对氨基水杨酸氟喹诺酮类衍生物及其中间体、制备方法和应用转让专利

申请号 : CN202011025662.6

文献号 : CN112159355B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 杨大成任艳会范莉潘建芳唐雪梅谢建平胡军华周围徐兴然许峻旗吴玉珠李洋岳琪佳孙青羽

申请人 : 西南大学

摘要 :

本发明公开了对氨基水杨酸氟喹诺酮类衍生物及其中间体、制备方法和应用,属于药物合成技术领域;对氨基水杨酸氟喹诺酮类衍生物的结构式如下;体外活性测定结果表明,部分对氨基水杨酸氟喹诺酮类衍生物(简称化合物)及中间体对耻垢分枝杆菌均有抑制作用;化合物及中间体对常见致病菌的抑制活性整体较好;绝大多数化合物和中间体对毕赤酵母菌的抑菌活性整体较好;部分化合物对柑橘溃疡病菌的抑制活性较好;本发明的对氨基水杨酸氟喹诺酮类衍生物及其中间体在抗结核、抗细菌、抗真菌和抗柑橘病菌领域均具有潜在的应用前景。

权利要求 :

1.式Ⅰ所示的对氨基水杨酸氟喹诺酮类衍生物或其药学上可接受的盐:式Ⅰ中,

X选自:乙基、4‑FC6H4或

Z选自:N或CR1,R1为H、甲氧基或卤素;

Y选自: R2和R3独立地选自H或C1‑C3烷基,m为1或2;

L为:‑COCH2‑;

R选自:C1‑C6烷基。

2.根据权利要求1所述对氨基水杨酸氟喹诺酮类衍生物或其药学上可接受的盐,其特征在于,所述式Ⅰ中,Z选自:N或CR1,R1为H、甲氧基、F或Cl;

Y选自: R2和R3独立地选自H或甲基,m为1或2;

R选自:C1‑C3烷基。

3.根据权利要求2所述对氨基水杨酸氟喹诺酮类衍生物或其药学上可接受的盐,其特征在于,所述式Ⅰ中,R选自甲基或乙基。

4.根据权利要求3所述对氨基水杨酸氟喹诺酮类衍生物或其药学上可接受的盐,其特征在于,式Ⅰ所示的对氨基水杨酸氟喹诺酮类衍生物为以下化合物中的任一种:

5.权利要求1至权利要求4任一所述对氨基水杨酸氟喹诺酮类衍生物或其药学上可接受的盐的制备方法,其特征在于,包括以下步骤:将对氨基水杨酸羧基进行酯化,制得中间体IM1;

将中间体IM1与linker试剂反应,制得中间体IM2;

将中间体IM2与氟喹诺酮偶联,制得对氨基水杨酸氟喹诺酮类衍生物;

式中,R4为卤素,X,Z,Y,L和R的定义均与权利要求1~3任一所述的对氨基水杨酸氟喹诺酮类衍生物结构式中X,Z,Y,L和R的定义相同。

6.权利要求1至权利要求4任一所述对氨基水杨酸氟喹诺酮类衍生物或其药学上可接受的盐在制备抗结核药物中的应用。

7.权利要求1至权利要求4任一所述对氨基水杨酸氟喹诺酮类衍生物或其药学上可接受的盐在制备抗菌药物中的应用。

8.权利要求1至权利要求4任一所述对氨基水杨酸氟喹诺酮类衍生物或其药学上可接受的盐在制备抗柑橘病菌药物中的应用。

说明书 :

对氨基水杨酸氟喹诺酮类衍生物及其中间体、制备方法和

应用

技术领域

[0001] 本发明涉及药物合成技术领域,具体涉及对氨基水杨酸氟喹诺酮类衍生物及其中间体、制备方法和应用。

背景技术

[0002] 对氨基水杨酸(para‑aminosalicylic acid,PAS)早已用于结核病治疗,其也被用于治疗炎症性肠病。PAS氨基衍生物可分为三大类。第一类是PAS席夫碱衍生物。研究结果表明,所合成的目标化合物,对耻垢分枝杆菌和牛型分枝杆菌的抑菌浓度均低于PAS;吡嗪酰胺(PZA)和PAS的席夫碱衍生物,对H37Rv抑制活性强于PZA(MIC分别为3.13和6μg/mL)。第二类是PAS腙类衍生物,将异烟肼(INH)与PAS反应制备了含有腙基的化合物,实验结果显示,均比阳性对照(MICINH=1μg/mL、MIC环丙沙星=1.5μg/mL和MIC诺氟沙星=10μg/mL)好。第三类,在氨基上接一些其他官能团的衍生物,这些分子也显示很好的生物活性。
[0003] 结核病是由结核分枝杆菌引起的可导致人类死亡的慢性传染病,致死率仅次于艾滋病(HIV)。尽管抗结核药物已经有10多种,但2018年全球依然新增1000多万结核病患者,结核病仍然是威胁人类健康的重大传染病。
[0004] 目前的结核病治疗需要多种药物的组合用药,药物敏感性结核病(DS‑TB)的疗程为6个月,大多数XDR‑TB患者可能需要接受多达8种抗生素的治疗,疗程长达9‑20个月,甚至更长,导致产生耐药性的几率增加,或者治疗结束时的临床和实验室结果不令人满意。在全球范围内,最新的可用数据显示,DS‑TB的治疗成功率为85%,MDR‑TB为56%,XDR‑TB为39%。结核病治疗的主要挑战是药物疗程的持续时间和复杂性,两者都会影响依从性,有毒副作用,尤其是用于治疗耐药结核病的药物,以及缺乏或有限的用于第二线治疗的儿科药物制剂。抗结核药物和抗逆转录病毒疗法之间的药物相互作用以及药物累积毒性增加了免疫重建性炎症综合症的风险,使HIV‑TB、DM‑TB以及M/XDR‑TB患者的治疗更加复杂,治疗用药受限、治疗难度很大,导致了全球恐慌,以致WHO在1993和1998年两度宣布结核病全球紧急状态。迫切需要更有效、患者负担得起、无毒且能缩短治疗时间的治疗药物。
[0005] 真菌能引起动植物和人的各种疾病。不同真菌可以通过不同的方式致病,可以分为以下几种:(1)致病性真菌感染:由外源性真菌引起,如皮肤癣病菌;(2)条件致病性真菌感染:由内源性真菌引起,如白色念珠菌等;(3)真菌超敏反应性疾病:吸入或食入菌丝或孢子引起荨麻疹、哮喘等;(4)真菌性中毒症:食用含真菌毒素的霉变粮食所致;(5)真菌毒素:与肿瘤发生有关。常用于治疗真菌病的抗真菌剂,已知唑类抗真菌剂(卢立康唑、拉诺康唑、联苯苄唑、酮康唑、咪康唑、伊曲康唑、克霉唑、奈替康唑、奥昔康唑、噻康唑、氯康唑、奥莫康唑、硫康唑及其盐等)、苄胺类抗真菌剂(布替奈芬及其盐等)、烯丙胺类抗真菌剂(特比萘酚及其盐等)、吗啉类抗真菌剂(阿莫罗芬及其盐等)、硫代氨基甲酸类抗真菌剂(利拉萘酯、托萘酯、托西拉酯等),及抗生素类(制霉菌素、曲古霉素、拟青霉素、干蠕孢菌素、硝吡咯菌素、两性霉素等)等,但这些抗菌药物的蓄积毒性较强,常常引起肝肾损伤、消化道刺激、头晕、过敏等,所以寻找作用机理独特的新型抗菌药物成为当今药物研发的热点之一。
[0006] 柑橘溃疡病分布广泛,可危害几十种芸香科植物,是影响世界柑橘生产的重大检疫性病害。其危害柑橘叶、枝以及果实,典型症状是形成溃疡斑,不及时治疗,病害加重,将严重危害柑橘生产及经济效益。柑橘溃疡病菌菌系分化复杂、发病率高、传播快、寄主范围广,所以防治柑橘病一直是一个世界性难题,目前尚无一种方法可以根治。生产时常用波尔多液等含有金属铜离子的混合液体进行杀菌,需多次大量喷洒使用,既可能加速耐药性的产生,还会对土壤、其他益生菌产生毒害。开发新型抗柑橘病菌药物迫在眉睫。

