一种舰船上不锈钢管路用防螺纹咬死涂层及其制备方法转让专利

申请号 : CN202010834246.4

文献号 : CN112111737B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 谢述锋黄磊

申请人 : 中国船舶重工集团公司第七二五研究所

摘要 :

本发明公开了一种舰船上不锈钢管路用防螺纹咬死涂层及其制备方法,其制备方法包括如下步骤:先提供螺纹件并对螺纹基体表面进行预处理;然后通过金属等离子体源产生钛等离子体进行螺纹基体的钛离子注入与沉积,在螺纹基体上形成钛混合底层;之后通过金属等离子体源产生钛等离子体进行化学反应气相沉积,在钛混合底层表面沉积一层碳氮化钛中间层;最后通过磁过滤阴极真空弧源产生碳等离子体在碳氮化钛中间层表面沉积一层类金刚石面层。该防咬死涂层具有高承载、高耐蚀、减摩耐磨的优点,解决了舰船不锈钢螺纹副在高温、高压、振动、海上盐雾、海水腐蚀等多因素耦合工况下易发生咬死的问题。

权利要求 :

1.一种舰船上不锈钢管路用防螺纹咬死涂层的制备方法,其特征在于,包括如下步骤:

(1)、提供不锈钢管路用螺纹件并对螺纹基体表面进行预处理,对螺纹基体表面进行预处理的具体步骤为:采用机械、化学或电化学方法对螺纹件的螺纹基体表面进行抛光使其表面粗糙度小于0.4μm,然后进行超声波清洗5~10min,之后将螺纹件烘干后再置于处理室中进行离子溅射清洗,以去除螺纹基体表面的自然钝化膜;

(2)、通过金属等离子体源产生钛等离子体,然后向螺纹基体施加负高压脉冲,脉冲电压为15~25kV,脉冲宽度为20~60us,脉冲频率50~200Hz,工作气体为氩气,工作压力为

0.03~0.3Pa,以实现钛离子的注入与沉积,在螺纹基体上形成钛混合底层;

(3)、通过金属等离子体源产生钛等离子体,然后向沉积有钛混合底层的螺纹基体施加负高压脉冲,脉冲电压为15~25kV,脉冲宽度为20~60us,脉冲频率为30~80Hz,工作气体为氮气和乙炔,氮气和乙炔的流量比为(1~2):1,工作压力为0.03~0.3Pa,氮气和乙炔在钛等离子体作用下发生电离和化合反应,在钛混合底层表面沉积一层碳氮化钛中间层;

(4)、通过磁过滤阴极真空弧源产生碳等离子体,然后向沉积有碳氮化钛中间层的螺纹基体施加负高压脉冲,脉冲电压为15~20kV,脉冲宽度为20~60us,脉冲频率为30~80Hz,工作气体为氩气,工作压力为0.01~0.1Pa,在碳氮化钛中间层表面沉积一层类金刚石面层;

涂层由内向外依次包括采用离子注入与沉积工艺形成的厚度为0.5~1μm的钛混合底层、通过化学反应气相沉积工艺形成的厚度为0.5~1.5μm的碳氮化钛中间层以及通过磁过滤阴极真空弧沉积工艺形成的厚度为1~2μm的类金刚石面层。

2.根据权利要求1所述的一种舰船上不锈钢管路用防螺纹咬死涂层的制备方法,其特征在于,离子溅射清洗时,工作气体为氩气,工作压力为0.3~0.6Pa,基体负偏压为1~5kV。

说明书 :

