一种听力保护装置防护爆炸脉冲波性能评估系统转让专利

申请号 : CN202010998595.X

文献号 : CN112255319B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 柳占立施汇斌杜智博向书毅庄茁崔一南宁少武王兴皓

申请人 : 清华大学

摘要 :

本发明公开了一种听力保护装置防护爆炸脉冲波性能评估系统,属于听力保护装置防护技术领域。包括:性能测试平台和有限元评估模型,有限元评估模型用于为听力保护装置筛选出装置参数;性能测试平台包含爆炸脉冲波发生装置、声学测量装置和信号处理系统;爆炸脉冲波发生装置用于模拟真实情况下的爆炸脉冲波;声学测量装置用于测量听力保护装置对爆炸脉冲波进行防护的声压数据;信号处理系统用于采集爆炸脉冲参数和声压数据,以此确定听力保护装置防护爆炸脉冲波的性能参数。使用本申请提供的听力保护装置防护爆炸脉冲波性能评估系统,解决了听力保护装置防护爆炸脉冲波性能实验不确定性大,无法保证听力保护装置的有效防护性能的问题。

权利要求 :

1.一种听力保护装置防护爆炸脉冲波性能评估系统,其特征在于,包含性能测试平台和有限元评估模型;

其中,所述有限元评估模型用于为待测试的听力保护装置筛选出装置参数,所述装置参数为表征所述听力保护装置的形状、大小、材料的参数;

所述性能测试平台包括爆炸脉冲波发生装置、声学测量装置和信号处理系统;

其中,所述爆炸脉冲波发生装置用于模拟真实情况下的爆炸脉冲波;所述声学测量装置用于测量所述听力保护装置在所述装置参数下对所述爆炸脉冲波进行防护的声压数据;

所述信号处理系统用于采集所述爆炸脉冲波发生装置发出的所述爆炸脉冲波的参数和所述声学测量装置测量的所述声压数据,并根据所述爆炸脉冲波的参数和所述声压数据,确定所述听力保护装置在所述装置参数下防护所述爆炸脉冲波的性能参数;

其中,所述有限元评估模型基于耳道鼓膜简化模型,根据加载的多种爆炸脉冲波的参数,确定所述听力保护装置的装置参数,所述有限元评估模型采用浸没边界元法进行流固耦合仿真。

2.根据权利要求1所述的听力保护装置防护爆炸脉冲波性能评估系统,其特征在于,所述有限元评估模型分为耳罩评估有限元模型和耳塞评估有限元模型;

其中所述耳罩评估有限元模型用于筛选所述听力保护装置为耳罩时的装置参数,所述耳塞评估有限元模型用于筛选所述听力保护装置为耳塞时的装置参数。

3.根据权利要求1所述的听力保护装置防护爆炸脉冲波性能评估系统,其特征在于,所述爆炸脉冲波发生装置为爆炸线装置,其中,所述爆炸线装置中通过控制爆炸线的粗细来调节所述爆炸脉冲波的参数。

4.根据权利要求1所述的听力保护装置防护爆炸脉冲波性能评估系统,其特征在于,所述声学测量装置包括人体头部模型、耳部模型及压力传感器,所述压力传感器设置在所述耳部模型上。

5.根据权利要求4所述的听力保护装置防护爆炸脉冲波性能评估系统,其特征在于,所述压力传感器有两个,一个所述压力传感器用于测量所述耳部模型的耳廓外场压力P0,另一个所述压力传感器用于测量所述耳部模型的鼓膜附近压力P1;

所述信号处理系统根据测量得到的在有所述听力防护装置条件下的所述外场压力P0和所述鼓膜附近压力P1,确定所述外场压力P0对应的第一声压级、以及所述鼓膜附近压力P1对应的第二声压级,根据所述第一声压级和所述第二声压级之间的差值,确定所述听力保护装置在所述装置参数下防护所述爆炸脉冲波的衰减性能参数。

6.根据权利要求4所述的听力保护装置防护爆炸脉冲波性能评估系统,其特征在于,所述压力传感器用来测量所述耳部模型的鼓膜附近的压力值;