发明内容

[0007] 有鉴于此,本发明的目的在于提供对氨基水杨酸氟喹诺酮类衍生物及其中间体、制备方法和应用。
[0008] 经研究,本发明提供以下技术方案:
[0009] 1、式Ⅰ所示的对氨基水杨酸氟喹诺酮类衍生物,其氮氧化合物或药学上可接受的盐:
[0010]
[0011] 式Ⅰ中,X选自:乙基、4‑FC6H4或 Z选自:C、N或CR1,R1为H、烷氧基或卤素;
[0012] Y选自: R2和R3独立地选自为H或C1‑C3烷基,m为1或2;L选自:‑(CH2)n+1‑、‑(CH2)nCO‑或‑CO(CH2)nCO‑,n为1,2,3或4;R选自:C1‑C6烷基。
[0013] 优选的,所述式Ⅰ中,Z选自:C、N或CR1,R1为H、C1‑C3烷氧基、F或Cl;
[0014] Y选自: R2和R3独立地选自为H或甲基,m为1或2;L选自:‑(CH2)n+1‑或‑(CH2)nCO‑,n为1,2,3或4;R选自:C1‑C3烷基。
[0015] 优选的,所述式Ⅰ中,Z选自:C、N或CR1,R1为H、甲氧基、F或Cl;L选自:‑(CH2)nCO‑,n为1,2,3或4;R选自:甲基或乙基。
[0016] 优选的,式Ⅰ所示的对氨基水杨酸氟喹诺酮类衍生物为以下化合物中的任一种:
[0017]
[0018]
[0019] 2、上述对氨基水杨酸氟喹诺酮类衍生物的制备方法,包括以下步骤:
[0020] 将对氨基水杨酸羧基进行酯化,制得中间体IM1;
[0021]
[0022] 将中间体IM1与linker试剂反应,制得中间体IM2;
[0023]
[0024] 将中间体IM2与氟喹诺酮偶联,制得对氨基水杨酸氟喹诺酮类衍生物;
[0025]
[0026] 式中,R4为卤素,X,Z,Y,L和R的定义均与上述的对氨基水杨酸氟喹诺酮类衍生物结构式中X,Z,Y,L和R的定义相同。
[0027] 优选的,所述对氨基水杨酸氟喹诺酮类衍生物的制备方法,包括以下步骤:
[0028] A、将对氨基水杨酸在酸作用下与醇反应,制得中间体IM1;所述醇为甲醇或乙醇;所述酸为硫酸;
[0029] B、将中间体IM1与linker试剂在有机溶剂中、碱作用下进行反应,制得中间体IM2;所述有机溶剂为二氯甲烷、氯仿、丙酮、乙酸乙酯、四氢呋喃或乙醚;所述碱为碳酸钾、三乙胺或碳酸氢钠;
[0030] C、将中间体IM2与氟喹诺酮在有机溶剂、碱作用下偶联制得对氨基水杨酸氟喹诺酮衍生物;所述有机溶剂为二氯甲烷、氯仿、乙腈、四氢呋喃或N,N‑二甲基甲酰胺;所述碱为碳酸氢钠、三乙胺、氢氧化钠、甲醇钠或碳酸钾。
[0031] 更优选的,所述步骤B中,有机溶剂为二氯甲烷、氯仿;所述碱为碳酸氢钠。
[0032] 更优选的,所述步骤C中,有机溶剂为N,N‑二甲基甲酰胺;所述碱为三乙胺。
[0033] 3、上述制备方法制得的中间体IM2,即
[0034] 4、上述制备方法制得的中间体IM2在抗结核和抗柑橘病菌药物中的应用。
[0035] 5、上述对氨基水杨酸氟喹诺酮类衍生物在抗结核药物中的应用。
[0036] 6、上述对氨基水杨酸氟喹诺酮类衍生物在抗菌药物中的应用。
[0037] 优选的,所述对氨基水杨酸氟喹诺酮类衍生物在抗细菌药物中的应用。
[0038] 优选的,所述对氨基水杨酸氟喹诺酮类衍生物在抗真菌药物中的应用。
[0039] 7、上述对氨基水杨酸氟喹诺酮类衍生物在抗柑橘病菌药物中的应用。
[0040] 除另有说明外,本发明中的术语“氮氧化物”是指三级氮连接氧原子形成+N‑O‑结构单元的有机物。“药学上可接受的盐”可以是酸性盐,也可以是碱性盐,例如无机酸盐、有机酸盐、无机碱盐或有机碱盐。
[0041] 术语“C1‑C3烷基”指具有1‑3个碳原子的直链或支链饱和一价烃基,例如甲基、乙基、丙基和异丙基。
[0042] 术语“卤素”指F、Cl、Br和I。
[0043] 本发明的有益效果在于:
[0044] 1)本发明提供的对氨基水杨酸氟喹诺酮类衍生物,以对氨基水杨酸为母核,对其氨基和羧基进行合理修饰,构建了一类结构新颖的对氨基水杨酸氟喹诺酮类衍生物,产物1 13
的化学结构经H NMR,C NMR和HR MS确认;
[0045] 2)化合物对耻垢分枝杆菌的抑制活性测定结果表明,目标化合物及中间体对耻垢分枝杆菌均有抑制作用。其中TM2‑1的MIC值为0.78μg/mL,其活性是一线抗结核药物异烟肼(8μg/mL)的10倍、利福平(4μg/mL)的5倍,抗耐药结核病治疗核心药物洛美沙星和依诺沙星(6.25μg/mL)的8倍、环丙沙星和沙拉沙星(3.125μg/mL)的4倍、巴洛沙星(2.0μg/mL)的2.5倍,值得注意的是,目标化合物的分子量至少是母核的2‑3倍,将质量浓度生物活性换算成摩尔浓度者发现,TM2‑1的抑制活性是母核克林沙星的2.6倍,显示PAS与克林沙星杂合增强了分子的抗结核杆菌活性。此外,目标化合物TM2‑4和TM5‑4的MIC值为1.56μg/mL,其活性是异烟肼(8μg/mL)的5倍、利福平(4μg/mL)的2.5倍;TM5‑1的MIC值为6.25μg/mL,仍然强于一线上市药物利福平。除此之外,PAS简单衍生物,即PAS甲酯、乙酯,PAS甲酯或乙酯的氨基氯乙酰化物IM1‑1、IM2‑1、IM1‑2、IM2‑2,都显示与克林沙星相同或相当的抗结核活性。上述结果显示,本发明对氨基水杨酸氟喹诺酮类衍生物及其中间体在抗结核领域具有潜在的应用前景。
[0046] 3)抗细菌活性测定结果表明,目标化合物和中间体的抑菌活性整体较好。对金黄色葡萄球菌,TM2‑1、TM2‑4的MIC值为0.2μg/mL,其活性与阳性对照氟喹诺酮药物相当甚至更强;对大肠杆菌,TM2‑1、TM5‑4和TM5‑8的MIC值为6.4μg/mL,活性很强;对于藤黄微球菌,TM2‑1和IM2‑2的MIC值为1.6μg/mL和3.2μg/mL,抑制活性很强;对铜绿假单鲍菌,目标化合物TM2‑1和TM5‑8的MIC值为25.6μg/mL,抑制作用较好;对沙门氏菌,中间体IM2‑2有非常好的抑制活性(MIC为0.8μg/mL),目标化合物TM5‑1、TM5‑7和TM5‑8的MIC值分别为25.6μg/mL、64μg/mL及32μg/mL,它们的抑制活性均强于母核PAS。特别地,TM2‑1对六种菌株的抑制活性都很好。这些结果表明,本发明的对氨基水杨酸氟喹诺酮类衍生物及其中间体在抗细菌领域具有潜在的应用前景;
[0047] 4)抗真菌活性测定结果表明,中间体IM2‑1和IM2‑2,对毕赤酵母菌的MIC达到64μg/mL,强于母核PAS、中间体IM1‑1和IM1‑2(MIC>256μg/mL);绝大多数目标化合物对毕赤酵母菌的抑制活性整体很好,强于母体PAS、PAS的甲酯及乙酯;培养24h,测试的20个分子中,有9个分子的MIC值≤128μg/mL,有3个分子的MIC值为32μg/mL或64μg/mL,有6个分子的MIC值为4μg/mL;6个分子与阳性对照药物氟康唑的MIC值相同,表明它们对毕赤酵母菌株的抑制活性强于或相当于氟康唑,因而它们在抗真菌领域具有潜在的应用前景;
[0048] 5)在测试浓度为3.2μg/mL和12.8μg/mL下,目标化合物TM5‑2、TM5‑3对柑橘胶孢炭疽病菌的抑制率大于阳性对照氟喹诺酮和PAS;在测试浓度为3.2μg/mL下,TM5‑2的抑制率为60%,接近咪鲜胺的抑制活性(80%);在测试浓度为12.8μg/mL下,TM5‑3的抑制率为70%,接近于咪鲜胺的抑制率90%。在测试浓度为4μg/mL下,TM5‑1对柑橘褐斑病菌的抑制率为40%,强于阳性对照氟喹诺酮和PAS,且TM5‑1、TM5‑3未体现出抗药性。对柑橘溃疡病菌,在1.6μg/mL测试浓度下,测试的4个目标分子的抑制活性都高于40%,其中化合物TM2‑1和TM5‑4的抑制率大于80%,TM2‑1的抑制率更是达到了97.52%,强于所有的阳性对照药物;在0.64μg/mL测试浓度下,有3个目标分子的抑制率高于40%,其中TM5‑4的抑制率达到了69.02%,与阳性对照巴洛沙星的70.62%相当。目标化合物TM2‑1及TM5‑4不仅对柑橘溃疡病菌的抑制活性与阳性对照的抑制活性相当或更强,而且未体现出抗药性。这些结果证明,对氨基水杨酸氟喹诺酮类衍生物在抗柑橘病菌领域具有潜在的应用前景。