一种舰船上不锈钢管路用防螺纹咬死涂层及其制备方法

技术领域

[0001] 本发明涉及金属表面涂层领域,尤其是涉及一种舰船上不锈钢管路用防螺纹咬死涂层及其制备方法。

背景技术

[0002] 漏油、漏水、漏气(简称三漏)一直是困扰我海军舰船比较突出的问题之一。在高温、高压、振动、海上盐雾、海水腐蚀等多因素耦合工况下,舰船常采用不锈钢作为管路系统材料,但不锈钢管路螺纹副在拆装过程中易发生咬死,导致密封失效,最终产生跑、冒、滴、漏等问题,引起系统或设备非计划停车,导致能源浪费,环境污染,甚至直接影响到舰船安全和战斗任务执行。
[0003] 螺纹副咬死的主要原因有螺纹牙型、螺纹副材料、预紧力、腐蚀等,螺纹牙型和螺纹副材料主要在设计定型中规避,实际情况中螺纹副发生咬死的主要原因是预紧力和腐蚀,特别是在施工条件差的狭小空间内,力矩扳手无法使用的情况下,若管路密封存在问题时,装配工人通常会提高预紧力,螺纹预紧力过大或拧紧速度过快均易导致螺纹副之间发生冷焊而咬死。另一个主要原因是腐蚀,包括金属在海洋环境中自身的腐蚀以及异种金属之间的电偶腐蚀等,腐蚀产物导致螺纹副发生咬死。
[0004] 针对螺纹副咬死问题,现有技术主要从改善材料表面性能来提升螺纹副的抗咬死性能,主要途径有螺纹表面改性硬化、添加液体或固体润滑剂,以及涂覆耐磨减摩涂层等。但国外研究发现在螺栓安装拆卸过程中表面涂抹润滑剂、镀磷酸盐膜等传统措施对螺纹副防咬死作用有限。因此,目前防螺纹咬死主要采用各种涂层技术。
[0005] 如申请号为201410070547.9的中国专利“石油管道用抗螺纹粘扣陶瓷涂层油套管及其制备方法”、申请号为201910421968.4的中国专利“具有防螺纹锁死涂层的金属螺纹连接件的制作方法”、申请号为201810098984.X的中国专利“一种采用非平衡磁控溅射制备螺纹防咬死涂层的方法”、申请号为201810097028.X的中国专利“一种采用多弧离子镀制备螺纹耐磨耐蚀防锁死涂层的方法”均在一定程度上通过涂层解决了螺纹咬死的问题,但无法适用于舰船管路系统中,究其原因主要是目前的涂层的承载能力和耐腐蚀能力难以同时兼备,无法满足螺纹在腐蚀、超载、频繁拆装条件下长期服役的目的。

