微流芯片及其制造方法转让专利

申请号 : CN202011196145.5

文献号 : CN112295623B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 范谦曹荣兵倪贤锋华斌顾星

申请人 : 苏州汉骅半导体有限公司

摘要 :

本发明提供一种微流芯片的制造方法,包括:提供衬底和盖片;在所述衬底上设置第一标记;在所述盖片上设置第二标记;在衬底上形成微流柱组和沟槽;将第一标记和第二标记对准;得到键合结构,所述微流柱组与所述盖片构成微流道;利用混合切割工艺对所述键合结构进行切割以得到独立的微流芯片。进一步的,本发明还提供一种微流芯片,包括:形成有微流柱组和沟槽的衬底和键合在所述衬底上的盖片。在本发明中,设置第一标记和第二标记并将二者对准以使所述衬底和所述盖片的晶向能够保持一致,再利用混合切割工艺切割可以避免碎屑杂质堵塞芯片内部的微流道的情况,提高了微流芯片的制造良率。

权利要求 :

1.一种微流芯片的制造方法,其特征在于,包括:分别提供一衬底和一盖片;

在所述衬底上设置至少两个第一标记;

在所述盖片上设置至少两个第二标记;

刻蚀所述衬底以形成多个微流柱组和多个沟槽,所述沟槽设于所述微流柱组的两相对侧;

将所述第一标记和所述第二标记一一对应地上下对准以使所述衬底的晶向与所述盖片的晶向一致;

利用键合工艺将所述盖片键合在所述衬底上以得到键合结构,其中,所述微流柱组与所述盖片构成微流道,一侧的所述沟槽与所述盖片构成流道入口,另一侧的所述沟槽与所述盖片构成流道出口;

利用混合切割工艺对所述键合结构进行切割以得到多个独立的微流芯片,其中,利用混合切割工艺对所述键合结构进行切割的步骤包括:第一步骤:利用红外摄像头透过所述键合结构的表面来确定所述第二标记、所述第一标记、所述微流柱组和所述沟槽的位置从而确定各所述微流芯片的边界位置;

第二步骤:根据所述微流芯片的边界位置,沿Y轴方向对所述键合结构进行激光隐形切割,直至所述键合结构表面的不同区域均完成所述激光隐形切割,其中,所述流道入口和所述流道出口均位于所述键合结构沿Y轴方向的激光切割线上;

第三步骤:根据所述微流芯片的边界位置,沿X轴方向对所述键合结构进行机械切割直至所述键合结构表面的不同区域均完成所述机械切割以得到多个条状的键合芯片;

第四步骤:沿所述键合芯片上的激光切割线,对所述键合芯片施加垂直于键合芯片表面的外力进行裂片,以使所述键合芯片分隔成若干独立的微流芯片。

2.根据权利要求1所述的微流芯片的制造方法,其特征在于,所述衬底的材质和所述盖片的材质均为单晶硅。

3.根据权利要求1所述的微流芯片的制造方法,其特征在于,在所述衬底上设置所述第一标记的步骤包括:

在所述衬底上形成第一保护层和第一光刻胶层;

利用掩模版对所述第一光刻胶层进行光刻以在所述第一光刻胶层中形成至少两个第一开口;

根据所述第一开口,对所述第一保护层和所述衬底进行刻蚀以在所述衬底上形成至少两个所述第一标记。

4.根据权利要求3所述的微流芯片的制造方法,其特征在于,在所述盖片上设置所述第二标记的步骤包括:

在所述盖片上形成第二保护层和第二光刻胶层;

利用与形成所述第一标记相同的掩模板对所述第二光刻胶层进行光刻以在所述第二光刻胶层中形成至少两个第二开口;

根据所述第二开口,利用与形成所述第一标记相同的刻蚀工艺对所述盖片进行刻蚀以在所述盖片上形成至少两个第二标记。

5.根据权利要求1所述的微流芯片的制造方法,其特征在于,在所述第二步骤中,对所述键合结构进行激光隐形切割的步骤包括:沿Y轴方向对所述键合结构的不同表面位置进行聚焦并打激光点以得到多条沿Y轴方向的隐形切割线;