所述信号处理系统获得所述鼓膜附近在有听力防护装置条件下所述压力传感器测得的第三声压值、所述鼓膜附近在无听力防护装置条件下所述压力传感器测得的第四声压值,并确定所述第三声压值对应的第三声压级以及所述第四声压值对应的第四声压级,根据所述第三声压级和所述第四声压级之间的差值,确定所述听力保护装置在所述装置参数下防护所述爆炸脉冲波的防护性能参数。

7.根据权利要求1所述的听力保护装置防护爆炸脉冲波性能评估系统,其特征在于,所述有限元评估模型采用阶梯形圆筒流场。

说明书 :

一种听力保护装置防护爆炸脉冲波性能评估系统

技术领域

[0001] 本发明涉及听力保护装置防护技术领域,特别是涉及一种听力保护装置防护爆炸脉冲波性能评估系统。

背景技术

[0002] 对于长期暴露于高水平脉冲波的战斗人员和特殊行业的工作者来说,必须保证其佩戴的听力保护装置的有效防护性能,而现有的听力保护装置的评估方法无法满足此要
求。其次,听力保护装置的防护爆炸脉冲波性能主要由人体颞骨实验和生物实验的结果来
表征,不确定性显著增加。

发明内容

[0003] 鉴于上述问题,提出了一种听力保护装置防护爆炸脉冲波性能评估系统,通过有限元评估模型筛选出不同使用环境下的听力保护装置装置参数,其次,通过性能测试平台
模拟真实情况下的爆炸脉冲波,并对听力保护装置的防护爆炸脉冲波性能进行精确评估,
解决了实验不确定性大,无法保证听力保护装置的有效防护性能的问题。
[0004] 依据本发明的一个方面,提供了一种听力保护装置防护爆炸脉冲波性能评估系统,包括:性能测试平台和有限元评估模型;
[0005] 其中,所述有限元评估模型用于为待测试的听力保护装置筛选出装置参数,所述装置参数为表征所述听力保护装置的形状、大小、材料的参数;
[0006] 所述性能测试平台包括爆炸脉冲波发生装置、声学测量装置和信号处理系统;
[0007] 其中,所述爆炸脉冲波发生装置用于模拟真实情况下的爆炸脉冲波;所述声学测量装置用于测量所述听力保护装置在所述装置参数下对所述爆炸脉冲波进行防护的声压
数据;
[0008] 所述信号处理系统用于采集所述爆炸脉冲波发生装置发出的所述爆炸脉冲波的参数和所述声学测量装置测量的所述声压数据,并根据所述爆炸脉冲波的参数和所述声压
数据,确定所述听力保护装置在所述装置参数下防护所述爆炸脉冲波的性能参数。
[0009] 可选地,所述有限元评估模型基于耳道鼓膜简化模型,根据加载的多种爆炸脉冲波的参数,确定所述听力保护装置的装置参数。
[0010] 可选地,所述有限元评估模型分为耳罩评估有限元模型和耳塞评估有限元模型;
[0011] 其中所述耳罩评估有限元模型用于筛选所述听力保护装置为耳罩时的装置参数,所述耳塞评估有限元模型用于筛选所述听力保护装置为耳塞时的装置参数。
[0012] 可选地,所述爆炸脉冲波发生装置为爆炸线装置,其中,所述爆炸线装置中通过控制爆炸线的粗细来调节所述爆炸脉冲波的参数。
[0013] 可选地,所述声学测量装置包括人体头部模型、耳部模型及压力传感器,所述压力传感器设置在所述耳部模型上。
[0014] 可选地,所述压力传感器有两个,一个所述压力传感器用于测量所述耳部模型的耳廓外场压力P0,另一个所述压力传感器用于测量所述耳部模型的鼓膜附近压力P1;
[0015] 所述信号处理系统根据测量得到的在有所述听力防护装置条件下的所述外场压力P0和所述鼓膜附近压力P1,确定所述外场压力P0对应的第一声压级、以及所述鼓膜附近
压力P1对应的第二声压级,根据所述第一声压级和所述第二声压级之间的差值,确定所述
听力保护装置在所述装置参数下所述防护爆炸脉冲波的衰减性能参数。
[0016] 可选地,所述压力传感器用来测量所述耳部模型的鼓膜附近的压力值;所述信号处理系统获得所述鼓膜附近在有听力防护装置条件下所述压力传感器测得的第三声压值、
所述鼓膜附近在无听力防护装置条件下所述压力传感器测得的第四声压值,并确定所述第
三声压值对应的第三声压级以及所述第四声压值对应的第四声压级,根据所述第三声压级
和所述第四声压级之间的差值,确定所述听力保护装置在所述装置参数下防护所述爆炸脉
冲波的防护性能参数。
[0017] 可选地,所述有限元评估模型采用阶梯形圆筒流场。
[0018] 可选地,所述有限元评估模型采用浸没边界元法进行流固耦合仿真。
[0019] 有益效果:
[0020] 本发明提供的听力保护装置防护爆炸脉冲波性能评估系统,通过有限元评估模型和性能测试平台相结合;有限元评估模型筛选出不同使用环境下的听力保护装置装置参
数,性能测试平台模拟真实情况下的爆炸脉冲波,以对不同使用环境下的听力保护装置装
置的防护性能进行试验评估,从而完成对听力保护装置的防护爆炸脉冲波性能的精确评
估,解决了听力保护装置防护爆炸脉冲波性能实验不确定性大,无法保证听力保护装置的
有效防护性能的问题。

