一种高效三结砷化镓太阳电池及制作方法转让专利

申请号 : CN202011235406.X

文献号 : CN112103356B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 徐培强宁如光林晓珊万智张银桥潘彬王向武

申请人 : 南昌凯迅光电有限公司

摘要 :

本发明公开了一种高效三结砷化镓太阳电池及制作方法,太阳电池自下向上依次为Ge衬底、底电池、缓冲层、中底隧穿结、第一组DBR,中电池、中顶隧穿结、顶电池和盖帽层;其中,中电池由第二组DBR,In0.01GaAs基区,GaInP发射区和AlInP窗口层组成。通过双层DBR的引入,可大幅降低中电池基区的厚度,提高产品的辐照性能,同时,由于厚度的降低,可降低载流子迁移过程的复合几率,提高开路电压和短路电流密度。

权利要求 :

1.一种高效三结砷化镓太阳电池,其特征在于:

太阳电池自下向上依次为Ge衬底、底电池、缓冲层、中底隧穿结、第一组DBR,中电池、中顶隧穿结、顶电池和盖帽层;

其中,中电池由第二组DBR,In0.01GaAs基区,GaInP发射区和AlInP窗口层组成;

第一组DBR为AlGaAs/InGaAs,第二组DBR为InyGa(1-y)AsN/InzGa(1-z)As;

第一组DBR的功能是起到反射太阳光的作用,第一组DBR的反射中心波长与第二组DBR吸收的最大波长相关,这样效果是提高第二组DBR吸收太阳光的能力,降低厚度,提高辐照性能;

第二组DBR的其中一个功用与第一组DBR类似,起到反射太阳光的作用,中心波长是P-InGaAs的吸收的最大波长,另外一个功用是可以作为电池的基区,将太阳光转换成电能。

2.一种高效三结砷化镓太阳电池的制作方法,其特征在于:

制作方法包括如下步骤:

S1:在P型Ge衬底上,高温下通过PH3扩散的形式,形成底电池发射区,然后生长GaInP或AlGaInP成核层,成核层同时作为底电池的窗口层,厚度在0.01-0.03μm之间;

S2:生长GaAs/In0.01GaAs缓冲层,GaAs和In0.01GaAs的厚度分别在0.1-0.8μm;

S3:生长中底隧穿结,中底隧穿结为N++GaAs/P++GaAs结构;

S4:生长第一组DBR,第一组DBR由15~30对AlGaAs/InGaAs结构组成;

S5:生长中电池,其中,中电池包括第二组DBR,In0.01GaAs基区,GaInP发射区和AlInP窗口层;

S6:生长中顶隧穿结,中顶隧穿结为N++GaInP/P++AlGaAs结构;

S7:生长顶电池,顶电池由AlGaInP背电场、GaInP基区、GaInP发射区及AlInP窗口层组成;

S8:生长GaAs盖帽层,盖帽层厚度在0.4-0.8μm之间。

3.根据权利要求2所述的一种高效三结砷化镓太阳电池的制作方法,其特征在于:步骤S3中,N++GaAs/P++GaAs结构,其中N++GaAs的厚度为0.01-0.03μm之间,掺杂浓度为大于1×1019/cm3,掺杂剂为Te、Se、Si其中的一种或者多种组合;

P++GaAs的厚度为0.01-0.03μm之间,掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn、C其中的一种或者多种组合。

4.根据权利要求2所述的一种高效三结砷化镓太阳电池的制作方法,其特征在于:步骤S4中,每对AlGaAs/InGaAs结构中AlGaAs层和InGaAs层的厚度均根据λ1/4n计算,其中870nm≤λ1≤1100nm,n为对应AlGaAs或者InGaAs材料的折射率;AlxGa(1-x)As中Al摩尔组分为0.5≤x≤1;InGaAs中In的摩尔组分为1%。

5.根据权利要求2所述的一种高效三结砷化镓太阳电池的制作方法,其特征在于:所述步骤S5中,第二组DBR作为中电池基区的一部分,由5-15对的InyGa(1-y)AsN/InzGa(1-z)As组成。