在所述键合结构表面的所有激光点位置,沿Z轴方向对所述键合结构的不同厚度位置进行聚焦打点。

6.根据权利要求5所述的微流芯片的制造方法,其特征在于,所述激光隐形切割的工艺参数包括:激光功率为300mW~1500mW;隐形切割激光所在平台的移动速度为300mm/s~

600mm/s;所述激光点的光斑直径小于或者等于15μm。

7.根据权利要求1所述的微流芯片的制造方法,其特征在于,利用范德华力键合工艺将所述盖片键合在所述衬底上以得到所述键合结构。

8.根据权利要求1所述的微流芯片的制造方法,其特征在于,所述衬底的厚度为100μm~1000μm;所述盖片的厚度为100μm~1000μm。

9.一种微流芯片,其特征在于,包括:衬底,所述衬底上形成有微流柱组和沟槽,所述沟槽设于所述微流柱组的两相对侧;以及

盖片,所述盖片通过键合工艺键合在所述衬底上并且所述衬底的晶向与所述盖片的晶向一致,其中,所述微流柱组与所述盖片构成微流道,一侧的所述沟槽与所述盖片构成流道入口,另一侧的所述沟槽与所述盖片构成流道出口。

说明书 :

微流芯片及其制造方法

技术领域

[0001] 本发明涉及半导体器件制造技术领域,特别涉及一种微流芯片及其制造方法。

背景技术

[0002] 微流控(Microfluidics)芯片,是一种利用半导体MEMS技术制作微米级别的机械结构,用来达到精确操控微尺度流体的运动,从而控制流体媒介中物质的制备、反应、检测
等操作,在生物、化学、医疗等领域有广阔的应用前景。以雾化微流芯片为例,这是一种内部
集成有多个微流道的芯片结构,通过微流道控制多股液体在出口处受压缩或者相交并产生
碰撞从而将液体雾化成微米级液滴,通常在吸入式给药装置中应用比较广泛,雾化微流芯
片被要求为喷雾稳定、雾滴细小、均匀和雾化效率高。
[0003] 目前市面上制造微流芯片的方法通常是:首先将硅衬底进行微纳加工工艺形成微流道,然后将盖片,如玻璃、PDMS等对硅衬底进行覆盖以及键合,最后采用传统的砂轮划片
工艺对晶圆片进行切割以得到单独的微流芯片。利用砂轮划片工艺划片时因接触式切割产
生大量的热,所以需要水冷却或者水流冲洗,但是砂轮划片会产生大量的碎屑杂质,水流冲
洗时容易使得碎屑杂质堵塞芯片微流道的出口和入口,造成微流芯片不良率的升高。此外,
采用砂轮划片工艺切割的芯片边缘位置有崩缺,划片痕迹较宽,造成较大的划片槽损。

