一种化合物、显示面板及显示装置转让专利

申请号 : CN202011099188.1

文献号 : CN112159406B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 代文朋高威张磊冉佺

申请人 : 上海天马有机发光显示技术有限公司

摘要 :

本申请属于OLED技术领域,公开了一种七元二酰亚胺稠合芳环的化合物,所述化合物包括基团A和基团B,基团A和基团B通过稠合连接位点稠合连接,其中,与基团A稠合连接的基团B的个数为1个或2个;X选自N原子、O原子、S原子或C原子;当X选自O原子或S原子时,基团Ar2‑L1‑不存在;Y1‑Y4各自独立地为C或N;L1和L2各自独立地选自单键、C6‑C30亚芳基、C10‑C40亚稠芳基、C4‑C30亚杂芳基;Ar1和Ar2各自独立地选自C6‑C30芳基、C10‑C40稠芳基、C4‑C30杂芳基、C6‑C40亚稠杂芳基;*表示稠合连接位点。本发明的化合物具有较高的空穴、电子迀移率和热稳定性,采用化合物制备的OLED器件具有较高的器件效率、较低的开启电压和更长的使用寿命。本发明还提供一种显示面板和显示装置。

权利要求 :

1.化合物,其特征在于,所述化合物选自以下化学结构:

2.根据权利要求1所述的化合物,其特征在于,所述化合物的三线态能级ET为2.6eV以上。

3.根据权利要求1所述的化合物,其特征在于,所述化合物的玻璃化转变温度Tg为120℃以上。

4.一种显示面板,包括有机发光器件,其中所述有机发光器件包括相对设置的阳极、阴极,以及位于阳极和阴极之间的发光层,其中发光层包括主体材料和客体材料,其特征在于,所述发光层的主体材料为权利要求1至3任一项所述化合物中至少一种。

5.根据权利要求4所述的显示面板,其特征在于,所述有机发光器件还包括空穴传输层,其中,所述空穴传输层中的空穴传输材料为权利要求1至3任一项所述化合物中至少一种。

6.根据权利要求4所述的显示面板,其特征在于,所述有机发光器件还包括空穴注入层,所述空穴注入层中的空穴材料为权利要求1至3任一项所述化合物中至少一种。

7.一种显示装置,包括权利要求4至6任一项所述的显示面板。

说明书 :

一种化合物、显示面板及显示装置

技术领域

[0001] 本申请涉及有机电致发光材料技术领域,尤其涉及一种含有二酰亚胺结构的化合物,以及包含该化合物的显示面板及显示装置。

背景技术

[0002] 有机电致发光材料(OLED)作为新一代显示技术,具有超薄、自发光、视角宽、响应快、发光效率高、温度适应性好、生产工艺简单、驱动电压低、能耗低等优点,已广泛应用于
平板显示、柔性显示、固态照明和车载显示等行业。
[0003] 按发光机理,OLED发射的光可以分为电致荧光和电致磷光两种。荧光是单重态激子的辐射衰减跃迁所发射的光,磷光则是三重态激子辐射衰减到基态所发射的光。根据自
旋量子统计理论,单重态激子和三重态激子的形成概率比例是1:3。荧光材料内量子效率不
超过25%,外量子效率普遍低于5%;电致磷光材料的内量子效率理论上达到100%,外量子
效率可达20%。1998年,我国吉林大学的马於光教授和美国普林斯顿大学的Forrest教授分
别报道了采用锇配合物和铂配合物作为染料掺杂入发光层,第一次成功得到并解释了磷光
电致发光现象,并开创性的将所制备磷光材料应用于电致发光器件。
[0004] 由于磷光重金属材料有较长的寿命(μs),在高电流密度下,可能导致三线态‑三线态湮灭和浓度淬灭,造成器件性能衰减,因此通常将重金属磷光材料掺杂到合适的主体材
料中,形成一种主客体掺杂体系,使得能量传递最优化,发光效率和寿命最大化。在目前的
研究现状中,重金属掺杂材料商业化已成熟,很难开发可替代的掺杂材料。因此,研发新的
磷光主体材料成为了一个新的方向。为了实现更好的OLED器件的性能,需要开发性能更加
优异的OLED发光主体材料。

