一种利用主模式分解的功率信号重构方法和系统转让专利

申请号 : CN202011229077.8

文献号 : CN112307997B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 翟明岳翁鸿彬

申请人 : 华北电力大学

摘要 :

本发明的实施例公开一种利用主模式分解的功率信号重构方法和系统,所述方法包括:步骤101:获取按时间顺序采集的信号序列S;步骤102:求取分解级数;步骤103:求取主模式分解因子;步骤104:求取分解系数;步骤105:求取主模式分解函数;步骤106:求取重构后的功率信号。

权利要求 :

1.一种利用主模式分解的功率信号重构方法,其特征在于,包括:步骤101获取按时间顺序采集的信号序列S;

步骤102求取分解级数,具体为:分解级数记为M,所用求取公式为:其中:

N:所述信号序列S的长度,SNR为所述信号序列S的信噪比,表示对 下取整,

max|S|表示所述信号序列S中元素绝对值的最大值,min|S|表示所述信号序列S中元素绝对值的最小值;

步骤103求取主模式分解因子,具体为:第m个主模式分解因子记为am,所用求取公式为:其中:

m=1,2,…,M为级数序号,σ为所述信号序列S的均方差,T为所述信号序列S的采样间隔;

步骤104求取分解系数,具体为:第m个分解系数记为ωm,所用求取公式为:其中:

φ为中间参数矢量,a=[a1,a2,…,aM]为主模式分解因子矢量,divφ表示所述中间参数矢量φ的散度;

步骤105求取主模式分解函数,具体为:第m个主模式分解函数记为求取um,所用求取公式为:

其中:

表示卷积运算,

x为候选矢量,

δ[*]表示自变量为*的δ函数,*表示任一自变量,表示x和ωmS的内积;

步骤106求取重构后的功率信号,具体为:重构后的功率信号记为Snew,所用求取公式为:

其中:

∥*∥F为*的Frobenus范数。

2.一种利用主模式分解的功率信号重构系统,其特征在于,包括:模块201获取按时间顺序采集的信号序列S;

模块202求取分解级数,具体为:分解级数记为M,所用求取公式为:其中:

N:所述信号序列S的长度,SNR为所述信号序列S的信噪比,表示对 下取整,

max|S|表示所述信号序列S中元素绝对值的最大值,min|S|表示所述信号序列S中元素绝对值的最小值;

模块203求取主模式分解因子,具体为:第m个主模式分解因子记为am,所用求取公式为:其中:

m=1,2,…,M为级数序号,σ为所述信号序列S的均方差,T为所述信号序列S的采样间隔;

模块204求取分解系数,具体为:第m个分解系数记为ωm,所用求取公式为:其中:

φ为中间参数矢量,a=[a1,a2,…,aM]为主模式分解因子矢量,divφ表示所述中间参数矢量φ的散度;

模块205求取主模式分解函数,具体为:第m个主模式分解函数记为求取um,所用求取公式为:

其中:

表示卷积运算,

x为候选矢量,

δ[*]表示自变量为*的δ函数,*表示任一自变量,表示x和ωmS的内积;

模块206求取重构后的功率信号,具体为:重构后的功率信号记为Snew,所用求取公式为:

其中:

∥*∥F为*的Frobenus范数。

说明书 :

一种利用主模式分解的功率信号重构方法和系统

技术领域

[0001] 本发明涉及电力领域,尤其涉及一种功率信号的重构方法和系统。

背景技术

[0002] 随着智能电网的发展,家庭用电负荷的分析变得越来越重要。通过用电负荷的分析,家庭用户可以及时获得每个电器的用电信息,以及电费的精细化清单;电力部门可以获
得更详尽的用户用电信息,并可以提高用电负荷预测的准确度,为电力部门提供统筹规划
的依据。同时,利用每个电器的用电信息,可获知用户的用电行为,这对于家庭能耗评估和
节能策略的研究具有指导意义。
[0003] 当前用电负荷分解主要分为侵入式负荷分解和非侵入式负荷分解两种方法。非侵入式负荷分解方法不需要在负荷的内部用电设备上安装监测设备,只需要根据用电负荷总
信息即可获得每个用电设备的负荷信息。非侵入式负荷分解方法具有投入少、方便使用等
特点,因此,该方法适用于家庭负荷用电的分解。
[0004] 非侵入式负荷分解算法中,电气设备的开关事件检测是其中最重要的环节。最初的开关事件检测以有功功率P的变化值作为开关事件检测的判断依据,方便且直观。这是因
为任何一个用电设备的运行状态发生变化,其所消耗的功率值也必然发生改变,并且该改
变也将会在所有电器所消耗的总功率中体现出来。这种方法除了需要设置功率变化值的合
理阈值,还需要解决事件检测方法在实际应用中存在的问题,例如某些电器启动时刻的瞬
时功率值会出现较大的尖峰(马达启动电流远大于额定电流),会造成电器稳态功率变化值
不准确,从而影响对开关事件检测的判断;而且不同家用电器的暂态过程或长或短(脉冲噪
声的持续时间和发生频率相差较大),因此功率变化值的确定变得较为困难;由于电能质量
的变化(如电压突降)有功功率会出现突变的情况,这样很可能会出现误判。同时,功率信号
在采集和传输过程中,相关的仪器设备的运行状态可能暂时处于异常状态,常会造成功率
信号的缺失。
[0005] 因此,开关事件检测过程中,所使用的实测功率信号常常不完整,利用这些不完整的功率信号是不能正确地进行开关事件检测的。因此如何有效地重构不完整的功率信号,
是此方法能否成功的关键。现在常用的方法,对此问题重视不够,还未采取有效的措施解决
此问题。