具体实施方式

[0049] 下面结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0050] 一、主要试剂和仪器
[0051] 对氨基水杨酸、氯乙酰氯、二氯甲烷、N,N‑二甲基甲酰胺、加替沙星、克林沙星、环丙沙星、巴洛沙星、沙拉沙星、莫西沙星、依诺沙星(>95%);诺氟沙星、氧氟沙星、洛美沙星、浓硫酸、甲醇、碳酸氢钠、碳酸钾,无水乙醇(AR);其余试剂为市售化学纯或分析纯产品。
[0052] 核磁共振仪(AV‑600,600MHz,TMS为内标);高分辨质谱仪(Varian 7.0T);熔点测定仪(X‑6);自动旋光仪(WZZ‑2S);紫外分析仪(ZF‑1);旋转蒸发仪(RE‑2000)。
[0053] 二、对氨基水杨酸氟喹诺酮类衍生物的制备
[0054] 1、中间体IM1‑1的合成
[0055]
[0056] 向反应瓶中加入PAS 1.53g(10mmol)、甲醇25mL,室温搅拌。冰浴,滴加浓硫酸1.3mL(25mmol),滴毕,油浴回流反应,薄层层析法(TLC)监测直至反应结束。冰浴冷却,碳酸钠溶液调节pH在7‑8,冷藏,抽滤,滤饼用冰水洗涤。滤液用二氯甲烷(DCM)萃取(3×30mL),收集有机相,饱和NaCl溶液洗涤。无水硫酸钠干燥,旋蒸,并与滤饼合并,真空干燥后,柱层析,得中间体IM1‑1(白色固体)1.096g,收率为65%。
[0057] 2、中间体IM2‑1的合成
[0058]
[0059] 向反应瓶中加入IM1‑1 5mmol(0.766g)、DCM 5mL、NaHCO3 12.5mmol(1.1g),冰浴冷却,滴加氯乙酰氯10mmol(0.75mL)。滴毕,冰浴下持续反应,TLC跟踪监测至反应结束。停止搅拌,加入10mL冰冷的饱和食盐水,用2N HCl溶液调节pH在4‑5,搅拌均匀后移入分液漏斗,乙酸乙酯(EA)萃取两次,合并有机相,饱和食盐水洗涤,无水Na2SO4干燥,旋蒸除去溶剂,柱层析(PE(石油醚):EA=10:1‑5:1,v/v),得纯品中间体IM2‑1为1.03g,收率为83%。
[0060] 3、对氨基水杨酸氟喹诺酮类衍生物TM2的合成
[0061]
[0062] 向反应瓶中依次加入FQs 1.2equiv、DMF、Et3N,室温搅拌30min,加入中间体IM2‑1,并转移至45℃水浴搅拌反应,TLC跟踪监测至反应结束。停止搅拌,加入冰冷的饱和NaCl溶液,2N HCl溶液调节pH 3‑4,冷藏。抽滤,滤饼用饱和食盐水洗涤(10mL×1)、冰水洗涤(5mL×1),滤饼真空干燥得粗品,柱层析(DCM/CH3OH=200:1‑50:1,v/v)得目标化合物TM2。
实验条件及结果如表1所示。
[0063] 表1制备TM2的实验条件及结果
[0064]
[0065]
[0066] 4、TM2产物结构表征数据如下:
[0067]
[0068] TM2‑1:8‑Chloro‑1‑cyclopropyl‑6‑fluoro‑7‑(3‑((2‑((3‑hydroxy‑4‑(methoxycarbonyl)phenyl)amino)‑2‑oxoethyl)amino)pyrrolidin‑1‑yl)‑4‑oxo‑1,4‑1
dihydroquinoline‑3‑carboxylic acid White solid;m.p.252.1~254.7℃;H NMR(600MHz,DMSO‑d6)δ11.91(s,1H,H‑14),10.62(s,1H,H‑3),10.11(s,1H,H‑5),8.84(s,1H,H‑15),7.93(s,1H,H‑13),7.74(d,J=8.7Hz,1H,H‑2),7.47(d,J=1.6Hz,1H,H‑4),7.20(dd,J=8.7Hz,J=1.6Hz,1H,H‑6),4.42~4.37(m,1H,H‑16),3.88(s,3H,H‑1),3.44(s,4H,H‑11 and H‑12),3.34(s,3H,H‑7 and H‑8),2.78(s,1H,H‑9),1.91~1.90(m,2H,H‑10),
13
1.21~1.18(m,2H,H‑17 and H‑18),1.01~0.97(s,2H,H‑17 and H‑18). C NMR(151MHz,DMSO‑d6)δ176.62,172.39,169.49,169.24,165.56,162.76,161.66,153.16,145.45,
138.52,131.15,111.25,111.10,110.94,108.17,108.11,106.95,61.99,53.58,52.67,+
51.02,42.00,36.22,31.23,21.45,11.48,11.26.HR MS calcd for C27H26ClFN4O7,[M+H] 
573.1547,found 573.1546.
[0069] TM2‑2:1‑Cyclopropyl‑6‑fluoro‑7‑(4‑(2‑((3‑hydroxy‑4‑(methoxycarbonyl)phenyl)amino)‑2‑oxoethyl)piperazin‑1‑yl)‑4‑oxo‑1,4‑dihydroquinoline‑3‑1
carboxylic acid White solid;m.p.247.9~250.1℃;H NMR(600MHz,DMSO‑d6)δ14.98(s,1H,H‑14),10.62(s,1H,H‑3),10.07(s,1H,H‑5),8.69(s,1H,H‑15),8.34(s,1H,H‑13),
7.95(s,1H,H‑12),7.74(d,J=8.7Hz,1H,H‑2),7.47(s,1H,H‑4),7.20(d,J=8.3Hz,1H,H‑
6),3.87(s,4H,H‑16 and H‑1),3.32(s,2H,H‑7),3.18(s,4H,H‑9 and H‑11),2.78(s,4H,H‑8 and H‑10),1.35~1.28(m,2H,H‑17 and H‑18),1.20~1.16(m,2H,H‑17 and H‑18)
13
. C NMR(151MHz,DMSO‑d6)δ177.43,169.55,169.49,166.21,161.66,148.49,148.03,
145.49,137.55,135.53,131.19,125.21,120.85,115.83,111.24,108.11,107.77,106.91,
61.93,53.02(2C),52.70,51.35(2C),36.40,7.98(2C).HR MS calcd for C27H27FN4O7,[M++
H]577.1495,found 577.1486.
[0070] TM2‑3:1‑Cyclopropyl‑6‑fluoro‑7‑(3‑((2‑((3‑hydroxy‑4‑(methoxycarbonyl)phenyl)amino)‑2‑oxoethyl)methyl)amino)piperidin‑1‑yl)‑8‑methoxy‑4‑oxo‑1,4‑1
dihydroquinoline‑3‑carboxylic acid White solid;m.p.214.1~215.6℃;H NMR(600MHz,DMSO‑d6)δ14.97(s,1H,H‑15),10.60(s,1H,H‑3),9.93(s,1H,H‑5),8.68(s,1H,H‑
16),7.72(s,1H,H‑2),7.70(s,1H,H‑14),7.44(s,1H,H‑4),7.18(dd,J=8.7Hz,J=1.6Hz,
1H,H‑6),4.16~4.10(m,1H,H‑17),3.87(s,3H,H‑1),3.72(s,3H,H‑20),3.42~3.29(m,4H,H‑7 and H‑10 and H‑13),3.14~3.03(m,2H,H‑10 and H‑13),2.86~2.77(m,1H,H‑9),
2.40(s,3H,H‑8),2.07~1.41(m,4H,H‑11 and H‑12),1.16~0.95(m,4H,H‑18 and H‑19)
13
. C NMR(151 MHz,DMSO‑d6)δ176.76,170.91,169.50,166.11,161.65,155.30,150.79,
146.16,145.44,140.11,140.04,134.57,131.09,111.17,107.99,107.03,106.89,106.83,
63.13,60.30,58.50,54.11,52.67,51.25,41.23,39.66,27.03,25.69,9.52,9.24.HR MS +