发明内容

[0004] 本发明的目的在于提供一种微流芯片及其制造方法,以解决制造微流芯片时,芯片微流道的出口和入口被杂质堵塞的问题。另外,通过采用晶向方向一致的单晶硅材料作
为盖片和衬底,解决激光隐形切割裂片以后边缘粗糙的问题。
[0005] 为解决上述技术问题,本发明提供一种微流芯片的制造方法,包括:
[0006] 分别提供一衬底和一盖片;
[0007] 在所述衬底上设置至少两个第一标记;
[0008] 在所述盖片上设置至少两个第二标记;
[0009] 刻蚀所述衬底以形成多个微流柱组和多个沟槽,所述沟槽设于所述微流柱组的两相对侧;
[0010] 将所述第一标记和所述第二标记一一对应地上下对准以使所述衬底的晶向与所述盖片的晶向一致;
[0011] 利用键合工艺将所述盖片键合在所述衬底上以得到键合结构,其中,所述微流柱组与所述盖片构成微流道,一侧的所述沟槽与所述盖片构成流道入口,另一侧的所述沟槽
与所述盖片构成流道出口;
[0012] 利用混合切割工艺对所述键合结构进行切割以得到多个独立的微流芯片。
[0013] 可选的,在所述微流芯片的制造方法中,所述衬底的材质和所述盖片的材质均为单晶硅。
[0014] 可选的,在所述微流芯片的制造方法中,在所述衬底上设置所述第一标记的步骤包括:
[0015] 在所述衬底上形成第一保护层和第一光刻胶层;
[0016] 利用掩模版对所述第一光刻胶层进行光刻以在所述第一光刻胶层中形成至少两个第一开口;
[0017] 根据所述第一开口,对所述第一保护层和所述衬底进行刻蚀以在所述衬底上形成至少两个所述第一标记。
[0018] 可选的,在所述微流芯片的制造方法中,在所述盖片上设置所述第二标记的步骤包括:
[0019] 在所述盖片上形成第二保护层和第二光刻胶层;
[0020] 利用与形成所述第一标记相同的掩模板对所述第二光刻胶层进行光刻以在所述第二光刻胶层中形成至少两个第二开口;
[0021] 根据所述第二开口,利用与形成所述第一标记相同的刻蚀工艺对所述盖片进行刻蚀以在所述盖片上形成至少两个第二标记。
[0022] 可选的,在所述微流芯片的制造方法中,利用混合切割工艺对所述键合结构进行切割的步骤包括:
[0023] 第一步骤:利用红外摄像头透过所述键合结构的表面来确定所述第二标记、所述第一标记、所述微流柱组和所述沟槽的位置从而确定各所述微流芯片的边界位置;
[0024] 第二步骤:根据所述微流芯片的边界位置,沿Y轴方向对所述键合结构进行激光隐形切割,直至所述键合结构表面的不同区域均完成所述激光隐形切割,其中,所述流道入口
和所述流道出口均位于所述键合结构沿Y轴方向的激光切割线上;
[0025] 第三步骤:根据所述微流芯片的边界位置,沿X轴方向对所述键合结构进行机械切割直至所述键合结构表面的不同区域均完成所述机械切割以得到多个条状的键合芯片;
[0026] 第四步骤:沿所述键合芯片上的激光切割线,对所述键合芯片施加外力进行裂片,以使所述键合芯片分隔成若干独立的微流芯片。
[0027] 可选的,在所述微流芯片的制造方法中,在所述第二步骤中,对所述键合结构进行激光隐形切割的步骤包括:
[0028] 沿Y轴方向对所述键合结构的不同表面位置进行聚焦并打激光点以得到多条沿Y轴方向的隐形切割线;
[0029] 在所述键合结构表面的所有激光点位置,沿Z轴方向对所述键合结构的不同厚度位置进行聚焦打点。
[0030] 可选的,在所述微流芯片的制造方法中,所述激光隐形切割的工艺参数包括:激光功率为300mW 1500mW;隐形切割激光所在平台的移动速度为300mm/s 600mm/s;所述激光点
~ ~
的光斑直径小于或者等于15μm。
[0031] 可选的,在所述微流芯片的制造方法中,利用范德华力键合工艺将所述盖片键合在所述衬底上以得到所述键合结构。
[0032] 可选的,在所述微流芯片的制造方法中,所述衬底的厚度为100μm 1000μm;所述盖~
片的厚度为100μm 1000μm。
~
[0033] 基于同一发明构思,本发明还提供一种微流芯片,包括:
[0034] 衬底,所述衬底上形成有微流柱组和沟槽,所述沟槽设于所述微流柱组的两相对侧;以及
[0035] 盖片,所述盖片通过键合工艺键合在所述衬底上并且所述衬底的晶向与所述盖片的晶向一致,其中,所述微流柱组与所述盖片构成微流道,一侧的所述沟槽与所述盖片构成
流道入口,另一侧的所述沟槽与所述盖片构成流道出口。
[0036] 综上,本发明提供一种微流芯片的制造方法,包括:提供衬底和盖片;在所述衬底上设置第一标记;在所述盖片上设置第二标记;在衬底上形成微流柱组和沟槽;将所有的第
一标记和第二标记对准;利用键合工艺将所述盖片键合在所述衬底上以得到键合结构,所
述微流柱组与所述盖片构成微流道;利用混合切割工艺对所述键合结构进行切割以得到独
立的微流芯片。进一步的,本发明还提供一种微流芯片,包括:形成有微流柱组和沟槽的衬
底和键合在所述衬底上的盖片,所述衬底的晶向与所述盖片的晶向一致。在本发明中,设置
第一标记和第二标记并将二者对准以使所述衬底和所述盖片的晶向能够保持一致,再利用
混合切割工艺切割可以避免碎屑杂质堵塞芯片内部的微流道的情况,提高了微流芯片的制
造良率。