6.根据权利要求5所述的一种高效三结砷化镓太阳电池的制作方法,其特征在于:每对InyGa(1-y)AsN/InzGa(1-z)As结构中InyGa(1-y)AsN层和InzGa(1-z)As层的厚度均根据λ

2/4n计算,反射波长750nm≤λ2≤870nm,InyGa(1-y)AsN中0.43≤y≤0.56,InzGa(1-z)As中0.01≤z≤0.13,In0.01GaAs基区厚度在0.2-0.6μm,GaInP发射区厚度在0.03-0.15μm,AlInP窗口层厚度在0.03-0.15μm。

7.根据权利要求2所述的一种高效三结砷化镓太阳电池的制作方法,其特征在于:步骤S6中,N++GaInP厚度为0.01-0.03μm之间,掺杂浓度为大于1×1019/cm3,掺杂剂为Te、Se、Si其中的一种或者多种组合;

P++AlGaAs的厚度为0.01-0.03μm之间,掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn、C其中的一种或者多种组合。

8.根据权利要求2所述的一种高效三结砷化镓太阳电池的制作方法,其特征在于:步骤S7中,AlGaInP中Al的组分在0.15-0.4之间,厚度在0.02-0.15μm之间,GaInP基区及发射区的总厚度在0.5~1μm之间,AlInP窗口层厚度在0.05~0.1μm之间。

说明书 :

一种高效三结砷化镓太阳电池及制作方法

技术领域

[0001] 本发明涉及太阳电池技术领域,尤其涉及一种高效三结砷化镓太阳电池及制作方法。

背景技术

[0002] 三结砷化镓(GaAs)太阳电池以其高转换效率、材料晶格匹配易于实现和优良的可靠性等优势已经在太空领域得到了广泛的应用。自2002年起,国外发达国家的空间飞行器已经全部采用砷化镓三结太阳电池作为空间飞行器的主电源,近年来,国内空间飞行器使用的主电源也正在从传统的硅太阳电池向高效砷化镓三结太阳电池过渡,其批产转换效率已经达到30%(AM0),在轨量超过850KW。随着国家各项航天工程的实施,航天器的功能越来多,有效载荷的要求也越来越大,这对空间太阳电池的可靠性及转换效率等提出更高的要求。
[0003] 目前应用的Ge衬底生长的GaAs三结太阳电池结构为GaInP/GaAs/Ge,为晶格匹配的电池结构,其最高效率已接近30%(AM0),由于受到带隙不匹配的限制,转换效率很难进一步提高。采用带隙匹配的太阳电池结构,是提高三结砷化镓太阳电池转换效率的一种有效方式。一般来说,制作带隙匹配的太阳电池,是通过多层缓冲层,逐步释放应力,达到目标带隙材料,该工艺方式相对简单,但是存在生产耗时长、原材料成本高、应力释放不彻底的问题,对产品的产业化生产带来一系列问题。为解决上述问题,本发明设计一种新型的三结太阳电池结构,在不增加生产成本的情况下,提高产品的可靠性及光电性能。