发明内容

[0005] 有鉴于此,本发明的目的是提供一种化合物,所述化合物包括基团A和基团B,基团A和基团B通过稠合连接位点稠合连接:
[0006]
[0007] 其中,与基团A稠合连接的基团B的个数为1个或2个;
[0008] X选自N原子、O原子、S原子或C原子;当X选自O原子或S原子时,基团Ar2‑L1‑不存在;Y1‑Y4各自独立地为C或N;
[0009] L1和L2各自独立地选自单键、取代或未取代的C6‑C30亚芳基、取代或者未取代的C10‑C40亚稠芳基、取代或者未取代的C4‑C30亚杂芳基;
[0010] Ar1和Ar2各自独立地选自取代或未取代的C6‑C30芳基、取代或者未取代的C10‑C40稠芳基、取代或者未取代的C4‑C30杂芳基、取代或者未取代的C6‑C40亚稠杂芳基;
[0011] *表示稠合连接位点;当*表示的位置不作为稠合连接位点时,其可以被N原子或CRa替代,其中,Ra选自取代或未取代的Cl‑C20烷基、取代或未取代的C6‑C30芳基、或取代或
未取代的C3‑C30杂芳基。
[0012] 本发明的化合物是含七元氮杂环,具有较高的空穴、电子迀移率和热稳定性,采用化合物制备的OLED器件具有较高的器件效率、较低的开启电压和更长的使用寿命。

附图说明

[0013] 图1示出本发明的所述化合物的通式结构;
[0014] 图2是本发明实施例提供的OLED器件的结构示意图;
[0015] 图3是本发明实施例提供的一种显示装置的示意图。