calcd for C30H33FN4O8,[M+H]597.2355,found 597.2374.
[0071]
[0072] TM2‑4:1‑Cyclopropyl‑6‑fluoro‑7‑(4‑(2‑((3‑hydroxy‑4‑(methoxycarbonyl)phenyl)amino)‑2‑oxoeth‑yl)‑3‑methylpiperazin‑1‑yl)‑8‑methoxy‑4‑oxo‑1,4‑1
dihydroquinoline‑3‑carboxylic acid White solid;m.p.146.3~148.2℃;H NMR(600MHz,DMSO‑d6)δ15.01(s,1H,H‑14),10.60(s,1H,H‑3),10.01(s,1H,H‑5),8.70(s,1H,H‑15),7.75(s,1H,H‑13),7.74(d,J=8.7Hz,1H,H‑2),7.47(s,1H,H‑4),7.20(d,J=8.7Hz,
1H,H‑6),4.19~4.14(m,1H,H‑16),3.78(s,3H,H‑1),3.72(s,3H,H‑19),3.50~3.45(m,1H,H‑10),3.44~3.37(m,3H,H‑7 and H‑8),3.29~3.24(m,1H,H‑12),3.13~3.06(m,1H,H‑
12),2.87~2.81(m,2H,H‑9),1.28~1.20(m,2H,H‑17 and H‑18),1.15~1.11(m,2H,H‑17 
13
and H‑18),1.09~1.06(m,3H,H‑11). C NMR(151MHz,DMSO‑d6)δ176.77,170.51,169.25,
166.09,161.85,150.89,146.30,146.27,145.40,139.51,134.57,131.07,121.28,111.21,
108.11,107.13,107.06,106.91,63.30,61.55,58.21,57.33,55.68,53.02,50.93,41.25,+
16.14,9.47,9.38.HR MS calcd for C29H32FN4O8,[M+H]583.2199,found 583.2188.[0073] TM2‑5:1‑Ethyl‑6‑fluoro‑7‑(4‑(2‑((3‑hydroxy‑4‑(methoxycarbonyl)phenyl)amino)‑2‑oxoethyl)piperazin‑1‑yl)‑4‑oxo‑1,4‑dihydroquinoline‑3‑carboxylic 
1
acid White solid;m.p.244.2~248.8℃;H NMR(600MHz,DMSO‑d6)δ15.01(s,1H,H‑14),
10.63(s,1H,H‑3),10.08(s,1H,H‑5),8.69(s,1H,H‑15),8.34(s,1H,H‑13),7.94(s,1H,H‑
12),7.74(d,J=8.7Hz,1H,H‑2),7.47(d,J=1.6Hz,1H,H‑4),7.20(dd,J=8.7Hz,J=
1.6Hz,1H,H‑6),3.90~3.83(m,5H,H‑1 and H‑16),3.29(s,2H,H‑7),3.18(s,4H,H‑9 and 
13
H‑11),2.78(s,4H,H‑8and H‑10),1.31(d,J=6.3Hz,3H,H‑17). C NMR(151MHz,DMSO‑d6)δ
177.42,169.54,169.49,166.20,161.67,148.46,148.02,145.49,137.54,135.53,131.17,
125.20,120.83,115.82,111.23,108.08,106.90,99.99,61.95,55.36,53.02(2C),52.70,+
51.35(2C),7.99.HR MS calcd for C26H27FN4O7,[M+H]527.1937,found 527.1942.[0074] TM2‑6:1‑Ethyl‑6,8‑difluoro‑7‑(4‑(2‑((3‑hydroxy‑4‑(methoxycarbonyl)phenyl)amino)‑2‑oxoethyl)‑3‑methylpiperazin‑1‑yl)‑4‑oxo‑1,4‑dihydroquinoline‑
1
3‑carboxylic acid White solid;m.p.267.5~270.3℃;H NMR(600MHz,DMSO‑d6)δ14.93(s,1H,H‑14),10.63(s,1H,H‑3),10.02(s,1H,H‑5),8.93(s,1H,H‑15),7.86(d,J=11.7Hz,
1H,H‑13),7.74(d,J=8.7Hz,1H,H‑2),7.47(s,1H,H‑4),7.21(d,J=8.6Hz,1H,H‑6),4.59(d,J=3.4Hz,2H,H‑16),3.87(s,3H,H‑1),3.44(d,J=15.6Hz,4H,H‑12 and H‑7),3.35~
3.24(m,3H,H‑8 and H‑9),3.14~3.08(m,1H,H‑9),2.82(s,1H,H‑10),1.44(t,J=6.9Hz,
13
3H,H‑17),1.07(d,J=6.1Hz,3H,H‑11). C NMR(151MHz,DMSO‑d6)δ176.02,170.50,
169.49,166.01,161.67,151.60(2C),145.37(2C),134.16,131.15,127.79,120.75,
111.25,108.08,107.44,107.36,106.92,58.17,57.36,55.59,54.24,52.69(2C),51.09,+
16.42,15.72.HR MS calcd for C27H28F2N4O7,[M+H]559.1999,found 559.1998.
[0075]
[0076] TM2‑7:6‑Fluoro‑1‑(4‑fluorophenyl)‑7‑(4‑(2‑((3‑hydroxy‑4‑(methoxycarbonyl)phenyl)amino)‑2‑oxoethyl)piperazin‑1‑yl)‑4‑oxo‑1,4‑1
dihydroquinoline‑3‑carboxylic acid White solid;m.p.243.3~246.1℃;H NMR(600MHz,DMSO‑d6)δ15.14(s,1H,H‑14),10.61(s,1H,H‑3),9.99(s,1H,H‑5),8.65(s,1H,H‑
13),7.99(d,J=13.1Hz,1H,H‑15),7.80(dd,J=8.5,4.7Hz,2H,H‑16 and H‑17),7.72(d,J=8.7Hz,1H,H‑2),7.54(t,J=8.6Hz,2H,H‑18 and H‑19),7.43(s,1H,H‑4),7.16(d,J=
8.7Hz,1H,H‑6),6.40(d,J=7.2Hz,1H,H‑12),3.87(s,3H,H‑1),3.21(s,2H,H‑7),3.13(s,
13
4H,H‑9 and H‑11),2.65(s,4H,H‑8 and H‑10). C NMR(151MHz,DMSO‑d6)δ177.19,
169.46,169.43,166.20,163.83,162.18,161.64,154.27,152.61,149.14,145.70,145.46,
139.73,136.70,131.14,130.38,130.31,119.03,117.84,117.68,111.61,111.22,108.06,+
107.90,106.91,99.99,61.74,55.36,52.55,49.46.HR MS calcd for C30H26F2N4O7,[M+H]
593.1842,found 593.1838.
[0077] TM2‑8:1‑Ethyl‑6‑fluoro‑7‑(4‑(2‑((3‑hydroxy‑4‑(methoxycarbonyl)phenyl)amino)‑2‑oxoethyl)piperazin‑1‑yl)‑4‑oxo‑1,4‑dihydro‑1,8‑naphthyridine‑3‑1
carboxylic acid White solid;m.p.252.9~257.4℃;H NMR(600MHz,DMSO‑d6)δ15.33(s,1H,H‑13),10.62(s,1H,H‑3),10.10(s,1H,H‑5),8.98(s,1H,H‑12),8.08(d,J=13.5Hz,