发明内容

[0004] 本申请提供了一种高效三结砷化镓太阳电池及制作方法,通过本发明结构和方法的设置能够解决背景技术中的问题。
[0005] 一种高效三结砷化镓太阳电池,太阳电池自下向上依次为Ge衬底、底电池、缓冲层、中底隧穿结、第一组DBR,中电池、中顶隧穿结、顶电池和盖帽层;其中,中电池由第二组DBR,In0.01GaAs基区,GaInP发射区和AlInP窗口层组成。
[0006] 一种高效三结砷化镓太阳电池的制作方法,制作方法包括如下步骤:
[0007] S1:在P型Ge衬底上,高温下通过PH3扩散的形式,形成底电池发射区,然后生长GaInP或AlGaInP成核层,成核层同时作为底电池的窗口层,厚度在0.01-0.03μm之间;
[0008] S2:生长GaAs/In0.01GaAs缓冲层,GaAs和In0.01GaAs的厚度分别在0.1-0.8μm;
[0009] S3:生长中底隧穿结,中底隧穿结为N++GaAs/P++GaAs结构;
[0010] S4:生长第一组DBR,第一组DBR由15~30对AlGaAs/InGaAs结构组成;
[0011] S5:生长中电池,其中,中电池包括第二组DBR,In0.01GaAs基区,GaInP发射区和AlInP窗口层;
[0012] S6:生长中顶隧穿结,中顶隧穿结为N++GaInP/P++AlGaAs结构;
[0013] S7:生长顶电池,顶电池由AlGaInP背电场、GaInP基区、GaInP发射区及AlInP窗口层组成;
[0014] S8:生长GaAs盖帽层,盖帽层厚度在0.4-0.8μm之间。
[0015] 优选的,步骤S3中,N++GaAs/P++GaAs结构,其中N++GaAs的厚度为0.01-0.03μm之间,掺杂浓度为大于1×1019/cm3,掺杂剂为Te、Se、Si其中的一种或者多种组合;P++GaAs的厚度为0.01-0.03μm之间,掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn、C其中的一种或者多种组合。
[0016] 优选的,步骤S4中,每对AlGaAs/InGaAs结构中AlGaAs层和InGaAs层的厚度均根据λ1/4n计算,其中870nm≤λ1≤1100nm,n为对应AlGaAs或者InGaAs材料的折射率;AlxGa(1-x)As中Al摩尔组分为0.5≤x≤1;InGaAs中In的摩尔组分为1%。
[0017] 优选的,所述步骤S5中,第二组DBR作为中电池基区的一部分,由5-15对的InyGa(1-y)AsN/InzGa(1-z)As组成。
[0018] 优选的,每对InyGa(1-y)AsN/InzGa(1-z)As结构中InyGa(1-y)AsN层和InzGa(1-z)As层的厚度均根据λ2/4n计算,反射波长750nm≤λ2≤870nm,InyGa(1-y)AsN中0.43≤y≤0.56,InzGa(1-z)As中0.01≤z≤0.13。In0.01GaAs基区厚度在0.2-0.6μm,GaInP发射区厚度在0.03-0.15μm,窗口层厚度在0.03-0.15μm。
[0019] 优选的,步骤S6中,N++GaInP厚度为0.01-0.03μm之间,掺杂浓度为大于1×1019/cm3,掺杂剂为Te、Se、Si其中的一种或者多种组合;P++AlGaAs的厚度为0.01-0.03μm之间,掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn、C其中的一种或者多种组合。
[0020] 优选的,步骤S7中,AlGaInP中Al的组分在0.15-0.4之间,厚度在0.02-0.15μm之间,GaInP基区及发射区的总厚度在0.5~1μm之间,AlInP窗口层厚度在0.05~0.1μm之间。
[0021] 有益效果:
[0022] 双层DBR的引入,可大幅降低中电池基区的厚度,提高产品的辐照性能,同时,由于厚度的降低,可降低载流子迁移过程的复合几率,提高开路电压和短路电流密度;
[0023] 宽禁带GaInP发射区和减薄空间电荷区厚度,降低中电池子电池的反向饱和电流,提高开路电压;
[0024] 窄禁带应力平衡基区的引入,在不降低产品开路电压的情况,大幅提升电池产品的电流密度,提升整体的性能水平。

附图说明

[0025] 图1是本发明太阳电池结构图;
[0026] 图2是本发明第一组DBR结构图;
[0027] 图3是本发明中电池结构图;
[0028] 图4是本发明第二组DBR结构图。