发明内容

[0006] 有鉴于此,本发明的目的是提供一种舰船上不锈钢管路用防螺纹咬死涂层及其制备方法,防螺纹咬死涂层作为螺纹副之间的隔离层,防止拧紧时发生冷焊而咬死,其具有高承载(高承载能力提高防咬死涂层的可靠性和耐用性)、高耐蚀(高耐蚀性避免螺纹副之间可能产生的腐蚀问题)、减摩耐磨(减摩耐磨能够减小螺纹副之间的拧紧摩擦力和磨损)的优点,通过涂覆该涂层能够解决舰船不锈钢管路系统中螺纹副拆装过程中因发生咬死而导致致密失效,进而产生跑、冒、滴、漏等问题。
[0007] 本发明为了解决上述技术问题所采用的技术方案是:
[0008] 一种舰船上不锈钢管路用防螺纹咬死涂层的制备方法,包括如下步骤:
[0009] (1)、提供不锈钢管路用螺纹件并对螺纹基体表面进行预处理;
[0010] (2)、通过金属等离子体源产生钛等离子体,然后向螺纹基体施加负高压脉冲,脉冲电压为15 25kV,脉冲宽度为20 60us,脉冲频率50 200Hz,工作气体为氩气,工作压力为~ ~ ~0.03 0.3Pa,以实现钛离子的注入与沉积,在螺纹基体上形成钛混合底层;
~
[0011] (3)、通过金属等离子体源产生钛等离子体,然后向表层沉积有钛混合底层的螺纹基体施加负高压脉冲,脉冲电压为15 25kV,脉冲宽度为20 60us,脉冲频率为30 80Hz,工作~ ~ ~气体为氮气和乙炔,氮气和乙炔的流量比为(1 2):1,工作压力为0.03 0.3Pa,氮气和乙炔~ ~
在钛等离子体作用下发生电离和化合反应,在钛混合底层表面沉积一层碳氮化钛中间层;
[0012] (4)、通过磁过滤阴极真空弧源产生碳等离子体,然后向表层沉积有碳氮化钛中间层的螺纹基体施加负高压脉冲,脉冲电压为15 20kV,脉冲宽度为20 60us,脉冲频率为30~ ~ ~80Hz,工作气体为氩气,工作压力为0.01 0.1Pa,在碳氮化钛中间层表面沉积一层类金刚石~
面层。
[0013] 进一步地,步骤(1)中,对螺纹基体表面进行预处理的具体步骤为:采用机械、化学或电化学方法对螺纹件的螺纹基体表面进行抛光使其表面粗糙度小于0.4μm,然后进行超声波清洗5 10min,之后将螺纹件烘干后再置于处理室中进行离子溅射清洗,以去除螺纹基~体表面的自然钝化膜。
[0014] 进一步地,离子溅射清洗时,工作气体为氩气,工作压力为0.3 0.6Pa,基体负偏压~为1 5kV。
~
[0015] 一种舰船上不锈钢管路用防螺纹咬死涂层,涂层由内向外依次包括采用离子注入与沉积工艺形成的厚度为0.5 1μm的钛混合底层、通过化学反应气相沉积工艺形成的厚度~为0.5 1.5μm的碳氮化钛中间层以及通过磁过滤阴极真空弧沉积工艺形成的厚度为1 2μm~ ~
的类金刚石面层。
[0016] 有益效果:
[0017] 如上所述,本发明的一种舰船上不锈钢管路用防螺纹咬死涂层及其制备方法,具有以下有益效果:
[0018] 1、本发明通过在不锈钢管路的螺纹位置制备防螺纹咬死涂层,即首先在螺纹基体表面采用离子注入与沉积工艺形成致密的钛混合底层,再通过化学反应气相沉积碳氮化钛中间层,最后通过磁过滤阴极真空弧沉积类金刚石面层。钛混合底层由于钛离子注入,对不锈钢基体表面层产生间隙原子强化、位错强化、化合物强化等,导致不锈钢基体表面的硬度、耐蚀性和附着性显著提高;碳氮化钛中间层起着底层和面层之间的过渡作用,用于提高不锈钢基体的承载能力,匹配不锈钢基体与类金刚石涂层之间的物化和力学性能差异,实现化学成分和力学性能梯度过渡;类金刚石面层具有优秀的减摩、耐磨、高硬度、高耐蚀性能,可以减小螺纹副之间的摩擦力,最终实现不锈钢螺纹表面防咬死涂层的高承载、高耐蚀、减摩耐磨能力,解决不锈钢螺纹副的易咬死问题。
[0019] 2、采用本发明提供的制备方法,可实现不锈钢螺纹表面高承载、高耐蚀、减摩耐磨的防咬死涂层的制备,解决舰船不锈钢螺纹副在高温、高压、振动、海上盐雾、海水腐蚀等多因素耦合工况下易发生咬死的问题。同时防咬死涂层高承载、高耐蚀、减摩耐磨特性,有助于提高螺纹副的可靠性、耐用性和长效耐蚀性。