具体实施方式

[0016] 下面通过实施例和对比例进一步说明本发明,这些实施例只是用于说明本发明,本发明不限于以下实施例。凡是对本发明技术方案进行修改或者等同替换,而不脱离本发
明技术方案的范围,均应涵盖在本发明的保护范围中。
[0017] 本发明的目的是提供一种化合物,所述化合物包括基团A和基团B,基团A和基团B通过稠合连接位点稠合连接:
[0018]
[0019] 其中,与基团A稠合连接的基团B的个数为1个或2个;
[0020] X选自N原子、O原子、S原子或C原子;当X选自O原子或S原子时,基团Ar2‑L1‑不存在;Y1‑Y4各自独立地为C或N;
[0021] L1和L2各自独立地选自单键、取代或未取代的C6‑C30亚芳基、取代或者未取代的C10‑C40亚稠芳基、取代或者未取代的C4‑C30亚杂芳基;
[0022] Ar1和Ar2各自独立地选自取代或未取代的C6‑C30芳基、取代或者未取代的C10‑C40稠芳基、取代或者未取代的C4‑C30杂芳基、取代或者未取代的C6‑C40亚稠杂芳基;
[0023] *表示稠合连接位点;当*表示的位置不作为稠合连接位点时,其可以被1‑4个N原子或CRa替代,其中,Ra选自取代或未取代的Cl‑C20烷基、取代或未取代的C6‑C30芳基、或取
代或未取代的C3‑C30杂芳基。
[0024] 在本申请的化合物中,C4‑C30亚杂芳基可以是C4‑C10亚杂芳基、C5‑C20亚杂芳基;C4‑C30杂芳基可以是C4‑C10杂芳基、C5‑C20杂芳基。
[0025] 在本发明的化合物中,包含二酰亚胺的七元环状(A环)稠合结合B可以使整个分子平面性改变,使分子结构扭曲增大,从而使分子不容易聚集,产生的激子不容易淬灭,最终
提高OLED器件的效率。
[0026] 根据本发明所述化合物的一种实施方式,所述化合物具有式1‑1至式1‑12任意一个所示结构:
[0027]
[0028] L3选自单键、取代或未取代的C6‑C30亚芳基、取代或者未取代的C12‑C40亚稠芳基、C5‑C30亚杂芳基。
[0029] 根据本发明所述化合物的一种实施方式,与基团A稠合的基团B的个数为1个或2个,且X选自O原子或S原子。包含二酰亚胺的七元环状(结构A)稠合结合B可以使整个分子平
面性改变,使分子结构扭曲增大,从而使分子不容易聚集,产生的激子不容易淬灭,最终提
高OLED器件的效率。结构B可以与结构A稠合,形成二苯并吡咯基(咔唑基)、二苯并呋喃、二
苯并噻吩等基团,这些基团都能改变整个分子的平面性,从而提高器件效率。
[0030] 根据本发明所述化合物的一种实施方式,与基团A稠合的基团B的个数为2个,且至少有一个X选自氮原子。
[0031] 根据本发明所述化合物的一种实施方式,Y1‑Y4中有1个或两个选自N原子。
[0032] 在结构B中增加氮原子数目可以一定程度地调节分子的HOMO能级,尤其是调节分子的LUMO能级,使分子作为发光主体材料时,能够增大与周围空穴传输材料的能级差,避免
生成激基复合物而导致损坏器件中的空穴传输材料,降低器件的寿命。
[0033] 根据本发明所述化合物的一种实施方式,L1和L2各自独立地选自如下所示的任一种基团:
[0034]
[0035] Z1和Z2各自独立地选自氢原子、取代或未取代的C6‑C30芳基、取代或未取代的C6‑C30稠芳基、取代或未取代的C6‑C30稠杂芳基、取代或未取代的C1‑C16烷基、取代或未取代
的C1‑C16烷氧基;
[0036] p和q各自独立地选自1、2、3;
[0037] #表示连接位置。
[0038] 根据本发明所述化合物的一种实施方式,L1和L2各自独立地选自如下所示的任一种基团:
[0039]
[0040] 根据本发明所述化合物的一种实施方式,L1和L2为单键,Ar1和Ar2选自苯基。在这种结构中,一方面,化合物分子共轭比较小,分子的三线态能级高,发光色蓝移,可以获得蓝
光发光材料。另一方面,本实施例中的化合物分子量小,升华温度低,热稳定性好。
[0041] 根据本发明所述化合物的一种实施方式,所述化合物选自以下化合物:
[0042]
[0043]
[0044]
[0045]
[0046]
[0047]
[0048]
[0049]
[0050]
[0051] 根据本发明所述化合物的一种实施方式,所述化合物的三线态能级ET为2.6eV以上。
[0052] 根据本发明所述化合物的一种实施方式,所述化合物的玻璃化转变温度Tg为120℃以上。
[0053] 本申请的化合物可以作为发光主体材料,也可以作为空穴传输或空穴注入材料。
[0054] 本发明还提供一种显示面板,包括有机发光器件,其中所述有机发光器件包括相对设置的阳极、阴极,以及位于阳极和阴极之间的发光层,其中发光层包括主体材料和客体
材料,其特征在于,所述发光层的主体材料为本发明所述的化合物中的至少一种。
[0055] 根据本发明所述显示面板的一种实施方式,。
[0056] 根据本发明所述显示面板的一种实施方式,所述有机发光器件还包括空穴传输层,其中,所述空穴传输层中的空穴传输材料为本发明所述的化合物中的至少一种。