具体实施方式

[0029] 下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
[0030] 一种高效三结砷化镓太阳电池,自下向上依次为Ge衬底、底电池、缓冲层、中底隧穿结、第一组DBR,中电池、中顶隧穿结、顶电池和盖帽层。其中,中电池由第二组DBR,In0.01GaAs基区,GaInP发射区和AlInP窗口层组成。
[0031] 实施例一:
[0032] 一种高效三结砷化镓太阳电池具体制作方法如下:
[0033] S1:在P型Ge衬底上,700℃下,通过PH3扩散的形式,形成底电池发射区,发射区厚度0.1μm,然后温度降低至620℃,低温生长GaInP成核层,成核层同时作为底电池的窗口层,厚度在0.01μm;
[0034] S2:温度提升至650℃,依次生长GaAs/In0.01GaAs缓冲层,GaAs和In0.01GaAs的厚度均为0.1μm;
[0035] S3:温度降至550℃,生长中底隧穿结,中底隧穿结为N++GaAs/P++GaAs结构,其中N++GaAs的厚度为0.01μm之间,掺杂浓度为1×1019/cm3,掺杂剂为Si;P++GaAs的厚度为0.01μm之间,掺杂浓度为2×1019/cm3,掺杂剂为C;
[0036] S4:温度升至650℃,生长第一组DBR,第一组DBR由15对Al0.5GaAs/In0.01GaAs结构组成,反射中心波长为870nm;
[0037] S5:生长中电池,其中,中电池包括第二组DBR,In0.01GaAs基区,GaInP发射区和AlInP窗口层;第二组DBR作为中电池基区的一部分,由10对In0.43Ga0.57As0.8N/In0.01Ga0.99As组成,反射波长750nm,In0.01GaAs基区厚度在0.2μm,GaInP发射区厚度在0.03μm,窗口层厚度在0.03μm;
[0038] S6:温度降至550℃,生长中顶隧穿结。中顶隧穿结为N++GaInP/P++AlGaAs结构,其中,N++GaInP厚度为0.01μm,掺杂浓度为1×1019/cm3,掺杂剂为Te、Si共掺;P++AlGaAs的厚度为0.01μm之间,掺杂浓度为2×1019/cm3,掺杂剂为C;
[0039] S7:温度升至650℃,生长顶电池,顶电池由AlGaInP背电场、GaInP基区、GaInP发射区及AlInP窗口层组成,其中,AlGaInP中Al的组分在0.15,厚度为0.02μm,GaInP基区及发射区的总厚度为0.5μm,AlInP窗口层厚度为0.05μm;
[0040] S8:然后生长GaAs盖帽层,盖帽层厚度为0.4μm。
[0041] 实施例二:
[0042] 一种高效三结砷化镓太阳电池具体制作方法如下:
[0043] S1:在P型Ge衬底上,700℃下,通过PH3扩散的形式,形成底电池发射区,发射区厚度0.1μm,然后温度降低至620℃,低温生长GaInP成核层,成核层同时作为底电池的窗口层,厚度在0.02μm;
[0044] S2:温度提升至650℃,依次生长GaAs/In0.01GaAs缓冲层,GaAs和In0.01GaAs的厚度均为0.4μm;
[0045] S3:温度降至550℃,生长中底隧穿结,中底隧穿结为N++GaAs/P++GaAs结构,其中N++GaAs的厚度为0.02μm之间,掺杂浓度为3×1019/cm3,掺杂剂为Te;P++GaAs的厚度为0.02μm之19 3
间,掺杂浓度为5×10 /cm,掺杂剂为ZN;
[0046] S4:温度升至650℃,生长第一组DBR,第一组DBR由15对Al0.7GaAs/In0.01GaAs结构组成,反射中心波长为980nm;
[0047] S5:生长中电池,其中,中电池包括第二组DBR,In0.01GaAs基区,GaInP发射区和AlInP窗口层;第二组DBR作为中电池基区的一部分,由10对In0.48Ga0.58As0.8N/In0.1Ga0.9As组成,反射波长830nm,In0.01GaAs基区厚度在0.4μm,GaInP发射区厚度在0.1μm,窗口层厚度在0.1μm;
[0048] S6:温度降至550℃,生长中顶隧穿结。中顶隧穿结为N++GaInP/P++AlGaAs结构,其中,N++GaInP厚度为0.02μm,掺杂浓度为3×1019/cm3,掺杂剂为Te、Se共掺;P++AlGaAs的厚度为0.02μm之间,掺杂浓度为5×1019/cm3,掺杂剂为Zn;