具体实施方式

[0020] 本发明的目的是提供一种舰船上不锈钢管路用防螺纹咬死涂层及其制备方法,防螺纹咬死涂层作为螺纹副之间的隔离层,防止拧紧时发生冷焊而咬死,该涂层具有高承载、高耐蚀、减摩耐磨的优点。
[0021] 一种舰船上不锈钢管路用防螺纹咬死涂层的制备方法,包括如下步骤:
[0022] (1)、提供螺纹件并对螺纹基体表面进行预处理,采用机械、化学或电化学方法对螺纹件的螺纹基体表面进行抛光使其表面粗糙度小于0.4μm,然后进行超声波清洗5~10min,之后将螺纹件烘干后再置于处理室中进行离子溅射清洗,以去除螺纹基体表面的自然钝化膜;离子溅射清洗时,工作气体为氩气,工作压力为0.3 0.6Pa,基体负偏压为1 5kV;
~ ~
[0023] (2)、通过金属等离子体源产生钛等离子体,然后向螺纹基体施加负高压脉冲,脉冲电压为15 25kV,脉冲宽度为20 60us,脉冲频率50 200Hz,工作气体为氩气,工作压力为~ ~ ~0.03 0.3Pa,以实现钛离子的注入与沉积,在螺纹基体表面及一定深度内形成钛混合底层;
~
[0024] (3)、通过金属等离子体源产生钛等离子体,然后向表层沉积有钛混合底层的螺纹基体施加负高压脉冲,脉冲电压为15 25kV,脉冲宽度为20 60us,脉冲频率为30 80Hz,工作~ ~ ~气体为氮气和乙炔,氮气和乙炔的流量比为(1 2):1,工作压力为0.03 0.3Pa,氮气和乙炔~ ~
在钛等离子体作用下发生电离和化合反应,在钛混合底层表面沉积一层碳氮化钛中间层;
[0025] (4)、通过磁过滤阴极真空弧源产生碳等离子体,然后向表层沉积有碳氮化钛中间层的螺纹基体施加负高压脉冲,脉冲电压为15 20kV,脉冲宽度为20 60us,脉冲频率为30~ ~ ~80Hz,工作气体为氩气,工作压力为0.01 0.1Pa,在碳氮化钛中间层表面沉积一层类金刚石~
面层。
[0026] 一种舰船上不锈钢管路用防螺纹咬死涂层,涂层由内向外依次包括采用离子注入与沉积工艺形成的厚度为0.5 1μm的钛混合底层、通过化学反应气相沉积工艺形成的厚度~为0.5 1.5μm的碳氮化钛中间层以及通过磁过滤阴极真空弧沉积工艺形成的厚度为1 2μm~ ~
的类金刚石面层。需要说明的是,钛混合底层的厚度为钛离子沉积在螺纹基体表面的厚度和钛离子沉积至螺纹基体内部的厚度之和,其中,钛离子沉积至螺纹基体内部的厚度为0.2
0.5μm。
~
[0027] 下面结合具体实施例对本发明做进一步具体详细的说明。
[0028] 实施例1
[0029] 一种舰船上不锈钢管路用防螺纹咬死涂层的制备方法,包括如下步骤:
[0030] (1)、采用机械抛光工艺对316L不锈钢螺纹表面进行抛光,使用其表面粗糙度小于0.4μm,然后分别用丙酮和无水乙醇进行超声清洗10min,将螺纹件烘干,再置于处理室进行氩离子溅射清洗,氩气压力为0.4Pa,基体负偏压为3kV,去除不锈钢基体表面的自然钝化膜;
[0031] (2)、通过金属等离子体源产生钛等离子体,再给基体施加一个负高压脉冲,脉冲电压为20kV,脉冲宽度为20us,脉冲频率为100Hz,实现钛离子注入与沉积,在螺纹基体上形成厚度为0.6μm的钛混合底层;
[0032] (3)、通过金属等离子体源产生钛等离子体,然后向表层沉积有钛混合底层的螺纹基体施加负高压脉冲,脉冲电压为20kV,脉冲宽度为60us,脉冲频率为50Hz,工作气体为氮气和乙炔,氮气和乙炔的流量比为1:1,工作压力为0.3Pa,在钛等离子体作用下得到氮离子和碳离子,与钛离子发生化合反应生成厚度为1.0μm的碳氮化钛层;
[0033] (4)、通过磁过滤阴极真空弧源产生碳等离子体,然后向表层沉积有碳氮化钛中间层的螺纹基体施加负高压脉冲,脉冲电压为20kV,脉冲宽度为60us,脉冲频率为50Hz,工作气体为氩气,工作压力为0.05Pa,在碳氮化钛中间层表面沉积一层厚度为2μm的类金刚石面层。
[0034] 上述工艺制备的防咬死涂层与基体的附着力大于30N,摩擦系数小于0.15;中性盐雾试验192小时后表面无腐蚀;经50MPa气密性试验和60MPa水压强度试验后,涂层完整不脱落;经10次重复拆装试验后,涂层完整无破损,不锈钢螺纹副之间未发生咬死现象,说明该实施例得到的涂层具有高承载、高耐蚀、减摩耐磨特性。