[0057] 根据本发明所述显示面板的一种实施方式,所述有机发光器件还包括空穴注入层,空穴注入层中的空穴材料为本发明所述的化合物中的至少一种。
[0058] 在本发明提供的显示面板中,有机发光器件的阳极材料可以选自金属例如铜、金、银、铁、铬、镍、锰、钯、铂等及它们的合金。阳极材料也可以选自金属氧化物如氧化铟、氧化
锌、氧化铟锡(ITO)、氧化铟锌(IZO)等;阳极材料还可以选自导电性聚合物例如聚苯胺、聚
吡咯、聚(3‑甲基噻吩)等。此外,阳极材料还可以选自除以上列举的阳极材料以外的有助于
空穴注入的材料及其组合,其包括已知的适合做阳极的材料。
[0059] 在本发明提供的显示面板中,有机发光器件的阴极材料可以选自金属例如铝、镁、银、铟、锡、钛等及它们的合金。阴极材料也可以选自多层金属材料例如LiF/Al、LiO2/Al、
BaF2/Al等。除了以上列举的阴极材料以外,阴极材料还可以是有助于电子注入的材料及其
组合,包括已知的适合做阴极的材料。
[0060] 在本发明的实施例中,有机发光器件的制作过程为:在透明或不透明的光滑的基板上形成阳极,在阳极上形成有机薄膜层,在有机薄膜层上形成阴极。有机薄膜层的形成可
以采用如蒸镀、溅射、旋涂、浸渍、离子镀等已知的成膜方法。其中有机薄膜层至少包括空穴
传输层和发光层,空穴传输层的材料为本发明所述的化合物。其中有机薄膜层还可以包括
电子阻挡层,电子阻挡层的材料为本发明所述的化合物。
[0061] 本发明的另一方面示例性地描述了化合物P1、化合物P10、化合物P25、化合物P28、化合物P32和P133的合成。
[0062] 实施例1
[0063] 化合物P1的合成
[0064] 合成路线如下:
[0065]
[0066] 具体制备方法具体包括以下步骤:
[0067] (1)将P1‑1(10.0mmol)、RuCl3(1.0mmol)、DBU(1,8‑二氮杂二环十一碳‑7‑烯,10.0mmol)、溶解在DME(25mL)中,在氧气环境下110℃反应30h。冷却到室温,碘甲烷
(50.0mmol)、K2CO3(50.0mmol),在室温下,搅拌反应6个小时。反应结束后,用乙酸乙酯萃取。
然后用50mL水洗涤三次,并采用无水硫酸镁干燥,过滤和蒸发后,取出有机相,旋蒸去除溶
剂,用体积比为1:5的乙酸乙酯/石油醚的混合溶液为淋洗液,进行硅胶柱层析,得固体产物
P1‑2。
[0068] 测试目标产物P1‑2的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C28H21NO4,计算值为435.2,测试值为435.1。
[0069] (2)将中间体P1‑2(3.0mmol)溶解在甲氢呋喃/甲醇(THF/CH3OH)=3:1(160mL)的溶液中,加入NaOH(5.0mmol),在氮气氛围下回流,反应6h;将反应液冷却到室温,减压蒸馏
去除溶剂,将剩余的固体溶于150mL的水中,然后加入到HCl溶液(6M,18mL)酸化,然后过滤
得到白色固体,真空干燥后,将固体溶于15mL乙酸酐回流6小时,冷却到室温,减压蒸馏去除
溶剂,得到中间体P1‑3。
[0070] 测试目标产物P1‑3的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C26H15NO3,计算值为389.1,测试值为389.3。
[0071] (3)将中间体P1‑3(2.0mmol)、苯胺(2.4mmol)、DMAP(4‑二甲氨基吡啶,0.04mmol)和Et3N(6.0mmol)加入到干燥的二氯甲烷(DCM,20mL)中,在氮气氛围、室温下反应12h,加入
2mmol/L的HCl溶液,然后用DCM萃取,用水洗涤,并采用无水硫酸钠干燥,过滤和蒸发后,加
入20mL醋酸酐混合物在回流下搅拌6小时。冷却至室温,减压蒸馏去除溶剂,用硅胶柱层析
纯化粗品,得到化合物P1。
[0072] 测试目标产物P1的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C32H20N2O2,计算值为464.2,测试值为464.0。
[0073] 元素分析:理论值C,82.74;H,4.34;N,6.03;测试值C,82.75;H,4.34;N,6.02。
[0074] 实施例2
[0075] 化合物P10的合成
[0076] 合成路线如下:
[0077]
[0078] 具体制备方法具体包括以下步骤:
[0079] (1)将P10‑1(10.0mmol)、RuCl3(1.0mmol)、DBU(10.0mmol)、溶解在DME(25mL)中,在氧气环境下110℃反应30h。冷却到室温,碘甲烷(50.0mmol)、K2CO3(50.0mmol),在室温下,
搅拌反应6个小时。反应结束后,用乙酸乙酯萃取。然后用50mL水洗涤三次,并采用无水硫酸
镁干燥,过滤和蒸发后,取出有机相,旋蒸去除溶剂,用体积比为1:5的乙酸乙酯/石油醚的
混合溶液为淋洗液,进行硅胶柱层析,得固体产物P10‑2。
[0080] 测试目标产物P10‑2的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C40H28N2O4,计算值为600.2,测试值为600.1。