[0049] S7:温度升至650℃,生长顶电池,顶电池由AlGaInP背电场、GaInP基区、GaInP发射区及AlInP窗口层组成,其中,AlGaInP中Al的组分在0.3,厚度为0.1μm,GaInP基区及发射区的总厚度为0.7μm,AlInP窗口层厚度为0.06μm;
[0050] S8:然后生长GaAs盖帽层,盖帽层厚度为0.5μm。
[0051] 实施例三:
[0052] 一种高效三结砷化镓太阳电池具体制作方法如下:
[0053] S1:在P型Ge衬底上,700℃下,通过PH3扩散的形式,形成底电池发射区,发射区厚度0.1μm,然后温度降低至620℃,低温生长GaInP成核层,成核层同时作为底电池的窗口层,厚度在0.03μm;
[0054] S2:温度提升至650℃,依次生长GaAs/In0.01GaAs缓冲层,GaAs和In0.01GaAs的厚度均为0.8μm;
[0055] S3:温度降至550℃,生长中底隧穿结,中底隧穿结为N++GaAs/P++GaAs结构,其中N++19 3 ++
GaAs的厚度为0.03μm之间,掺杂浓度为3×10 /cm ,掺杂剂为Se;P GaAs的厚度为0.03μm之间,掺杂浓度为1×1020/cm3,掺杂剂为Mg;
[0056] S4:温度升至650℃,生长第一组DBR,第一组DBR由15对Al1As/In0.01GaAs结构组成,反射中心波长为1100nm;
[0057] S5:生长中电池,其中,中电池包括第二组DBR,In0.01GaAs基区,GaInP发射区和AlInP窗口层;第二组DBR作为中电池基区的一部分,由10对In0.56Ga0.44As0.8N/In0.13Ga0.87As组成,反射波长870nm,In0.01GaAs基区厚度在0.6μm,GaInP发射区厚度在0.15μm,窗口层厚度在0.15μm;
[0058] S6:温度降至550℃,生长中顶隧穿结。中顶隧穿结为N++GaInP/P++AlGaAs结构,其中,N++GaInP厚度为0.03μm,掺杂浓度为3×1019/cm3,掺杂剂为Se、Si共掺;P++AlGaAs的厚度为0.03μm之间,掺杂浓度为1×1020/cm3,掺杂剂为Mg;
[0059] S7:温度升至650℃,生长顶电池,顶电池由AlGaInP背电场、GaInP基区、GaInP发射区及AlInP窗口层组成,其中,AlGaInP中Al的组分在0.4,厚度为0.15μm,GaInP基区及发射区的总厚度为1μm,AlInP窗口层厚度为0.1μm;
[0060] S8:然后生长GaAs盖帽层,盖帽层厚度为0.8μm。
[0061] 本发明采用双层分布式布拉格(DBR)结构,可以大幅降低太阳电池有源区的厚度,提高太阳电池产品的辐照性能;1.太阳电池的辐照性能与厚度有明显的关系,一般来说,厚度越薄,受到太空中粒子的损伤也越小,光生载流子复合的几率降低,辐照性能提升。电池结构中采用双DBR结构,第一组DBR的功能是起到反射太阳光的作用,第一组DBR的反射中心波长与第二组DBR吸收的最大波长相关,这样效果是提高第二组DBR吸收太阳光的能力,降低厚度,提高辐照性能。第二组DBR的其中一个功用与第一组类似,起到反射太阳光的作用,中心波长是P-InGaAs的吸收的最大波长,另外一个功用是可以作为电池的基区,将太阳光转换成电能。由于DBR可以降低基区的生长时间,所以同时降低生产周期,提高产能。
[0062] 本发明采用窄禁带应力平衡基区。在中电池靠近背电场(BSF)一端,引入应力平衡的InyGa(1-y)AsN/InzGa(1-z)As基区,其中,InyGa(1-y)AsN中0.43≤y≤.56,InzGa(1-z)As中0.01≤z≤0.13。这样可以在不降低太阳电池开路电压的情况下,提高短路电流密度。太阳电池的开路电压主要与PN结中的空间电荷区有关,本发明专利中,将空间电压区设置为InGaAs材料,保证开路电压,同时将靠近BSF部分的P型基区改成带隙窄的材料,可以增加中电池的吸光波段,提高短路电流密度。另外,在材料的选取中,需保证第二组DBR的整体应力是平衡的,或者是无应力的,这样无需生长缓冲层就可以获得高晶体质量的电池材料。
[0063] 本发明采用GaInP作为中电池发射区。采用宽带隙的GaInP材料作为中电池发射区,可以降低中电池子电池的反向饱和电流,提高开路电压,同时,GaInP的具有高的抗辐照性能,提升整体的辐照水平。