1H,H‑14),7.73(d,J=8.7Hz,1H,H‑2),7.45(s,1H,H‑4),7.18(d,J=8.5Hz,1H,H‑6),4.49(q,J=6.7Hz,2H,H‑15),3.89(d,J=11.9Hz,4H,H‑9 and H‑11),3.87(s,3H,H‑1),3.27(s,
13
2H,H‑7),2.72(s,4H,H‑8 and H‑10),1.39(t,J=6.9Hz,3H,H‑16). C NMR(151MHz,DMSO‑d6)δ176.88,174.18,169.49,166.33,161.65(2C),150.47,148.20,145.51,131.17,
120.03,113.18,111.25,108.60,108.09,106.95,102.15,61.71(2C),52.78(2C),47.66,+
47.14,29.77,15.15.HR MS calcd for C25H26FN5O7,[M+H]528.1889,found 528.1886.[0078] 5、中间体IM1‑2的合成
[0079]
[0080] 向反应瓶中加入PAS 20mmol、无水乙醇25mL,室温搅拌。冰浴,缓慢滴加浓硫酸50mmol,滴毕,80℃油浴回流反应,TLC监测直至反应结束。冰浴冷却,饱和碳酸钠调节pH在
7‑8,冷藏,抽滤,滤饼用冰水洗涤。滤液用DCM萃取(3×30mL),收集有机相,饱和NaCl溶液洗涤。无水硫酸钠干燥,旋蒸,并与滤饼合并,真空干燥后,柱层析,旋蒸,称重,得中间体IM1‑2(白色固体)2.32g,收率为64%。
[0081] 6、中间体IM2‑2的合成
[0082]
[0083] 向反应瓶中加入IM1‑2 5mmol、DCM 5mL、NaHCO3 12.5mmol;冰浴冷却,滴加氯乙酰氯10mmol。冰浴下持续反应,TLC跟踪监测至反应结束。停止搅拌,加入10mL冰冷的饱和食盐水,用2N HCl溶液调节pH在4‑5,搅拌均匀后移入分液漏斗,EA萃取两次,合并有机相,饱和食盐水洗涤,无水Na2SO4干燥,旋蒸除去溶剂,柱层析得纯品,旋蒸,干燥,称重,得中间体IM2‑2为1.16g,收率为90%。
[0084] 7、对氨基水杨酸氟喹诺酮类衍生物TM5的合成
[0085] 向反应瓶中依次加入FQs 1.2equiv、DMF 5mL、Et3N室温搅拌30min,加入中间体IM2‑2,并转移至45℃水浴继续搅拌,TLC跟踪监测至反应结束。停止搅拌,加入冰冷的饱和NaCl溶液,2N HCl溶液调节pH 3‑4,冷藏。抽滤,滤饼用饱和食盐水洗涤(10mL×1)、冰水洗涤(5mL×1),滤饼真空干燥得粗品,柱层析(DCM/CH3OH=200:1‑100:1,v/v)得目标化合物TM5。实验条件及结果如表2所示。
[0086]
[0087] 表2制备TM5的实验条件及结果
[0088]
[0089] 8、TM5产物结构表征数据如下:
[0090]
[0091] TM5‑1:8‑Chloro‑1‑cyclopropyl‑7‑(3‑((2‑((4‑(ethoxycarbonyl)‑3‑hydroxyphenyl)amino)‑2‑oxoeth‑yl)amino)pyrrolidin‑1‑yl)‑6‑fluoro‑4‑oxo‑1,4‑1
dihydroquinoline‑3‑carboxylic acid White solid;m.p.261.7~264.4℃;H NMR(600MHz,DMSO‑d6)δ14.53(s,1H,H‑15),10.70(s,1H,H‑3),10.06(s,1H,H‑7),8.84(s,1H,H‑16),7.93(d,1H,H‑14),7.74(d,J=6.0Hz,1H,H‑6),7.47(s,1H,H‑4),7.20(d,J=6.0Hz,
1H,H‑5),4.43~4.38(m,1H,H‑17),4.35(q,2H,H‑2),3.48~3.38(m,4H,H‑8、H‑9 and H‑
12),3.30~3.25(m,3H,H‑13 and H‑12),2.74~2.73(m,1H,H‑10),1.40~1.30(m,6H,H‑
13
11,H‑19 and H‑18),1.20~1.16(m,3H,H‑1). C NMR(151MHz,DMSO‑d6)δ176.65,172.39,
169.53,169.24,165.57,162.76,161.83,153.19,145.51,144.33,138.56,131.07(2C),
111.23,111.11,110.96,108.12,106.93,62.24,61.55,53.61(2C),51.20,42.01,36.24,+
21.49,14.52,11.26.HR MS calcd for C28H28ClFN4O7,[M+H]587.1703,found 587.1727.[0092] TM5‑2:1‑Cyclopropyl‑7‑(4‑(2‑((4‑(ethoxycarbonyl)‑3‑hydroxyphenyl)amino)‑2‑oxoethyl)piperazin‑1‑yl)‑6‑fluoro‑4‑oxo‑1,4‑dihydroquinoline‑3‑
1
carboxylic acid White solid;m.p.250.7~252.4℃;H NMR(600MHz,DMSO‑d6)δ15.00(s,1H,H‑14),10.70(s,1H,H‑3),10.07(s,1H,H‑7),8.70(s,1H,H‑15),8.34(s,1H,H‑13),
7.95(s,1H,H‑19),7.75(d,J=8.7Hz,1H,H‑6),7.47(s,1H,H‑4),7.20(d,J=8.7Hz,1H,H‑
5),4.35(q,J=7.0Hz,2H,H‑2),3.88~3.83(m,1H,H‑16),3.29(s,2H,H‑8),3.19(s,4H,H‑
10 and H‑12),2.78(s,4H,H‑9 and H‑11),1.34(t,J=7.0Hz,3H,H‑1),1.25~1.22(m,2H,
13
H‑17 and H‑18),1.21~1.17(m,2H,H‑17and H‑18). C NMR(151MHz,DMSO‑d6)δ177.45,
175.17,169.23,166.20,161.84,151.74,148.55,135.53,131.12,125.22,120.86,116.65,
115.85,111.21,107.79,106.91,100.00,95.99,68.88,61.56(2C),53.02(2C),51.35,+
36.40,14.53,7.98(2C).HR MS calcd for C28H29FN4O7,[M+K]591.1652,found 591.1651.[0093] TM5‑3:1‑Cyclopropyl‑7‑(3‑((2‑((4‑(ethoxycarbonyl)‑3‑hydroxyphenyl)amino)‑2‑oxoethyl)(methyl)amino)piperidin‑1‑yl)‑6‑fluoro‑8‑methoxy‑4‑oxo‑1,4‑
1
dihydroquinoline‑3‑carboxylic acid White solid;m.p.216.7~218.2℃;H NMR(600MHz,DMSO‑d6)δ14.95(s,1H,H‑14),10.68(s,1H,H‑3),9.94(s,1H,H‑7),8.68(s,1H,H‑
15),7.73~7.66(m,2H,H‑13 and H‑6),7.45(s,1H,H‑4),7.17(d,J=8.7Hz,1H,H‑5),4.34(q,J=7.0Hz,2H,H‑2),4.16~4.10(m,1H,H‑16),3.72(s,3H,H‑19),3.42~3.36(m,1H,H‑
20),3.36~3.31(m,3H,H‑8 and H‑20),3.14~3.02(m,2H,H‑12),2.85~2.78(m,1H,H‑
21),2.41(s,3H,H‑9),2.08~2.01(m,1H,H‑10),1.86~1.80(m,1H,H‑11),1.69~1.60(m,
1H,H‑10),1.54~1.42(m,1H,H‑11),1.33(t,J=8.3Hz,3H),1.15~0.97(m,4H,H‑17 and 
13
H‑18). C NMR(151MHz,DMSO‑d6)δ176.81,170.93,169.23,166.13,161.82,150.84,
146.18,145.45(2C),134.60,131.02,130.11,125.08,123.18,111.14,108.04,107.04,