附图说明

[0021] 通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明
的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
[0022] 图1示出了本发明实施例一的一种听力保护装置防护爆炸脉冲波性能评估系统的性能测试平台结构示意图;
[0023] 图2示出了本发明实施例一的一种听力保护装置防护爆炸脉冲波性能评估系统的耳部模型结构示意图;
[0024] 图3示出了本发明实施例一的一种听力保护装置防护爆炸脉冲波性能评估系统的耳罩评估有限元模型剖视图;
[0025] 图4示出了本发明实施例一的一种听力保护装置防护爆炸脉冲波性能评估系统的耳塞评估有限元模型剖视图;
[0026] 附图标记说明:1、真空泵;2、SF6气体;3、真空阀;4、闸阀;5、快速开关;6、爆炸线;7、声学测量装置;8、电阻;9、电容器;10、电源;11、电阻;12、开关;13、信号处理系统;14、第
一压力传感器;15、耳廓;16、第二压力传感器;17、鼓膜;18、第一阶梯形圆筒流场;19、耳罩
模型;20、第二阶梯形圆筒流场;21、耳塞模型。

具体实施方式

[0027] 下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例
所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本发明的范围
完整的传达给本领域的技术人员。
[0028] 实施例一
[0029] 一种听力保护装置防护爆炸脉冲波性能评估系统,包括:性能测试平台和有限元评估模型;
[0030] 其中,所述有限元评估模型用于为待测试的听力保护装置筛选出装置参数,所述装置参数为表征所述听力保护装置的形状、大小、材料的参数;
[0031] 参照图1,示出了本发明实施例一的一种听力保护装置防护爆炸脉冲波性能评估系统的性能测试平台结构图,如图1所示,所述性能测试平台包括爆炸脉冲波发生装置、声
学测量装置7和信号处理系统13;
[0032] 其中,所述爆炸脉冲波发生装置用于模拟真实情况下的爆炸脉冲波;所述声学测量装置7用于测量所述听力保护装置在所述装置参数下对所述爆炸脉冲波进行防护的声压
数据;
[0033] 所述爆炸脉冲波即瞬时产生爆炸时产生的脉冲信号;当爆炸脉冲波发生装置模拟出真实情况下的爆炸脉冲波时,爆炸脉冲信号传入声学测量装置7,声学测量装置7根据实
验目的,测量出多种防护情况下不同位置的声压值。
[0034] 所述信号处理系统13用于采集所述爆炸脉冲波发生装置发出的所述爆炸脉冲波的参数和所述声学测量装置7测量的所述声压数据,并根据所述爆炸脉冲波的参数和所述
声压数据,确定所述听力保护装置在所述装置参数下防护所述爆炸脉冲波的性能参数。
[0035] 所述信号处理系统13一端与所述爆炸脉冲波发生装置连接,用于采集所述爆炸脉冲波发生装置模拟出的爆炸脉冲波参数;另一端与声学测量装置7连接,用于采集声学测量
装置7测量出的多种防护情况下不同位置的声压值;所述信号处理系统13通过计算分析得
出所述听力保护装置防护所述爆炸脉冲波的性能参数。
[0036] 本发明实施方式中,通过有限元评估模型和性能测试平台相结合;有限元评估模型筛选出不同使用环境下的听力保护装置装置参数,性能测试平台模拟真实情况下的爆炸
脉冲波,并对听力保护装置的防护爆炸脉冲波性能进行精确评估,解决了听力保护装置防
护爆炸脉冲波性能实验不确定性大,无法保证听力保护装置的有效防护性能的问题。
[0037] 基于上述听力保护装置防护爆炸脉冲波性能评估系统,本发明提供以下一些具体可实施方式的示例,在互不抵触的前提下,各个示例之间可任意组合,以形成一种新的听力
