一种Cr3+掺杂的锶铟磷酸盐宽带近红外发光材料及制备方法转让专利

申请号 : CN202011075440.5

文献号 : CN112300797B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 宋振刘天瑶蔡昊安雅静刘泉林

申请人 : 北京科技大学

摘要 :

本发明公开了一种Cr3+掺杂的锶铟磷酸盐宽带近红外发光材料及制备方法,其化学通式为:Sr3In1‑x‑yMyP3O12:xCr3+,其中:M为Sc、Lu元素中的一种或多种,0.001≤x≤0.11,0≤y≤1。所述的近红外发光材料属于立方晶系,具有与Sr3InP3O12相同类型的晶体结构,空间群为I‑43d。本发明材料激发光谱较宽,激发波长在250‑600nm范围内,可以被紫外光和可见光激发,其发射波长范围为700‑1100nm。该发明与蓝光或紫外光LED芯片匹配可用于制造宽带近红外光源,在食品无损质量分析和人类生理状态非侵入性检测等领域具有重要的应用价值。本发明制备工艺简单,原料价格低廉,易于工业化生产。

权利要求 :

3+ 3+

1.一种Cr 掺杂的锶铟磷酸盐宽带近红外发光材料,其特征在于其化学通式为:Cr 掺3+

杂宽带近红外发光材料Sr3In1‑x‑yMyP3O12:xCr ,其中:M为Sc、Lu元素中的一种或多种,0.001≤x≤0.11,0≤y≤1;

3+ 3+

所述Cr 掺杂宽带近红外发光材料Sr3In1‑x‑yMyP3O12:xCr 属于立方晶系,具有与Sr3InP3O12相同的晶体结构,空间群为I‑43d;

3+

所述的Cr 掺杂宽带近红外发光材料被紫外及可见光激发,产生强烈的近红外发射,最佳激发波长在400‑550nm范围内,发射波长范围为700‑1100nm。

3+

2.一种如权利要求1所述的Cr 掺杂的锶铟磷酸盐宽带近红外发光材料的制备方法,其特征在于包括以下步骤:

3+

1)称量物料:按照无机化合物通式Sr3In1‑x‑yMyP3O12:xCr 的化学计量比,依次称量高纯度SrCO3,In2O3,Lu2O3,Sc2O3,NH4H2PO4以及Cr2O3,称取适量助熔剂;

2)将步骤1)称量所得到的粉体置于玛瑙研钵中,加入少量酒精进行研磨,研磨时间为20‑40分钟,等其干燥后置于高温氧化铝坩埚中;

3)将高温氧化铝坩埚置于箱式炉并设定程序进行预烧,以1‑3℃/min的升温速度加热至900℃,保温2‑6小时,随炉冷却至室温,将样品重新研磨成粉末;

4)将步骤3)研磨后的粉末再次转移到高温氧化铝坩埚中,并置于箱式炉中,升温至900℃~1300℃,在高温条件下保温煅烧3‑10小时,再以5‑10℃/min的降温速度冷却至800℃,之后随炉冷却至室温;

5)将冷却得到的块状粉体进行再次研磨,得到具有与Sr3InP3O12相同空间结构的近红外发光材料;

6)进行后处理工艺,分级去除杂质;

所述步骤1)中,助熔剂为碱金属卤化物、碱土金属卤化物,Bi2O3,H3BO3中的至少一种;相对于原料的总重量,助熔剂的用量为1‑10wt%。

3+

3.如权利要求2所述的Cr 掺杂的锶铟磷酸盐宽带近红外发光材料的制备方法,其特征在于:所述步骤3)中,采用碳酸盐为原料时进行预烧,预烧的温度900℃,保温时间为2‑6h;

采用磷酸盐为原料,升温速率为1‑3℃/min。

3+

4.如权利要求2所述的Cr 掺杂的锶铟磷酸盐宽带近红外发光材料的制备方法,其特征在于:所述步骤6)中,除杂过程包括酸洗、碱洗或水洗;后处理过程包括破碎、气流粉碎、除杂、烘干、分级;分级过程采用沉阵法、筛分法、水力分级和气流分级中至少一种。

3+

5.按照权利要求2所述制备方法制备的Cr 掺杂的近红外发光材料配合紫外和蓝光LED芯片,制成新型发光器件;或者同时使用所述的宽带近红外发光材料配合有机材料、陶瓷或玻璃,制成发射波长范围为700‑1100nm的新型发光材料。

说明书 :