发明内容

[0006] 如前所述,开关事件检测过程中,所使用的实测功率信号常常不完整,利用这些不完整的功率信号是不能正确地进行开关事件检测的。因此如何有效地重构不完整的功率信
号,是此方法能否成功的关键。现在常用的方法,对此问题重视不够,还未采取有效的措施
解决此问题。
[0007] 本发明的目的是提供一种利用主模式分解的功率信号重构方法和系统,所提出的方法利用了功率信号的连续性,通过主模式分解性质区分功率信号和背景噪声。所提出的
方法具有较好的信号重构性能,计算也较为简单。
[0008] 为实现上述目的,本发明提供了如下方案:
[0009] 一种利用主模式分解的功率信号重构方法,包括:
[0010] 步骤101获取按时间顺序采集的信号序列S;
[0011] 步骤102求取分解级数,具体为:分解级数记为M,所用求取公式为:
[0012]
[0013] 其中:
[0014] N:所述信号序列S的长度,
[0015] SNR为所述信号序列S的信噪比,
[0016] 表示对 下取整,
[0017] max|S|表示所述信号序列S中元素绝对值的最大值,
[0018] min|S|表示所述信号序列S中元素绝对值的最小值;
[0019] 步骤103求取主模式分解因子,具体为:第m个主模式分解因子记为am,所用求取公式为:
[0020]
[0021] 其中:
[0022] m=1,2,···,M为级数序号,
[0023] σ为所述信号序列S的均方差,
[0024] T为所述信号序列S的采样间隔;
[0025] 步骤104求取分解系数,具体为:第m个分解系数记为ωm,所用求取公式为:
[0026]
[0027] 其中:
[0028] φ为中间参数矢量,
[0029] a=[a1,a2,···,aM]为主模式分解因子矢量,
[0030] divφ表示所述主模式分解因子矢量φ的散度;
[0031] 步骤105求取主模式分解函数,具体为:第m个主模式分解函数记为求取um,所用求取公式为:
[0032]
[0033] 其中:
[0034] 表示卷积运算,
[0035] x为候选矢量,
[0036] δ[*]表示自变量为*的δ函数,
[0037] *表示任一自变量,
[0038] 表示x和ωmS的内积;
[0039] 步骤106求取重构后的功率信号,具体为:重构后的功率信号记为Snew,所用求取公式为:
[0040]
[0041] 其中:
[0042] ||*||F为*的Frobenus范数。
[0043] 一种利用主模式分解的功率信号重构系统,包括:
[0044] 模块201获取按时间顺序采集的信号序列S;
[0045] 模块202求取分解级数,具体为:分解级数记为M,所用求取公式为:
[0046]
[0047] 其中:
[0048] N:所述信号序列S的长度,
[0049] SNR为所述信号序列S的信噪比,
[0050] 表示对 下取整,
[0051] max|S|表示所述信号序列S中元素绝对值的最大值,
[0052] min|S|表示所述信号序列S中元素绝对值的最小值;
[0053] 模块203求取主模式分解因子,具体为:第m个主模式分解因子记为am,所用求取公式为:
[0054]
[0055] 其中:
[0056] m=1,2,···,M为级数序号,
[0057] σ为所述信号序列S的均方差,
[0058] T为所述信号序列S的采样间隔;
[0059] 模块204求取分解系数,具体为:第m个分解系数记为ωm,所用求取公式为:
[0060]
[0061] 其中:
[0062] φ为中间参数矢量,
[0063] a=[a1,a2,···,aM]为主模式分解因子矢量,
[0064] divφ表示所述主模式分解因子矢量φ的散度;
[0065] 模块205求取主模式分解函数,具体为:第m个主模式分解函数记为求取um,所用求取公式为:
[0066]
[0067] 其中:
[0068] 表示卷积运算,
[0069] x为候选矢量,
[0070] δ[*]表示自变量为*的δ函数,
[0071] *表示任一自变量,
[0072] 表示x和ωmS的内积;
[0073] 模块206求取重构后的功率信号,具体为:重构后的功率信号记为Snew,所用求取公式为:
[0074]
[0075] 其中:
[0076] ||*||F为*的Frobenus范数。
[0077] 根据本发明提供的具体实施例,本发明公开了以下技术效果:
[0078] 如前所述,开关事件检测过程中,所使用的实测功率信号常常不完整,利用这些不完整的功率信号是不能正确地进行开关事件检测的。因此如何有效地重构不完整的功率信
号,是此方法能否成功的关键。现在常用的方法,对此问题重视不够,还未采取有效的措施
解决此问题。
[0079] 本发明的目的是提供一种利用主模式分解的功率信号重构方法和系统,所提出的方法利用了功率信号的连续性,通过主模式分解性质区分功率信号和背景噪声。所提出的
方法具有较好的信号重构性能,计算也较为简单。