[0081] (2)将中间体P10‑2(3.0mmol)溶解在THF/CH3OH=3:1(160mL)的溶液中,加入NaOH(5.0mmol),在氮气氛围下回流,反应6h;将反应液冷却到室温,减压蒸馏去除溶剂,将剩余
的固体溶于150mL的水中,然后加入到HCl溶液(6M,18mL)酸化,然后过滤得到白色固体,真
空干燥后,将固体溶于15mL乙酸酐回流6小时,冷却到室温,减压蒸馏去除溶剂,得到中间体
P10‑3。
[0082] 测试目标产物P10‑3的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C38H22N2O3,计算值为554.2,测试值为554.3。
[0083] (3)将中间体P10‑3(2.0mmol)、苯胺(2.4mmol)、DMAP(0.04mmol)和Et3N(6.0mmol)加入到干燥的DCM(20mL)中,在氮气氛围、室温下反应12h,加入2mmol/L的HCl溶液,然后用
DCM萃取,用水洗涤,并采用无水硫酸钠干燥,过滤和蒸发后,加入20mL醋酸酐混合物在回流
下搅拌6小时。冷却至室温,减压蒸馏去除溶剂,用硅胶柱层析纯化粗品,得到化合物P10。
[0084] 测试目标产物P10的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C44H27N3O2,计算值为629.2,测试值为629.0。
[0085] 元素分析:理论值C,83.92;H,4.32;N,6.67;测试值C,83.92;H,4.34;N,6.66。
[0086] 实施例3
[0087] 化合物P25的合成
[0088] 合成路线如下:
[0089]
[0090] 具体制备方法具体包括以下步骤:
[0091] (1)将P25‑1(10.0mmol)、RuCl3(1.0mmol)、DBU(10.0mmol)、溶解在DME(25mL)中,在氧气环境下110℃反应30h。冷却到室温,碘甲烷(50.0mmol)、K2CO3(50.0mmol),在室温下,
搅拌反应6个小时。反应结束后,用乙酸乙酯萃取。然后用50mL水洗涤三次,并采用无水硫酸
镁干燥,过滤和蒸发后,取出有机相,旋蒸去除溶剂,用体积比为1:5的乙酸乙酯/石油醚的
混合溶液为淋洗液,进行硅胶柱层析,得固体产物P25‑2。
[0092] 测试目标产物P25‑2的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C28H21NO4,计算值为435.2,测试值为435.1。
[0093] (2)将中间体P25‑2(3.0mmol)溶解在THF/CH3OH=3:1(160mL)的溶液中,加入NaOH(5.0mmol),在氮气氛围下回流,反应6h;将反应液冷却到室温,减压蒸馏去除溶剂,将剩余
的固体溶于150mL的水中,然后加入到HCl溶液(6M,18mL)酸化,然后过滤得到白色固体,真
空干燥后,将固体溶于15mL乙酸酐回流6小时,冷却到室温,减压蒸馏去除溶剂,得到中间体
P25‑3。
[0094] 测试目标产物P25‑3的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C26H15NO3,计算值为389.1,测试值为389.3。
[0095] (3)将中间体P25‑3(2.0mmol)、4‑溴苯胺(2.4mmol)、DMAP(0.04mmol)和Et3N(6.0mmol)加入到干燥的DCM(20mL)中,在氮气氛围、室温下反应12h,加入2mmol/L的HCl溶
液,然后用DCM萃取,用水洗涤,并采用无水硫酸钠干燥,过滤和蒸发后,加入20mL醋酸酐混
合物在回流下搅拌6小时。冷却至室温,减压蒸馏去除溶剂,用硅胶柱层析纯化粗品,得到化
合物P25‑4。
[0096] 测试目标产物P25‑4的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C32H19BrN2O2,计算值为542.1,测试值为542.0。
[0097] (4)将中间产物P25‑4(1.5mmol)和醋酸钾(4.0mmol)与干燥的1,4‑二氧六环(20ml)、Pd(dppf)Cl2(0.1mmol)和联硼酸频那醇酯(5.0mmol)混合,在90℃氮气氛围下搅拌
48小时。得到的中间体冷却到室温后加到水中,然后通过硅藻土垫过滤,滤液用二氯甲烷萃
取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到
中间产物P25‑5。
[0098] 测试目标产物P25‑5的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C38H31BN2O4,计算值为590.2,测试值为590.0。
[0099] (5)将P25‑5(2.0mmol)、P25‑6(2.0mmol)和Pd(PPh3)4(0.2mmol)加入到甲苯(30ml)/乙醇(20ml)和碳酸钾(24mmol)水溶液(20ml)的混合物中,在氮气氛围下回流反应