106.91,106.81,63.15,61.54,60.29,58.50,54.12,51.25,41.24,40.61,32.01,22.53,+
9.51,9.28.HR MS calcd for C31H35FN4O8,[M+H]611.2512,found 611.2513.
[0094]
[0095] TM5‑4:1‑Cyclopropyl‑7‑(4‑(2‑((4‑(ethoxycarbonyl)‑3‑hydroxyphenyl)amino)‑2‑oxoethyl)‑3‑methylpiperazin‑1‑yl)‑6‑fluoro‑8‑methoxy‑4‑oxo‑1,4‑1
dihydroquinoline‑3‑carboxylic acid White solid;m.p.156.7~158.4℃;H NMR(600MHz,DMSO‑d6)δ14.94(s,1H,H‑14),10.70(s,1H,H‑3),10.01(s,1H,H‑7),8.70(s,1H,H‑15),7.75(s,1H,H‑13),7.74(d,J=8.7Hz,1H,H‑6),7.47(s,1H,H‑4),7.20(d,J=8.7Hz,
1H,H‑5),4.35(q,J=7.0Hz,2H,H‑2),4.19~4.14(m,1H,H‑16),3.78(s,3H,H‑19),3.50~
3.45(m,1H,H‑11),3.44~3.37(m,3H,H‑8 and H‑11),3.29~3.24(m,1H,H‑12),3.13~
3.06(m,1H,H‑12),2.97~2.90(m,1H,H‑10),2.87~2.81(m,1H,H‑9),2.79~2.74(m,1H,H‑
10),1.34(t,J=7.1Hz,3H,H‑1),1.28~1.20(m,2H,H‑17 and H‑18),1.15~1.11(m,2H,H‑
13
17 and H‑18),1.09~1.06(m,3H,H‑20). C NMR(151MHz,DMSO‑d6)δ176.77,170.51,
169.25,166.09,161.85,150.89,146.30,146.27,145.40,139.51,134.57,131.07,121.28,
111.21,108.11,107.13,107.06,106.91,63.30,61.55,58.21,57.33,55.68,53.02,50.93,+
41.25,16.14,14.51,9.47,9.38.HR MS calcd for C30H33FN4O8,[M+H] 597.2355,found 
597.2371.
[0096] TM5‑5:7‑(4‑(2‑((4‑(Ethoxycarbonyl)‑3‑hydroxyphenyl)amino)‑2‑oxoethyl)piperazin‑1‑yl)‑1‑ethyl‑6‑fluoro‑4‑oxo‑1,4‑dihydroquinoline‑3‑carboxylic acid 1
White solid;m.p.252.3~254.8℃;H NMR(600MHz,DMSO‑d6)δ15.35(s,1H,H‑14),10.71(s,1H,H‑3),10.09(s,1H,H‑7),8.95(s,1H,H‑15),7.92(d,J=13.3Hz,1H,H‑13),7.74(d,J=8.6Hz,1H,H‑6),7.46(s,1H,H‑4),7.23~7.14(m,2H,H‑5 and H‑18),4.60(q,2H,H‑16),
4.34(q,J=7.0Hz,2H,H‑2),3.40(s,4H,H‑11 and H‑12),3.29(s,2H,H‑8),2.76(s,4H,H‑9 
13
and H‑10),1.42(t,J=6.6Hz,3H,H‑17),1.33(t,J=7.1Hz,3H,H‑1). C NMR(151MHz,DMSO‑d6)δ176.09,168.91,168.70,166.02,161.30,153.63,151.98,148.38,144.98,
137.16,130.54,119.21,111.20,111.05,110.61,107.56,106.33,105.71,62.75,61.35,+
61.01(2C),52.20(2C),49.33,14.27,13.96.HR MS calcd for C27H29FN4O7,[M+H]
541.2093,found 541.2111.
[0097] TM5‑6:7‑(4‑(2‑((4‑(Ethoxycarbonyl)‑3‑hydroxyphenyl)amino)‑2‑oxoethyl)‑3‑methylpiperazin‑1‑yl)‑1‑ethyl‑6,8‑difluoro‑4‑oxo‑1,4‑1
dihydroquinoline‑3‑carboxylic acid White solid;m.p.269.9~272.4℃;H NMR(600MHz,DMSO‑d6)δ14.90(s,1H,H‑14),10.70(s,1H,H‑3),10.01(s,1H,H‑7),8.92(s,1H,H‑15),7.83(d,J=11.7Hz,1H,H‑13),7.73(d,J=8.6Hz,1H,H‑6),7.46(s,1H,H‑4),7.20(d,J=8.4Hz,1H,H‑5),4.58(q,J=3.3Hz,2H,H‑16),4.34(q,J=7.0Hz,2H,H‑2),3.50~
3.38(m,3H,H‑8 and H‑11),3.34~3.32(m,1H,H‑11),3.30~3.24(m,1H,H‑12),3.16~
3.07(m,1H,H‑12),2.97~2.90(m,1H,H‑10),2.87~2.79(m,1H,H‑10),2.77~2.69(m,1H,H‑9),1.45(t,J=6.8Hz,3H,H‑17),1.34(t,J=7.1Hz,3H,H‑1),1.08(d,J=5.3Hz,3H,H‑
13
18). C NMR(151MHz,DMSO‑d6)δ176.03,170.56,169.23,166.00,161.83,155.86,151.64,
145.38,143.78,134.14,131.09,127.79,125.29,120.85,111.22,107.55,107.39,106.93,
61.57,58.14,57.38,55.59,54.25,54.15,52.68,16.41,14.53(2C).HR MS calcd for +
C28H30F2N4O7,[M+H]573.2155,found 573.2175.
[0098]
[0099] TM5‑7:7‑(4‑(2‑((4‑(Ethoxycarbonyl)‑3‑hydroxyphenyl)amino)‑2‑oxoethyl)piperazin‑1‑yl)‑6‑fluoro‑1‑(4‑fluorophenyl)‑4‑oxo‑1,4‑dihydroquinoline‑3‑1
carboxylic acid White solid;m.p.247.1~251.5℃;H NMR(600MHz,DMSO‑d6)δ15.12(s,1H,H‑14),10.69(s,1H,H‑3),9.98(s,1H,H‑7),8.65(s,1H,H‑15),7.99(d,J=13.1Hz,
1H,H‑13),7.80(t,J=8.5,2H,H‑17 and H‑19),7.72(d,J=8.7Hz,1H,H‑6),7.54(t,J=
8.6Hz,2H,H‑18 and H‑20),7.43(d,J=1.4Hz,1H,H‑4),7.15(dd,J=8.7Hz,J=1.4Hz,1H,H‑5),6.40(d,J=7.2Hz,1H,H‑16),4.34(q,J=7.1Hz,2H,H‑2),3.21(s,2H,H‑8),3.13(s,
13
4H,H‑11 and H‑12),2.66(s,4H,H‑9 and H‑10),1.33(t,J=7.1Hz,3H,H‑1). C NMR(151MHz,DMSO‑d6)δ177.17,169.41,169.24,166.18,161.81,154.25,152.60,149.09,
145.46,139.72,136.70,131.03,130.33,119.05,117.83,117.68,111.60,111.45,111.17(2C),108.08,107.92,106.89(2C),61.74,61.55,52.55(2C),49.47(2C),14.51.HR MS +