保护装置防护爆炸脉冲波性能评估系统,应当理解的,对于由任意示例所组合形成的新的
一种听力保护装置防护爆炸脉冲波性能评估系统,均应落入本发明的保护范围。
[0038] 在本发明实施例中,所述有限元评估模型采用耳道鼓膜简化模型,根据加载多种爆炸脉冲波参数,确定所述听力保护装置的装置参数;由于耳道直径较小,爆炸线6传入的
脉冲波的作用可以近似用平面波作用代替,因此可以采用简化流场的模型即耳道鼓膜简化
模型分析计算,将三维脉冲波等效于二维平面波进行分析计算,简化了有限元评估模型的
计算过程。
[0039] 在本发明实施例中,有限元评估模型分为耳罩评估有限元模型和耳塞评估有限元模型;耳罩评估有限元模型用于筛选所述听力保护装置为耳罩时的装置参数,耳塞评估有
限元模型用于筛选所述听力保护装置为耳塞时的装置参数,参考图3,示出了本发明实施例
一的一种听力保护装置防护爆炸脉冲波性能评估系统的耳罩评估有限元模型剖视图,如图
3所示,模拟采用的是直径为50mm的单边耳罩,根据实际情况可以调节耳罩和流场大小,鼓
3 7
膜17的厚度为0.1mm,密度为1200kg/m ,弹性模量为径向模量Er=3.5×10Pa,周向模量Ec
7
=2.0×10 Pa;分别就不同类型听力保护装置建立有限元模型,能够更加精准对不同类型
听力保护装置的防护爆炸脉冲波性能进行精确评估;
[0040] 在本发明实施例中,所述爆炸脉冲波发生装置为爆炸线装置,即当短的高电流脉冲通过爆炸线6时,爆炸线6会迅速经受焦耳热并蒸发;充电和放电两个基本电路连接到电
容器9,电容器9由高压电源充电;放电电路通过一个快速断开的高压开关5连接到电容器,
该快速开关5的闭合将电容器9连接到导线;该动作使存储的电荷流过爆炸线,从而产生非
常大的电流脉冲;然后,爆炸线6会产生非常快速的焦耳热,导致其液化和蒸发,而体积几乎
没有变化,产生非常热且致密的汽化金属柱,该柱开始迅速膨胀,产生爆炸波;所述爆炸线
装置中通过控制爆炸线6的粗细来调节所述爆炸脉冲波的参数,以此模拟真实情况下的爆
炸脉冲波。
[0041] 在本发明实施例中,所述声学测量装置7包括人体头部模型、耳部模型及压力传感器,参考图2,示出了本发明实施例一的一种听力保护装置防护爆炸脉冲波性能评估系统的
耳部模型结构示意图,如图2所示,所述压力传感器设置在耳部模型上;所述压力传感器用
于测量其设置位置的声压值并将其测量出的声压值传导至信号处理系统,所述压力传感器
的测量范围为0‑690kPa,灵敏度为7.25mV/kPa。
[0042] 在其中一个实施方式中,如图2所示,所述压力传感器可以有两个,一个所述压力传感器14安装在所述耳部模型的耳廓外边沿位置,用于测量所述耳部模型在有听力保护装
置情况下的耳廓15外场压力P0,另一个所述压力传感器16安装在所述耳部模型的鼓膜17附
近,用于测量所述耳部模型在有听力保护装置情况下的鼓膜17附近压力P1;此种情况下,可
以利用公式SPL=20lg(P/Pat),分别计算所述耳廓15外场压力P0及所述鼓膜17附近压力P1
‑5
所对应的声压级SPL(P0)和SPL(P1);Pat表示空气中的参考声压,其值为2×10 Pa,计算SPL
(P0)和SPL(P1)二者的差值,该二者的差值也可以称为噪声衰减值,来评估听力保护装置防
护爆炸脉冲波的衰减性能参数。
[0043] 该衰减性能参数是用于表征听力保护装置对于时变噪声信号的防护性能,能实时同步的提供时变噪声信号在进入听力保护装置前后的衰减情况。
[0044] 在又一种实施方式中,所述压力传感器可以是一个,安装在耳部模型的鼓膜17附近,用来测量所述耳部模型的鼓膜17附近的压力值;所述信号处理系统13获得所述鼓膜17