[0035] 实施例2
[0036] 一种舰船上不锈钢管路用防螺纹咬死涂层的制备方法,包括如下步骤:
[0037] (1)、采用化学抛光工艺对304不锈钢螺纹表面进行抛光,使用其表面粗糙度小于0.4μm,然后分别用丙酮和无水乙醇进行超声清洗10min,将抛光和清洗后螺纹件烘干,再装入处理室进行氩离子溅射清洗,氩气压力为0.4Pa,基体负偏压为3kV,去除不锈钢基体表面的自然钝化膜;
[0038] (2)、通过金属等离子体源产生钛等离子体,再给基体施加一个负高压脉冲,脉冲电压为20kV,脉冲宽度为20us,脉冲频率为100Hz,实现钛离子注入与沉积,在螺纹基体上形成厚度为0.6μm的钛混合底层;
[0039] (3)、通过金属等离子体源产生钛等离子体,然后向表层沉积有钛混合底层的螺纹基体施加负高压脉冲,脉冲电压为25kV,脉冲宽度为60us,脉冲频率为75Hz,工作气体为氮气和乙炔,氮气和乙炔的流量比为1:1,工作压力为0.3Pa,在钛等离子体作用下得到氮离子和碳离子,与钛离子发生化合反应生成厚度为1.0μm的碳氮化钛层;
[0040] (4)、通过磁过滤阴极真空弧源产生碳等离子体,然后向表层沉积有碳氮化钛中间层的螺纹基体施加负高压脉冲,脉冲电压为20kV,脉冲宽度为60us,脉冲频率为50Hz,工作气体为氩气,工作压力为0.05Pa,在碳氮化钛中间层表面沉积一层厚度为2.0μm的类金刚石面层。
[0041] 上述工艺制备的防咬死涂层与基体的附着力大于30N,摩擦系数小于0.15;中性盐雾试验192小时后表面无腐蚀;经50MPa气密性试验和60MPa水压强度试验后,涂层完整不脱落;经10次重复拆装试验后,涂层完整无破损,不锈钢螺纹副之间未发生咬死现象,说明该实施例得到的涂层具有高承载、高耐蚀、减摩耐磨特性。
[0042] 实施例3
[0043] 一种舰船上不锈钢管路用防螺纹咬死涂层的制备方法,包括如下步骤:
[0044] (1)、采用电化学抛光工艺对HDR不锈钢螺纹表面进行抛光,使用其表面粗糙度小于0.3μm,然后分别用丙酮和无水乙醇进行超声清洗10min,将抛光和清洗后螺纹件烘干,再装入处理室进行氩离子溅射清洗,氩气压力为0.4Pa,基体负偏压为5kV,去除不锈钢基体表面的自然钝化膜;
[0045] (2)、通过金属等离子体源产生钛等离子体,再给基体施加一个负高压脉冲,脉冲电压为20kV,脉冲宽度为20us,脉冲频率为150Hz,实现钛离子注入与沉积,在螺纹基体上形成厚度为0.9μm的钛混合底层;
[0046] (3)、通过金属等离子体源产生钛等离子体,然后向表层沉积有钛混合底层的螺纹基体施加负高压脉冲,脉冲电压为25kV,脉冲宽度为60us,脉冲频率为75Hz,工作气体为氮气和乙炔,氮气和乙炔的流量比为2:1,工作压力为0.3Pa,在钛等离子体作用下得到氮离子和碳离子,与钛离子发生化合反应生成厚度为1.5μm的碳氮化钛层;
[0047] (4)、通过磁过滤阴极真空弧源产生碳等离子体,然后向表层沉积有碳氮化钛中间层的螺纹基体施加负高压脉冲,脉冲电压为20kV,脉冲宽度为60us,脉冲频率为50Hz,工作气体为氩气,工作压力为0.05Pa,在碳氮化钛中间层表面沉积一层厚度为2.0μm的类金刚石面层。
[0048] 上述工艺制备的防咬死涂层与基体的附着力大于30N,摩擦系数小于0.15;中性盐雾试验192小时后表面无腐蚀;经50MPa气密性试验和60MPa水压强度试验后,涂层完整不脱落;经10次重复拆装试验后,涂层完整无破损,不锈钢螺纹副之间未发生咬死现象,说明该实施例得到的涂层具有高承载、高耐蚀、减摩耐磨特性。
[0049] 因此,本发明提供的防螺纹咬死涂层具有高承载、高耐蚀、减摩耐磨的特性,能够解决舰船不锈钢管路系统中螺纹副拆装过程中因发生咬死而导致致密失效、进而产生跑、冒、滴、漏等问题。
[0050] 以上对本发明所提供的一种舰船上不锈钢管路用防螺纹咬死涂层及其制备方法进行了详细介绍,本文中应用了具体个例对本发明的原理和具体实施方式进行了阐述,上述实施例仅用来帮助理解本发明的方法和核心思想。应当指出,对于本领域的普通技术人员来说,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均落入本发明的保护范围内。