12h。将得到的混合物冷却到室温后加到水中,然后通过硅藻土垫过滤,滤液用二氯甲烷萃
取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到
最终产物P25。
[0100] 测试目标产物P25的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C47H29N5O2,计算值为695.2,测试值为695.0。
[0101] 元素分析:理论值C,81.13;H,4.20;N,10.07;测试值C,81.13;H,4.21;N,10.06。
[0102] 实施例4
[0103] 化合物P28的合成
[0104] 合成路线如下:
[0105]
[0106] 具体制备方法具体包括以下步骤:
[0107] (1)将P28‑1(10.0mmol)、RuCl3(1.0mmol)、DBU(10.0mmol)、溶解在DME(25mL)中,在氧气环境下110℃反应30h。冷却到室温,碘甲烷(50.0mmol)、K2CO3(50.0mmol),在室温下,
搅拌反应6个小时。反应结束后,用乙酸乙酯萃取。然后用50mL水洗涤三次,并采用无水硫酸
镁干燥,过滤和蒸发后,取出有机相,旋蒸去除溶剂,用体积比为1:5的乙酸乙酯/石油醚的
混合溶液为淋洗液,进行硅胶柱层析,得固体产物P28‑2。
[0108] 测试目标产物P28‑2的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C28H20BrNO4,计算值为513.1,测试值为513.2。
[0109] (2)将中间体P28‑2(3.0mmol)溶解在THF/CH3OH=3:1(160mL)的溶液中,加入NaOH(5.0mmol),在氮气氛围下回流,反应6h;将反应液冷却到室温,减压蒸馏去除溶剂,将剩余
的固体溶于150mL的水中,然后加入到HCl溶液(6M,18mL)酸化,然后过滤得到白色固体,真
空干燥后,将固体溶于15mL乙酸酐回流6小时,冷却到室温,减压蒸馏去除溶剂,得到中间体
P28‑3。
[0110] 测试目标产物P28‑3的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C26H14BrNO3,计算值为467.0,测试值为467.3。
[0111] (3)将中间产物P28‑3(1.5mmol)和醋酸钾(4.0mmol)与干燥的1,4‑二氧六环(20ml)、Pd(dppf)Cl2(0.1mmol)和联硼酸频那醇酯(5.0mmol)混合,在90℃氮气氛围下搅拌
48小时。得到的中间体冷却到室温后加到水中,然后通过硅藻土垫过滤,滤液用二氯甲烷萃
取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到
中间产物P28‑4。
[0112] 测试目标产物P28‑4的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C32H26BNO5,计算值为515.2,测试值为515.3。
[0113] (4)将P28‑4(2.0mmol)、P25‑6(2.0mmol)和Pd(PPh3)4(0.2mmol)加入到甲苯(30ml)/乙醇(20ml)和碳酸钾(24mmol)水溶液(20ml)的混合物中,在氮气氛围下回流反应
12h。将得到的混合物冷却到室温后加到水中,然后通过硅藻土垫过滤,滤液用二氯甲烷萃
取,然后用水洗涤,并采用无水硫酸镁干燥,过滤和蒸发后,用硅胶柱层析纯化粗产物得到
最终产物P28‑5。
[0114] 测试目标产物P28‑5的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C41H24N4O3,计算值为620.2,测试值为620.3。
[0115] (5)将中间体P28‑5(2.0mmol)、苯胺(2.4mmol)、DMAP(0.04mmol)和Et3N(6.0mmol)加入到干燥的DCM(20mL)中,在氮气氛围、室温下反应12h,加入2mmol/L的HCl溶液,然后用
DCM萃取,用水洗涤,并采用无水硫酸钠干燥,过滤和蒸发后,加入20mL醋酸酐混合物在回流
下搅拌6小时。冷却至室温,减压蒸馏去除溶剂,用硅胶柱层析纯化粗品,得到化合物P28。
[0116] 测试目标产物P28的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C47H29N5O2,计算值为695.2,测试值为695.0。
[0117] 元素分析:理论值C,81.13;H,4.20;N,10.07;测试值C,81.14;H,4.21;N,10.06。
[0118] 实施例5
[0119] 化合物P32的合成
[0120] 合成路线如下:
[0121]
[0122] (1)将中间体P1‑3(2.0mmol)、4‑吡啶苯胺(2.4mmol)、DMAP(0.04mmol)和Et3N(6.0mmol)加入到干燥的DCM(20mL)中,在氮气氛围、室温下反应12h,加入2mmol/L的HCl溶