3+

一种Cr 掺杂的锶铟磷酸盐宽带近红外发光材料及制备方法

技术领域

[0001] 本发明涉及一种宽带近红外发光材料的制备及应用方法,属于近红外发光材料技术领域,所述的近红外发光材料可应用于食品无损质量分析、生物活体成像和标记示踪等
领域。

背景技术

[0002] 近红外光是电磁光谱上介于可见光区与中红外光区之间的不可见光。由于近红外光的分析技术包含了C‑H,O‑H和N‑H等化学键信息,能够提供生物组织和有机材料的特征数
据,因此近红外光可用作食品无损质量分析。此外,近红外光在生物体内具有很强的穿透能
力,常作为生物探针进行医学生物活体成像。
[0003] 发光材料由基质和激活剂构成。对于宽带近红外发光材料的激活剂,近几年的研3+ 3+
究主要集中在过渡金属离子,这其中三价铬离子(Cr )是最理想的选择。 Cr 的3d能级受
离子周围配位环境影响较大,对外界晶体场环境强度十分敏感,易于调控。不同配位结构对
3+
Cr 施加的晶体场强度不同,产生的发射光谱的峰位和宽度也不同,且发射波长强烈依赖于
3+ 4 4 2 2
晶体场强度:Cr 在弱场情况下,以 A2g→ T2g的宽带发射为主;在强场情况下,以 T1g/Eg→
4
A2g的窄带发射为主。目前已发现的近红外发光材料主要存在发光效率不高,发射波长范围
较窄等问题,基于目前人们追求健康和环保的背景,研发发光效率更高、发射波长范围更宽
的新型近红外发光材料具有重要的科学意义和应用前景。

发明内容

[0004] 为了克服现有近红外发光材料的不足,本发明主要解决的技术问题是提供一种3+
Cr 掺杂的具有Sr3InP3O12晶体结构类型的锶铟磷酸盐宽带近红外发光材料,其发射波长范
围宽,化学稳定性好,为相关研究和应用领域提供了更好的发光材料选择。
[0005] 本发明的另一优点是该材料制备工艺简单,原料价格低廉,易于大规模推广与量产。
[0006] 本发明通过以下技术方案实现:一种Cr3+掺杂的锶铟磷酸盐宽带近红外发光材料,3+ 3+
其特征在于其化学通式为:Cr 掺杂宽带近红外发光材料Sr3In1‑x‑yMyP3O12: xCr ,其中:M为
Sc、Lu元素中的一种或多种,0.001≤x≤0.11,0≤y≤1。
[0007] 进一步地,所述Cr3+掺杂宽带近红外发光材料Sr3In1‑x‑yMyP3O12:xCr3+属于立方晶系,具有与Sr3InP3O12相同的晶体结构,空间群为I‑43d。
[0008] 进一步地,所述的Cr3+掺杂宽带近红外发光材料可以被紫外及可见光激发,产生强烈的近红外发射,最佳激发波长在400‑550nm范围内,发射波长范围为 700‑1100nm。
[0009] 本发明材料在250‑600nm范围的激发下发射波长范围在700‑1100nm的近红外光,尤其是在470nm的激发下产生800‑830nm较为明显的特征峰。
[0010] 如上所述Cr3+掺杂的锶铟磷酸盐宽带近红外发光材料的制备方法,包括以下步骤:
[0011] 1)称量物料:按照无机化合物通式Sr3In1‑x‑yMyP3O12:xCr3+的化学计量比,依次称量高纯度SrCO3,In2O3,Lu2O3,Sc2O3,NH4H2PO4以及Cr2O3,称取适量助熔剂;
[0012] 2)将步骤1)称量所得到的粉体置于玛瑙研钵中,加入少量酒精进行研磨,研磨时间为20‑40分钟,等其干燥后置于高温氧化铝坩埚中;
[0013] 3)将高温氧化铝坩埚置于箱式炉并设定程序进行预烧,以1‑3℃/min的升温速度加热至900℃,保温2‑6小时,随炉冷却至室温,将样品重新研磨成粉末;
[0014] 4)将步骤3)研磨后的粉末再次转移到高温氧化铝坩埚中,并置于箱式炉中,升温至900℃~1300℃,在高温条件下保温煅烧3‑10小时,再以5‑10℃/min 的降温速度冷却至
800℃,之后随炉冷却至室温;
[0015] 5)将冷却得到的块状粉体进行再次研磨,得到具有与Sr3InP3O12相同空间结构的近红外发光材料;
[0016] 6)进行后处理工艺,分级去除杂质。
[0017] 进一步地,所述的近红外发光材料的制备方法步骤1)中,助熔剂可为碱金属卤化物、碱土金属卤化物,Bi2O3,H3BO3中的其中至少一种。相对于原料的总重量,助熔剂的用量
为1‑10wt%。
[0018] 进一步地,所述的近红外发光材料的制备方法步骤3)中,采用碳酸盐为原料时进行预烧,预烧的温度900℃,保温时间为2‑6h;采用磷酸盐为原料,升温速率为1‑3℃/min。
[0019] 进一步地,所述的近红外发光材料的制备方法步骤6)中,除杂过程包括酸洗、碱洗或水洗;后处理过程包括破碎、气流粉碎、除杂、烘干、分级;分级过程采用沉阵法、筛分法、
水力分级和气流分级中至少一种。
[0020] 按照如上所述方法制备的Cr3+掺杂的近红外发光材料配合紫外光和蓝光LED 芯片,可制成新型发光器件。
[0021] 按照如上所述制备的近红外发光材料的应用方法,其特征在于用所述的材料配合有机材料、玻璃和陶瓷,可制成新型发射波长为700‑1100nm的近红外宽带发光材料。
[0022] 与现有的近红外荧光粉相比,本发明具有以下优点和更优异的特性:
[0023] 1)激发光谱宽,激发波长范围在250‑600nm,可被紫外、可见光激发,满足激发条件较容易。
[0024] 2)通过特定的制备工艺,可获得发射光谱较宽的近红外荧光粉,发射波长范围在700‑1100nm,位于生物第一窗口,在多领域具有良好的实际应用。
[0025] 3)制备方法简单、安全、易于操作,且原料价格低廉,易于技术推广以及规模量产。