calcd for C31H28F2N4O7,[M+H]607.1999,found 607.1996.
[0100] TM5‑8:7‑(4‑(2‑((4‑(Ethoxycarbonyl)‑3‑hydroxyphenyl)amino)‑2‑oxoethyl)piperazin‑1‑yl)‑1‑ethyl‑6‑fluoro‑4‑oxo‑1,4‑dihydro‑1,8‑naphthyridine‑3‑1
carboxylic acid White solid;m.p.254.7~260.4℃;H NMR(600MHz,DMSO‑d6)δ11.35(s,1H,H‑3),10.73(s,1H,H‑7),9.03(s,1H,H‑15),8.21(d,J=12.9Hz,1H,H‑13),7.78(d,J=8.4Hz,1H,H‑6),7.44(s,1H,H‑4),7.17(d,J=8.1Hz,1H,H‑5),4.69~4.47(m,4H,H‑2 and H‑16),4.39~4.27(m,4H,H‑11and H‑12),3.76~3.67(m,4H,H‑9 and H‑10),3.53~
13
3.40(m,2H,H‑8),1.40(t,3H,H‑17),1.33(t,J=6.4Hz,3H,H‑1). C NMR(151MHz,DMSO‑d6)δ176.88,174.18,169.49,166.33,161.65(2C),150.47,148.20,145.51,131.17,120.03,
113.18,111.25,108.60,108.09,106.95,102.15,61.71(2C),52.78(2C),47.66,47.14,+
29.77,15.15,14.68.HR MS calcd for C26H28FN5O7,[M+H]542.2046,found 542.2049.[0101] 三、对氨基水杨酸氟喹诺酮类衍生物的生物活性检测
[0102] 1、抗结核活性测定
[0103] 试验菌株:耻垢分枝杆菌Mycolicibacterium smegmatis(strain ATCC 700084/mc(2)155)
[0104] 7H9培养基的配制:无菌环境下,在1L经两次蒸馏过的超纯水(dd水)中加入7H9粉末4.7g和4mL 50%的甘油,混合均匀即可。
[0105] DMSO;吐温‑80。其它试剂均为市面常见分析纯试剂。
[0106] 所用试剂、工具均需提前灭菌;所有操作应在超净台的无菌条件下进行。
[0107] 测定方法如下:
[0108] (1)待测液的配制:准确称取待测样品10.0mg,先以含5%吐温80的DMSO溶液溶解并稀释成浓度为10.0μg/μL的储备液,再吸取100μL储备液,用DMSO溶液稀释至1000μL得浓度为1.0μg/μL的待测液。
[0109] (2)待测液的灭菌:取1.0μg/μL的待测液,用一次性过滤器(过滤直径为13~30mm)过滤得待测液C。
[0110] (3)接菌:接种保存的耻垢分枝杆菌菌株于7H9培养基中,培养活化后备用(其OD值为0.972)。将培养好的野生型的耻垢分枝杆菌接到96孔板中(在400mL液体7H9培养基中加入4mL菌液(1%的接菌率),加入1mL 20%吐温80(500mL培养液+100mL吐温80),摇匀待用)。
[0111] (4)加样操作:第一步:在96孔培养板的第1列加入200μL菌液,第2‑12列分别加入100μL菌液。第二步:在第1列的首孔加入待测液C10μL,用移液枪充分吹打(至少3次以上,使待测物与菌液充分混匀),然后吸取100μL加入第2列第一孔,再充分吹打使之与菌液充分混匀,再从第2列第一孔吸取100μL加入第3列第一孔,照此重复直至第11列;第12列为100μL菌液的阴性对照。此时每孔待测物浓度从左到右依次为50,25,12.5,6.25,3.12,1.56,0.78,
0.39,0.19,0.09,0.05μg/mL,每一块板的最后一列为阴性对照。
[0112] (5)培养和结果判定:将接种好的96孔板放入37℃恒温培养箱培养3d后取出,观察孔内细菌生长情况。确定空白无药对照孔的耻垢分枝杆菌正常生长、阳性对照孔无菌生长时测试结果才有意义。将肉眼观察没有耻垢分枝杆菌生长的孔中的药物浓度作为该药物对该细菌的MIC。每株菌做3个重复,如出现多处跳孔,则不应报告结果,需重复试验。
[0113] 将对氨基水杨酸氟喹诺酮类衍生物及中间体对耻垢分枝杆菌(WT)进行MIC的测定。测定过程均设有空白对照、阴性对照、阳性对照,结果如表3所示。
[0114] 表3化合物对抗耻垢分枝杆菌的抑制活性(MIC值)
[0115]
[0116]
[0117] 从表3中分析可知,部分目标化合物及中间体对耻垢分枝杆菌均有抑制作用,其中TM2‑1的MIC值为0.78μg/mL,其活性是一线抗结核药物异烟肼(8μg/mL)的10倍、利福平(4μg/mL)的5倍,抗耐药结核病治疗核心药物洛美沙星和依诺沙星(6.25μg/mL)的8倍、环丙沙星和沙拉沙星(3.125μg/mL)的4倍、巴洛沙星(2.0μg/mL)的2.5倍,值得注意的是,目标化合物的分子量至少是母核的2‑3倍,将质量浓度生物活性换算成摩尔浓度者发现,TM2‑1的抑制活性是母核克林沙星的2.6倍,显示PAS与克林沙星杂合增强了抗结核杆菌活性,有协同增效的的作用。除此之外,目标化合物TM2‑4和TM5‑4的MIC值为1.56μg/mL,其活性是异烟肼(8μg/mL)的5倍、利福平(4μg/mL)的2.5倍;TM5‑1的MIC值为6.25μg/mL,仍然强于一线上市药物利福平。
[0118] 从氟喹诺酮来讲,含有第四代氟喹诺酮药物如克林沙星、加替沙星的衍生物均有很好的抗耻垢分枝杆菌活性,其中,含有克林沙星片段的衍生物为TM2‑1及TM5‑1,其MIC值分别为0.78μg/mL及6.25μg/mL;含有加替沙星片段的衍生物为TM2‑4和TM5‑4,其MIC值均为1.56μg/mL,显示出药效增强的作用。此外,PAS简单衍生物,即PAS甲酯、乙酯,PAS甲酯或乙酯的氨基氯乙酰化物IM1‑1、IM2‑1、IM1‑2、IM2‑2,都显示与克林沙星相同或相当的抗结核活性。抗结核活性显示,本发明对氨基水杨酸氟喹诺酮类衍生物及其中间体在抗结核领域具有潜在的应用前景。
[0119] 2、体外抗细菌活性测定
[0120] 采用微量肉汤稀释法,测定化合物抑制金黄色葡萄球菌(Staphyloccocus aureus ATCC 25129)、藤黄微球菌(Micrococcus luteus)、大肠杆菌(Escherichia coli ATCC 25922)、鲍曼不动杆菌(Acinetobacter baumannii ATCC 19606)、沙门氏菌(Salmonella Enteritidis ATCC 13076)和铜绿假单胞菌(Pseudomonas aeruginosa ATCC 27853)的活性(MIC值)。
[0121] 取样品3.2mg,先以含5%吐温80的DMSO溶液配成浓度为3.2mg/mL的母液,再吸取200μL母液,用肉汤稀释至500μL得浓度为1.28μg/μL的待测液。
[0122] 接种保存的菌株于普通液体培养基中,置于37℃的恒温摇床活化培养17h。活化后5
用脑心浸液肉汤(BHI)培养基稀释成10CFU/mL的菌悬液备用。
[0123] 操作:在96孔板每一列的第一孔加入空白肉汤60μL,其余孔加入空白肉汤50μL;在每一列的第一孔加入待测液40μL,然后对待测物进行二倍稀释,即,第一孔中加入待测液后用移液枪充分吹打(至少三次以上,使待测物与肉汤充分混匀),然后吸取50μL加入第2孔,再充分吹打后吸取50μL加入第3孔,照此重复直至第八孔,吸取50μL弃去,此时每孔待测物浓度从上到下依次为512,256,128,64,32,16,8,4μg/mL。每一块板的最后两列作为对照不加待测物,一列作为细菌生长对照加入菌液,另一列作为阴性对照不加菌液。最后,在每列1‑8孔中加入稀释好的菌液50μL,采取复孔测试,每块板测试5个化合物,此时每孔待测物浓度即最终浓度从上到下依次为256,128,64,32,16,8,4,2μg/mL。
[0124] 将接种好的96孔板放入37℃恒温培养箱培养20‑24h,观察孔内细菌生长情况。确定生长对照孔的细菌正常生长、阳性对照孔无细菌生长。观察没有细菌生长的孔中的药物浓度作为该药物对该细菌的MIC值。
[0125] 对氨基水杨酸氟喹诺酮类衍生物及中间体的体外抑菌活性测试结果如表4所示。
[0126] 表4化合物对6种致病菌的抑制活性(MIC值,μg/mL)
[0127]
[0128]