液,然后用DCM萃取,用水洗涤,并采用无水硫酸钠干燥,过滤和蒸发后,加入20mL醋酸酐混
合物在回流下搅拌6小时。冷却至室温,减压蒸馏去除溶剂,用硅胶柱层析纯化粗品,得到化
合物P32。
[0123] 测试目标产物P32的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C37H23N3O2,计算值为541.2,测试值为541.0。
[0124] 元素分析:理论值C,82.05;H,4.28;N,7.76;测试值C,82.04;H,4.27;N,7.76。
[0125] 实施例6
[0126] 化合物P133的合成
[0127] 合成路线如下:
[0128]
[0129] 具体制备方法具体包括以下步骤:
[0130] (1)将P133‑1(10.0mmol)、RuCl3(1.0mmol)、DBU(10.0mmol)、溶解在DME(25mL)中,在氧气环境下110℃反应30h。冷却到室温,碘甲烷(50.0mmol)、K2CO3(50.0mmol),在室温下,
搅拌反应6个小时。反应结束后,用乙酸乙酯萃取。然后用50mL水洗涤三次,并采用无水硫酸
镁干燥,过滤和蒸发后,取出有机相,旋蒸去除溶剂,用体积比为1:5的乙酸乙酯/石油醚的
混合溶液为淋洗液,进行硅胶柱层析,得固体产物P133‑2。
[0131] 测试目标产物P133‑2的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C22H16O5,计算值为360.1,测试值为360.0。
[0132] (2)将中间体P133‑2(3.0mmol)溶解在THF/CH3OH=3:1(160mL)的溶液中,加入NaOH(5.0mmol),在氮气氛围下回流,反应6h;将反应液冷却到室温,减压蒸馏去除溶剂,将
剩余的固体溶于150mL的水中,然后加入到HCl溶液(6M,18mL)酸化,然后过滤得到白色固
体,真空干燥后,将固体溶于15mL乙酸酐回流6小时,冷却到室温,减压蒸馏去除溶剂,得到
中间体P133‑3。
[0133] 测试目标产物P133‑3的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C20H10O4,计算值为314.1,测试值为314.3。
[0134] (3)将中间体P133‑3(2.0mmol)、苯胺(2.4mmol)、DMAP(0.04mmol)和Et3N(6.0mmol)加入到干燥的DCM(20mL)中,在氮气氛围、室温下反应12h,加入2mmol/L的HCl溶
液,然后用DCM萃取,用水洗涤,并采用无水硫酸钠干燥,过滤和蒸发后,加入20mL醋酸酐混
合物在回流下搅拌6小时。冷却至室温,减压蒸馏去除溶剂,用硅胶柱层析纯化粗品,得到化
合物P133。
[0135] 测试目标产物P133的结构:通过基质辅助激光解吸电离飞行时间质谱分析得MALDI‑TOF MS(m/z):C26H15NO3,计算值为389.1,测试值为389.1。
[0136] 元素分析:理论值C,80.19;H,3.88;N,3.60;测试值C,80.18;H,3.89;N,3.61。
[0137] 运用密度泛函理论(DFT),针对表1中的化合物,利用Gaussian 09程序包在B3LYP/6‑31G(d)计算水平下,优化并计算得到了分子前线轨道的分布情况;同时基于含时密度泛
函理论(TD‑DFT),模拟计算了分子的LUMO能级、HOMO能级、单线态能级T1和三线态能级T1。
测试结果如表1所示。
[0138] 表1化合物的能级值
[0139]
[0140] 由上表1可以看出,本发明的化合物显示出合适的HOMO与LUMO能级以及很高的三线态ET,可以有效地实现主体材料与客体材料之间的能量传递且不会有电荷回传的风险。
[0141] 器件实施例1
[0142] 本实施例提供一种OLED器件,如图1所示,OLED器件包括:基板1、ITO阳极2、、第一空穴传输层3、第二空穴传输层4、电子阻挡层5、发光层6、第一电子传输层7、第二电子传输
层8、、阴极9(镁银电极)和覆盖层10,其中ITO阳极2的厚度是10nm,第一空穴传输层3的厚度
是10nm,第二空穴传输层4的厚度是95nm,电子阻挡层的厚度是30nm,发光层6的厚度是
30nm,第一电子传输层7的厚度是30nm,第二电子传输层8的厚度是5nm,镁银电极9的厚度是
15nm,覆盖层10的厚度是100nm。
[0143] 本发明的OLED器件的制备步骤如下:
[0144] 1)将玻璃基板1切成50mm×50mm×0.7mm的大小,分别在异丙醇和去离子水中超声处理30分钟,然后暴露在臭氧下约10分钟来进行清洁;将所得的具有ITO阳极2的玻璃基板1
安装到真空沉积设备上;
[0145] 2)在真空度为2×10‑6Pa下,在ITO阳极层2上,通过真空蒸镀方式蒸镀空穴注入层材料HT1∶HAT‑CN,化合物HT1与HAT‑CN的质量比例为98:2,得到厚度为10nm的层,该层作为
