性能。
[0056] 以人乳腺癌(MCF‑7)细胞为模型细胞,采用MP‑TPEDCH标记MCF‑7细胞以考察胞内溶酶体的空间动态分布。结果如图6所示,通过MP‑TPEDCH标记溶酶体,可见该细胞器在活细
胞内动态运动分布。
[0057] 活性氧能氧化多种生物大分子从而损伤细胞结构或影响细胞功能,因而产生治疗作用,因此细胞内活性氧的产生是评价光动力治疗的首要因素。我们使用市售活性氧探针
DCFH‑DA检测MP‑TPEDCH光动力治疗后细胞内活性氧产生情况。结果如图7所示,进入细胞的
MP‑TPEDCH经激光照射后,MCF‑7细胞内可见明亮的红色荧光,说明细胞内产生大量的活性
氧;而经抗氧化剂乙酰半胱氨酸作用后,活性氧水平明显降低。
[0058] 采用Hoechst/碘化吡啶活/死细胞染色试剂考察MP‑TPEDCH的体外抗肿瘤活性。MCF‑7细胞经MP‑TPEDCH(不同浓度)激光照射后,使用Hoechst/碘化吡啶区分死细胞与活细
胞,结果如图8所示,仅激光照射的细胞碘化吡啶阳性率极低,而加入MP‑TPEDCH并激光照射
后,碘化吡啶阳性率逐渐升高,呈现浓度依赖性。
[0059] 以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变
化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保
护范围内。