附图说明

[0037] 图1是本发明实施例的微流芯片的制造方法的流程图;
[0038] 图2是本发明实施例的衬底的俯视示意图;
[0039] 图3是本发明实施例的盖片的俯视示意图;
[0040] 图4是本发明实施例的微流芯片的结构示意图;
[0041] 其中,附图标记说明如下:
[0042] 100‑微流芯片,110‑衬底,111‑流道入口,112‑流道出口,113‑微流柱组,120‑盖片,200‑第一标记,210‑第二标记。

具体实施方式

[0043] 以下结合附图和具体实施例对本发明提出的微流芯片及其制造方法作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化
的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,
附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时
会采用不同的比例。
[0044] 本发明提供一种微流芯片的制造方法,参考图1,图1是本发明实施例的微流芯片的制造方法的流程图,所述微流芯片的制造方法包括:
[0045] S10:分别提供一衬底和一盖片;
[0046] S20:在所述衬底上设置至少两个第一标记;
[0047] S30:在所述盖片上设置至少两个第二标记;
[0048] S40:刻蚀所述衬底以形成多个微流柱组和多个沟槽,所述沟槽设于所述微流柱组的两相对侧;
[0049] S50:将所述第一标记和所述第二标记一一对应地上下对准以使所述衬底的晶向与所述盖片的晶向一致;
[0050] S60:利用键合工艺将所述盖片键合在所述衬底上以得到键合结构;
[0051] S70:利用混合切割工艺对所述键合结构进行切割以得到多个独立的微流芯片。
[0052] 请参考图2、图3和图4,其中,图2是本发明实施例的衬底的俯视示意图,图3是本发明实施例的盖片的俯视示意图,图4是本发明实施例的微流芯片的结构示意图,接下来本实
施例详细说明所述微流芯片的制造方法。
[0053] 首先,分别提供一衬底110和一盖片120。具体的,所述衬底110的材质和所述盖片120的材质可以均为单晶硅,由于后道工艺中将整块晶圆分割成若干独立的微流芯片时需
要进行激光隐形切割,所以为了保证微流芯片切割裂片时微流道边缘光滑无缺口,本发明
的所述衬底110的材质和所述盖片120的材质需要保证完全相同。所述衬底110的厚度为100
μm 1000μm;所述盖片120的厚度为100μm 1000μm。
~ ~
[0054] 接着,如图2所示,在所述衬底110上设置若干第一标记200。具体的,设置所述第一标记200的步骤主要包括:首先,在所述衬底110上形成第一保护层和第一光刻胶层;然后,
利用掩模版对所述第一光刻胶层进行光刻以在所述第一光刻胶层中形成至少两个第一开
口;最后,根据所述第一开口,对所述第一保护层进行刻蚀移除,露出所述衬底,采用的刻蚀
方法可以是湿法腐蚀,也可是等离子体干法腐蚀。然后对第一开口内暴露出来的所述衬底
进行各向异性湿法刻蚀以在所述衬底110上形成至少两个所述第一标记200。如图2所示,本
实施例以在所述衬底110上形成两个所述第一标记200为例。其中,各向异性湿法刻蚀工艺
可以根据衬底110的晶向在衬底上刻蚀出一倒棱锥形的所述第一开口,用于后续与盖片上
的第二开口完全对准,从而使得二者的晶向完全一致。所述第一保护层的材料包括但不限
于氮化硅,二氧化硅,氧化铝,金属等。
[0055] 进一步的,如图3所示,在所述盖片120上设置若干第二标记210。具体的,设置所述第二标记210的步骤包括:首先,在所述盖片120上形成第二保护层和第二光刻胶层;然后,