第一空穴传输层3;
[0146] 3)在第一空穴传输层3上真空蒸镀本发明的材料P1,厚度为95nm,作为第二空穴传输层4;
[0147] 4)在第二空穴传输层4上真空蒸镀电子阻挡层5材料为Prime‑1,厚度为30nm,作为电子阻挡层5;
[0148] 5)在电子阻挡层5上共沉积发光层6,发光层6的主体材料为BH,客体材料为BD‑1,化合物BH与BD‑1的质量比为97:3,厚度为30nm;
[0149] 6)在发光层6上真空蒸镀第一电子传输层7,第一电子传输层7的材料为ET‑1,厚度为30nm;
[0150] 7)在第一电子传输层7上真空蒸镀第二电子传输层8,第二电子传输层8的材料为LiF,厚度为5nm;
[0151] 8)在第二电子传输层8上真空蒸镀镁银,制得厚度为15nm的阴极9,其中,质量比Mg:Ag为9:1;
[0152] 9)在阴极9上真空蒸镀高折射率的空穴型材料CPL‑1,厚度为100nm,作为阴极覆盖层(盖帽层或CPL)10使用。
[0153] 本实施例涉及的化合物及其结构如下所示:
[0154]
[0155]
[0156] 器件实施例2
[0157] 器件实施例2与器件实施例1的区别仅在于,将空穴传输层材料替换为本发明的的化合物P2。
[0158] 器件实施例3
[0159] 器件实施例3与器件实施例1的区别仅在于,将空穴传输层材料替换为本发明的化合物P10。
[0160] 器件实施例4
[0161] 器件实施例4与器件实施例1的区别仅在于,将空穴传输层材料替换为本发明的化合物P19。
[0162] 器件实施例5
[0163] 器件实施例5与器件实施例实施例1的区别仅在于,将发光主体材料替换为本发明的化合物P25。
[0164] 器件实施例6
[0165] 器件实施例6与器件实施例实施例1的区别仅在于,将发光主体材料替换为本发明的化合物P28。
[0166] 器件实施例7
[0167] 器件实施例7与器件实施例实施例1的区别仅在于,将发光主体材料替换为本发明的化合物P32。
[0168] 器件实施例8
[0169] 器件实施例8与器件实施例1的区别仅在于,将空穴传输层材料替换为本发明的化合物P36。
[0170] 器件实施例9
[0171] 器件实施例9与器件实施例实施例1的区别仅在于,将发光主体材料替换为本发明的化合物P70。
[0172] 器件实施例10
[0173] 器件实施例10与器件实施例实施例1的区别仅在于,将发光主体材料替换为本发明的化合物P81。
[0174] 器件实施例11
[0175] 器件实施例11与器件实施例实施例1的区别仅在于,将发光主体材料替换为本发明的化合物P133。
[0176] 器件实施例12
[0177] 器件实施例12与器件实施例实施例1的区别仅在于,将发光主体材料替换为本发明的化合物P178。
[0178] 器件对比例1
[0179] 器件对比例1与器件实施例1的区别仅在于,将空穴传输层材料替换为表2中相应的化合物HT‑Ref.。
[0180]
[0181] 器件对比例2
[0182] 器件对比例2与器件实施例1的区别仅在于,将发光主体材料替换为
[0183] 表2中相应的化合物Host‑Ref.。
[0184]
[0185] 用Keithley 2365A数字纳伏表测试根据实施例以及对比例中制造的有机光电装置在不同电压下的电流,然后用电流除以发光面积得到有机光电装置的在不同电压下的电
流密度。用Konicaminolta CS‑2000分光辐射亮度计测试根据实施例以及对比例制作的有
机光电装置在不同电压下的亮度和辐射能流密度。根据有机光电装置在不同电压下的电流
2
密度和亮度,得到在相同电流密度下(10mA/cm)的电流效率(CE,cd A‑1);在上述测得的电
2
流‑电压‑亮度曲线中对应10mA/cm下的电压为器件的驱动电压Von;通过测量OLED器件的
2
亮度达到初始亮度的95%时的时间而获得寿命LT95(在50mA/cm 测试条件下)。测试结果如
表2所示。
[0186] 表2器件发光性能测试结果
[0187]
[0188]
[0189] 由表2的数据可知,本发明提供的化合物用作有机电致发光器件的空穴传输层材料和发光主体材料,能够提高器件的发光效率,降低驱动电压,延长使用寿命。其中,采用本
发明所述化合物的OLED器件的电流效率达到4.9cd A‑1以上,驱动电压低于3.83V,LT95寿
命寿达67h以上,这些性能明显优于对比器件1和对比器件2。
[0190] 本发明的又一方面还提供一种显示装置,其包括如上文所述的有机发光显示面板。
[0191] 在本发明中,有机发光器件可以是OLED,其可以用在有机发光显示装置中,其中有机发光显示装置可以是手机显示屏、电脑显示屏、电视显示屏、智能手表显示屏、智能汽车
显示面板、VR或AR头盔显示屏、各种智能设备的显示屏等。图3是根据本发明实施例提供的
一种显示装置的示意图。在图3中,20表示手机显示面板,30表示显示装置。
[0192] 以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。