附图说明

[0026] 图1为本发明的实施例一制备样品粉末X射线衍射(XRD)图。
[0027] 图2为本发明的实施例一制备样品粉末激发光谱和发射光谱。
[0028] 图3为本发明的实施例十一制备样品粉末激发光谱和发射光谱。
[0029] 图4为本发明的实施例十二制备样品粉末激发光谱和发射光谱。
[0030] 图5为本发明的实施例十四制备样品粉末激发光谱和发射光谱。

具体实施方式

[0031] 下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
[0032] 实施例一:本实施例化学组成式为Sr3In0.98Cr0.02P3O12的宽带近红外发光材料具体制备方法如下:
[0033] 按化学组成式Sr3In0.98Cr0.02P3O12,根据化学计量比,分别称取SrCO3,In2O3, NH4H2PO4,Cr2O3高纯度原料,置于玛瑙研钵中并加入适量无水乙醇研磨20‑40 分钟,使原料
充分混合均匀,将混合原料转移到氧化铝坩埚中,放入箱式炉中进行预烧,以1‑3℃/min的
升温速度加热至900℃,保温2‑6小时,随炉冷却至室温,将样品重新研磨成粉末。之后将研
磨后的粉末再次转移到高温氧化铝坩埚中,并置于箱式炉中,升温至900℃~1300℃,在高
温条件下保温煅烧3‑10小时,以 5‑10℃/min的降温速度冷却至800℃,之后随炉冷却至室
温。将冷却得到的块状粉体进行再次研磨,酸洗去除杂质,得到Sr3In0.98Cr0.02P3O12近红外发
光材料。
[0034] 实施例二至实施例十五按照表1中的化学组成式及化学计量比称取所需原料,其制备方法与实施例一相同,所合成样品的化学组成,烧结温度,烧结时间和发射主峰波长列
于表1。
[0035] 表1
[0036]
[0037]
[0038] 本发明所制得的实施例一近红外发光材料的X射线衍射谱(XRD)如图1中所示,说明此种近红外发光材料的物相纯度很高。
[0039] 本发明所制得的实施例一近红外发光材料的激发光谱与发射光谱如图2中所示。从测试结果分析,激发光谱包含两个明显的峰位,分别位于310nm、500nm,这两个峰位分别
3+ 4 4 4 4
对应于Cr 的A2g→T1g(4P)、A2g→T1g(4F)两个自旋允许跃迁。在460nm的光照激发条件下,
发射峰值在811nm的近红外光,范围在700‑1100nm。
[0040] 上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受限于以上所述实施例的限制,其他任何在未背离本发明的精神实质与原理下所作的改变、修饰、替代、组
合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。