利用与形成所述第一标记200相同的掩模板对所述第二光刻胶层进行光刻以在所述第二光
刻胶层中形成至少两个第二开口;最后,根据所述第二开口,利用与形成第一标记200相同
的刻蚀工艺对所述盖片进120行刻蚀以在所述盖片120上形成至少两个第二标记210。同样
的,如图3所示,本实施例以在所述盖片120上形成两个所述第二标记210为例。在本实施例
中,形成所述第一标记200和所述第二标记的210的掩模版(光罩)需要完全相同,这样所述
第一标记200和所述第二标记的210在后道工艺中才能够对准。所有的所述第一标记200可
以是沿着单晶硅衬底的某一晶向设置,例如100晶向或111晶向等等,所述第二标记210需要
沿着单晶硅盖片的与所述第一标记200相同的晶向设置,即本发明需要保证所述第一标记
200和所述第二标记210设置在其基版的相同的晶向上。所述第二保护层可以使用与所述第
一保护层相同的材料。
[0056] 然后,如图2和图4所示,刻蚀所述衬底110以形成多个微流柱组113和多个沟槽,所述沟槽设于所述微流柱组113的两相对侧。所述沟槽开设于沿Y轴方向的所述微流柱组113
之间的间隔位置,即开设于沿Y轴的激光隐形切割线(虚线)侧,从而使得后道工艺形成的所
述流道入口111和所述流道出口112均位于所述键合结构沿Y轴方向的激光切割线上,其中,
需要注意的是,所述第一标记200与所述微流柱组113和所述沟槽的位置必须是错开的,需
要保证所述第一标记200不会影响到所述微流柱组113和所述沟槽的形貌。
[0057] 接着,将所述第一标记200和所述第二标记210一一对应地上下对准以使所述衬底110的晶向与所述盖片120的晶向一致。具体的,利用红外摄像头将所述第一标记200和所述
第二标记210一一对应地上下对准。对准所述第一标记200和所述第二标记210可以使得所
述衬底110的晶向与所述盖片120的晶向完全一致,从而在后续的激光隐形切割中,芯片沿Y
轴方向的切割边缘不会产生毛刺和崩缺的缺陷,也不会产生切割槽损。
[0058] 进一步的,利用键合工艺将所述盖片120键合在所述衬底110上以得到键合结构。具体的,所述衬底110上形成的微流柱组113可以和所述盖片120构成微流芯片的微流道,位
于所述微流柱组113一侧的所述沟槽与所述盖片120构成流道入口111,位于所述微流柱组
113另一侧的所述沟槽120与所述盖片构成流道出口112。在本实施例中,利用范德华力键合
工艺将所述盖片120固定在所述衬底110上以得到键合结构,具体的可以是,首先对衬底110
和盖片120的进行清洗,去除剩余的第一保护层和剩余的第二保护层露出硅表面,保证待键
合表面的粗糙度小于1nm;然后通过O2或N2等离子体轰击所述衬底110和盖片120表面使其
活化,最后通过第一标记和第二标记将所述衬底和盖片进行对准,以达到晶向指向一致的
目的进行对准贴合,并辅以高温加热的过程使得硅原子之间形成稳定的化学键,从而得到
最终的所述键合晶圆结构。
[0059] 最后,利用混合切割工艺对所述键合结构进行切割以得到若干独立的微流芯片。具体的,利用混合切割工艺对所述键合结构进行切割的步骤包括:
[0060] 第一步骤:利用红外摄像头透过所述键合结构的表面来确定所述第二标记200、所述第一标记210、所述微流柱组113和所述沟槽的位置从而确定各所述微流芯片100的边界
位置;
[0061] 第二步骤:根据所述微流芯片100的边界位置,沿Y轴方向对所述键合结构进行激光隐形切割直至所述键合结构表面的不同区域均完成所述激光隐形切割,其中,所述流道
入口111和所述流道出口112均位于所述键合结构沿Y轴方向的激光切割线上。具体的,因为