[0129] 从表4中可知:PAS对测试的6种细菌并无抑制作用,但目标化合物和中间体的抑菌活性整体较好。对金黄色葡萄球菌,TM2‑1和TM2‑4的MIC值为0.2μg/mL,其活性与某些氟喹诺酮药物相当甚至更强;对大肠杆菌,TM2‑1、TM5‑4和TM5‑8的MIC值为6.4μg/mL;对于藤黄微球菌,TM2‑1和IM2‑2的MIC值为1.6μg/mL和3.2μg/mL,抑制活性强于测试的多数氟喹诺酮药物;对铜绿假单鲍菌,目标化合物TM2‑1和TM5‑8的MIC值为25.6μg/mL,抑制作用较好;对沙门氏菌,中间体IM2‑2有非常好的抑制活性(MIC为0.8μg/mL),目标化合物TM5‑1、TM5‑7和TM5‑8的MIC值分别为25.6μg/mL、64μg/mL及32μg/mL,它们的抑制活性均强于母核PAS。特别是TM2‑1,对6种菌株的抑制活性都很好,有进一步研究的价值。这些结果表明,本发明的对氨基水杨酸氟喹诺酮类衍生物及其中间体在抗细菌领域具有潜在的应用前景。
[0130] 3、体外抗真菌活性测定
[0131] 采用NCCLS推荐的微量肉汤稀释法,氟康唑为阳性对照药物,测定化合物抑制毕赤酵母菌的活性(MIC值)。
[0132] (1)样品溶液的制备:用万分之一天平在干燥室内精确称取样品3.2mg于2mL PE管中,移液枪向PE管中加入1mL DMSO,溶解为澄清透明液体,配制成3.2mg/mL的溶液,封口膜封口后,冰柜避光保存。溶剂为DMSO,对于部分难溶的化合物使用DMSO/吐温‑80=200/1(v/v)以增加溶解度,吐温‑80为助溶剂。
[0133] (2)待测液的配制:选用适宜的溶剂及稀释剂将待测物准确配制成浓度为3.2mg/mL的储备液,再吸取320μL储备液,加入沙氏培养基总体积为0.5mL得浓度为2048μg/mL的待测液B。
[0134] (3)菌悬液的制备:接种保存的菌株于沙氏琼脂液体培养基中,置于30℃恒温摇床5
活化培养24h。活化后用蒸馏水洗涤琼脂表面菌落,再用沙氏培养基稀释成10 CFU/mL的菌悬液备用。
[0135] (4)加样操作:无菌条件下,在96孔板每个孔加入沙氏培养基50μL;在第一排的第一孔、第二孔添加配好的待测液B 50μL,经过此二倍稀释后,浓度为1024μg/mL;第一孔、第二孔用移液枪充分吹打,使待测物与培养基充分混匀后吸取50μL加入第二排的第一孔、第二孔,再吹打混匀,照此重复直至第八排,第八排每孔吸取50μL弃去;此时每孔待测物浓度从高至低(从上至下)依次为1024,512,256,128,64,32,16,8μg/mL;再在96孔板每孔中加入稀释好的菌液50μL,此时每孔待测物浓度即最终浓度从高至低(从上至下)依次为512,256,128,64,32,16,8,4μg/mL。
[0136] (5)培养和结果判定:将接种好的96孔板放入30℃恒温培养箱培养24、30h。培养完成后取出,观察孔内细菌生长情况。确定空白无药对照(阴性对照)孔的细菌正常生长和阳性对照(培养基+菌株+阳性药物)孔无细菌生长,所测试的结果才算正常。肉眼观察没有细菌生长的孔中的药物浓度作为该药物对该细菌的MIC。
[0137] 对氨基水杨酸氟喹诺酮类衍生物及中间体的体外抑真菌活性测试结果如表5所示。
[0138] 表5化合物对毕赤酵母菌的抑制活性(MIC,μg/mL)
[0139]
[0140]
[0141] 从表5中可知,母核PAS、中间体IM1‑1和IM1‑2的MIC>256μg/mL,对毕赤酵母菌的抑菌活性较差;中间体IM2‑1和IM2‑2,对毕赤酵母菌的抑制活性达到64μg/mL,强于母核PAS。绝大多数目标化合物对毕赤酵母菌的抑制活性整体很好,强于母体PAS、PAS的甲酯、PAS的乙酯;培养24h,测试的20个分子中,有9个分子的MIC值≤128μg/mL,有3个分子的MIC值为32μg/mL或64μg/mL,有6个分子的MIC值为4μg/mL。6个分子与阳性对照药物氟康唑的MIC值相同(MIC=4μg/mL),表明它们对毕赤酵母菌株的抑制活性强于或相当于氟康唑,因而它们在抗真菌领域具有潜在的应用前景。
[0142] 4、抗柑橘病菌生物活性测定
[0143] 初筛
[0144] (1)药剂母液的配制
[0145] 用适宜的溶剂及稀释剂将药剂母液稀释至所需的浓度(样品质量为1.0mg,先配成药剂母液1.0mg/1mL=1.0mg/mL。每种药剂设置2个稀释浓度,0.001mg/mL(即稀释1000倍)和0.004mg/mL(即稀释250倍))。
[0146] (2)操作
[0147] 药剂培养基配制:稀释1000倍的药剂培养基配制:取5μL药剂与5mL热PDA培养基在10mL离心管中充分混匀;稀释250倍的药剂培养基配制:取20μL药剂与4980μL热PDA培养基在10mL离心管中充分混匀。对照组:以不加药剂的PDA培养基和加入咪鲜胺的药剂培养基(稀释1000和稀释250倍)作为对照。接菌:将配置好的药剂培养基倒入24孔板内,每株菌每种药每个浓度倒一个孔,并做好编号的标记。挑取28℃培养7d的菌株的菌丝,接种于每孔正中央。培养:将24孔板放于28℃、光照16h的培养箱内培养48h。测量:运用十字交叉法测量菌落直径。计算:抑制率%=(CK菌落直径值‑测量菌落直径值)×100%/CK菌落直径值筛选:
将不同药剂抑制率同咪鲜胺药剂的抑制率进行比较。
[0148] 复筛
[0149] 初筛获得的高活性分子TM5‑3进行抑制柑橘胶孢炭疽病菌Colletotrichum gloeosporioides菌株Co.3的复筛,获得毒力方程。TM5‑1对柑橘褐斑病菌Alternaria alternata菌株Al.6进行复筛,获得毒力方程。TM2‑1、TM5‑4对柑橘溃疡病菌进行复筛,获得毒力方程。
[0150] (1)操作
[0151] 药剂梯度稀释:设置6个稀释梯度:0.0064、0.0032、0.0016、0.0008、0.0004、0.0002mg/mL,即稀释500、1000、2000、4000、8000、16000倍。药剂培养基配制:分别取50、20、
10、5、2.5、1.25μL的药剂母液与5mL热PDA培养基在10mL离心管中充分混匀。将药剂培养基倒入孔内,每种药剂每个梯度重复4次。以PDA培养基与咪鲜胺作为对照组。接菌:挑取28℃培养7d的菌株的菌丝,接种于每孔正中央。培养:将24孔板放于28℃,光照16h培养箱内培养
48h。测量:十字交叉法测量菌落直径。计算:使用农药室内生物测定数据处理系统(PBT数据处理系统)处理数据,获得回归方程、KD50、KD90、R、标准误差、卡平方值和95%置信的值。
[0152] 对氨基水杨酸氟喹诺酮类衍生物及中间体抗柑橘病菌的测定结果如表6~表10所示。
[0153] 表6化合物对柑橘真菌病菌的抑制活性(初筛结果)
[0154]
[0155]
[0156] 分析表6数据可知,对柑橘胶孢炭疽菌,在测试浓度为3.2μg/mL和12.8μg/mL下,目标化合物TM5‑2和TM5‑3的抑制率大于阳性对照氟喹诺酮和PAS;在测试浓度为3.2μg/mL下,TM5‑2的抑制率为60%,接近咪鲜胺的抑制活性(80%);在测试浓度为12.8μg/mL下,TM5‑3的抑制率为70%,接近于咪鲜胺的抑制率(90%)。对柑橘褐斑病菌,在测试浓度为4μg/mL下,TM5‑1的抑制率为40%,强于阳性对照氟喹诺酮和PAS。这些活性分子具有进一步开发的潜力。
[0157] 表7复筛结果(对柑橘胶孢炭疽)
[0158]
[0159] 表8复筛结果(对柑橘褐斑病菌)
[0160]
[0161] 分析表7和表8中数据可知,TM5‑1、TM5‑3未体现出抗药性,证明了对氨基水杨酸氟喹诺酮类衍生物在抗柑橘病菌领域具有潜在的应用前景。
[0162] 表9化合物抗柑橘溃疡病菌的活性结果
[0163]
[0164]
[0165] 从表9数据可知,对柑橘溃疡病菌,在1.6μg/mL测试浓度下,测试的4个目标分子的抑制活性都高于40%,其中化合物TM2‑1和TM5‑4的抑制率大于80%,TM2‑1的抑制率更是达到了97.52%,强于所有的阳性对照药物;在0.64μg/mL测试浓度下,有3个目标分子的抑制率高于40%,其中TM5‑4的抑制率达到了69.02%,与阳性对照巴洛沙星的70.62%相当,具有很好的开发潜力。
[0166] 表10复筛结果(对柑橘溃疡病菌)
[0167]
[0168] 分析表10中数据可知,TM2‑1和TM5‑4未体现出抗药性,证明了对氨基水杨酸氟喹诺酮类衍生物在抗柑橘病菌领域具有潜在的应用前景。
[0169] 以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。