附近在有听力防护装置条件下所述压力传感器测得的第三声压值,以及所述鼓膜17附近在
无听力防护装置条件下所述压力传感器测得的第四声压值,利用公式SPL=20lg(P/Pat),
计算得出对应的第三声压级和第四声压级,其中,Pat表示空气中的参考声压,其值为2×10
‑5
Pa。之后,根据所述第三声压级和所述第四声压级之间的差值,确定所述听力保护装置在
所述装置参数下防护爆炸脉冲波的防护性能参数,该二者的差值也可以称为插入损失值。
该防护性能参数是用于表征听力保护装置施加前后参考测量点的声压级的差异程度,其可
以准确地说明听力保护装置对鼓膜处特征点的防护能力的强弱,有利于区分不同听力保护
装置防护能力的差异。
[0045] 在实际的应用过程中,可以选择其中衰减性能参数或者防护性能参数作为听力保护装置的性能参数。
[0046] 在本发明实施例中,所述有限元评估模型采用阶梯形圆筒流场,由于耳道直径较小,采用其他形式流场容易出现绕流的现象,而采用阶梯形圆筒流场可以避免发生绕流现
象。如图3所示,第一阶梯形圆筒流场18直径为50mm,能够使耳罩完全位于流场中,第一阶梯
形圆筒流场18直径较小段与外耳道相切,直径较大段等于耳罩直径,经过有限元计算分析,
第一阶梯形圆筒流场18较大段长度为30mm,较小段长度为34.5mm,第一阶梯形圆筒流场18
整体长度为65.5mm,其中耳廓15外部流场长度为30mm,直径随听力保护装置的直径确定;参
考图4,示出了本发明实施例一的一种听力保护装置防护爆炸脉冲波性能评估系统的耳塞
评估有限元模型剖视图,如图4所示,第二阶梯形圆筒流场20直径为26mm,耳道入口直径为
12mm,耳廓15宽度为26mm,第二阶梯形圆筒流场20较大段长度为30mm,较小段长度为
34.5mm,插入深度为10mm,直径为10.4mm,鼓膜17的厚度为0.1mm。
[0047] 在本发明实施例中,所述有限元评估模型采用浸没边界元法进行流固耦合仿真;采用浸没边界元法模拟流体中的动边界问题,避免了传统贴体网格方法在求解流体中存在
固体间碰撞问题时网格出现负体积的问题。
[0048] 应当理解地,本发明说明书尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所
以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修
改。
[0049] 最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作
之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意
在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包
括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品
或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要
素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
[0050] 以上对本发明所提供的一种听力保护装置防护爆炸脉冲波性能评估系统,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的
说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依
据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容
不应理解为对本发明的限制。