激光隐形切割工艺切割可以避免产生碎屑杂质,所以所述流道入口和所述流道出口均位于
所述键合结构沿Y轴方向的激光切割线上可以避免碎屑杂质堵塞芯片内部的微流道的情
况,提高了微流芯片的良率。此外,所述激光隐形切割过程中,可以控制聚焦点位置避开微
流道区域,使得微流道出入口边缘光滑无崩缺,从而避免了切割槽损。另外,由于衬底和盖
片的材料相同且晶向一致,后续可以通过定向裂片的方式分割,故激光聚焦的次数也可以
降低,节省了加工时间。具体的,对所述键合结构进行激光隐形切割的步骤包括:沿Y轴方向
对所述键合结构的不同表面位置进行聚焦并打激光点以得到多条沿Y轴方向的激光切割
线;在所述键合结构表面的所有激光点位置,沿Z轴方向对所述键合结构的不同厚度位置进
行聚焦打点,聚焦的z轴位置可以避开微流道区域;
[0062] 第三步骤:根据所述微流芯片100的边界位置,沿X轴方向对所述键合结构进行机械切割直至所述键合结构表面的不同区域均完成所述机械切割以得到多个键合芯片,具体
的,机械切割可以是砂轮划片工艺,机械切割可以直接将所述键合结构沿X轴方向(实线)分
割成一段一段的条状的键合芯片;
[0063] 第四步骤:沿所述条状的键合芯片上的激光切割线对所述键合芯片施加垂直于键合表面的外力进行裂片,以使所述键合芯片分隔成如图4所示的若干独立的微流芯片100。
[0064] 在本实施例中,先沿Y轴方向进行激光隐形切割可以避免碎屑杂质堵塞芯片内部的微流道的情况,而且由于激光切割线是沿着特定的晶向进行,且键合的衬底和盖片的晶
向一致,所以裂片后的芯片侧面即为特定的晶面;再沿X轴方向进行机械切割获得的条状的
键合芯片可以降低裂片的难度,同时又不会对Y轴方向上的进出口产生污染;最后施加外力
将机械切割后的条状的键合芯片裂片成一个个独立的微流芯片,避免了对微流道进出口的
损伤;这样的混合切割工艺既提高了制造微流芯片的效率,又提高了微流芯片的良率。
[0065] 其中,所述激光隐形切割的工艺参数包括:激光功率为300mW 1500mW;隐形切割激~
光所在平台的移动速度为300mm/s 600mm/s;所述激光点的光斑直径小于或者等于15μm。
~
[0066] 基于同一发明构思,本发明还提供一种微流芯片,如图4所示,所述微流芯片包括:衬底110,所述衬底110上形成有微流柱组113和沟槽,所述沟槽设于所述微流柱组113的两
相对侧;以及盖片120,所述盖片120通过键合工艺键合在所述衬底110上并且所述衬底110
的晶向与所述盖片120的晶向一致,其中,所述微流柱组113与所述盖片120构成微流道,一
侧的所述沟槽与所述盖片120构成流道入口111,另一侧的所述沟槽与所述盖片120构成流
道出口112。
[0067] 综上,本发明提供一种微流芯片的制造方法,包括:提供衬底和盖片;在所述衬底上设置第一标记;在所述盖片上设置第二标记;在衬底上形成微流柱组和沟槽;将所有的第
一标记和第二标记对准;利用键合工艺将所述盖片键合在所述衬底上以得到键合结构,所
述微流柱组与所述盖片构成微流道;利用混合切割工艺对所述键合结构进行切割以得到独
立的微流芯片。进一步的,本发明还提供一种微流芯片,包括:形成有微流柱组和沟槽的衬
底和键合在所述衬底上的盖片,所述衬底的晶向与所述盖片的晶向一致。在本发明中,设置
第一标记和第二标记并将二者对准以使所述衬底和所述盖片的晶向能够保持一致,再利用
混合切割工艺切割所述键合结构可以避免碎屑杂质堵塞芯片内部的微流道的情况,提高了
微流芯片的制造良率,同时也可以提高生产效率。
[0068] 上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护
范围。