附图说明

[0080] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见,下面描述中的附图仅仅是本发明的一些实施例,
对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得
其他的附图。
[0081] 图1为本发明的方法流程示意图;
[0082] 图2为本发明的系统流程示意图;
[0083] 图3为本发明的具体实施案例流程示意图。

具体实施方式

[0084] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本
发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实
施例,都属于本发明保护的范围。
[0085] 为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
[0086] 图1一种利用主模式分解的功率信号重构方法的流程示意图
[0087] 图1为本发明一种利用主模式分解的功率信号重构方法的流程示意图。如图1所示,所述的一种利用主模式分解的功率信号重构方法具体包括以下步骤:
[0088] 步骤101获取按时间顺序采集的信号序列S;
[0089] 步骤102求取分解级数,具体为:分解级数记为M,所用求取公式为:
[0090]
[0091] 其中:
[0092] N:所述信号序列S的长度,
[0093] SNR为所述信号序列S的信噪比,
[0094] 表示对 下取整,
[0095] max|S|表示所述信号序列S中元素绝对值的最大值,
[0096] min|S|表示所述信号序列S中元素绝对值的最小值;
[0097] 步骤103求取主模式分解因子,具体为:第m个主模式分解因子记为am,所用求取公式为:
[0098]
[0099] 其中:
[0100] m=1,2,···,M为级数序号,
[0101] σ为所述信号序列S的均方差,
[0102] T为所述信号序列S的采样间隔;
[0103] 步骤104求取分解系数,具体为:第m个分解系数记为ωm,所用求取公式为:
[0104]
[0105] 其中:
[0106] φ为中间参数矢量,
[0107] a=[a1,a2,···,aM]为主模式分解因子矢量,
[0108] divφ表示所述主模式分解因子矢量φ的散度;
[0109] 步骤105求取主模式分解函数,具体为:第m个主模式分解函数记为求取um,所用求取公式为:
[0110]
[0111] 其中:
[0112] 表示卷积运算,
[0113] x为候选矢量,
[0114] δ[*]表示自变量为*的δ函数,
[0115] *表示任一自变量,
[0116] 表示x和ωmS的内积;
[0117] 步骤106求取重构后的功率信号,具体为:重构后的功率信号记为Snew,所用求取公式为:
[0118]
[0119] 其中:
[0120] ||*||F为*的Frobenus范数。
[0121] 图2一种利用主模式分解的功率信号重构系统的结构意图
[0122] 图2为本发明一种利用主模式分解的功率信号重构系统的结构示意图。如图2所示,所述一种利用主模式分解的功率信号重构系统包括以下结构:
[0123] 模块201获取按时间顺序采集的信号序列S;
[0124] 模块202求取分解级数,具体为:分解级数记为M,所用求取公式为:
[0125]
[0126] 其中:
[0127] N:所述信号序列S的长度,
[0128] SNR为所述信号序列S的信噪比,
[0129] 表示对 下取整,
[0130] max|S|表示所述信号序列S中元素绝对值的最大值,
[0131] min|S|表示所述信号序列S中元素绝对值的最小值;
[0132] 模块203求取主模式分解因子,具体为:第m个主模式分解因子记为am,所用求取公式为:
[0133]
[0134] 其中:
[0135] m=1,2,···,M为级数序号,
[0136] σ为所述信号序列S的均方差,
[0137] T为所述信号序列S的采样间隔;
[0138] 模块204求取分解系数,具体为:第m个分解系数记为ωm,所用求取公式为:
[0139]
[0140] 其中:
[0141] φ为中间参数矢量,
[0142] a=[a1,a2,···,aM]为主模式分解因子矢量,
[0143] divφ表示所述主模式分解因子矢量φ的散度;
[0144] 模块205求取主模式分解函数,具体为:第m个主模式分解函数记为求取um,所用求取公式为:
[0145]
[0146] 其中:
[0147] 表示卷积运算,
[0148] x为候选矢量,
[0149] δ[*]表示自变量为*的δ函数,
[0150] *表示任一自变量,
[0151] 表示x和ωmS的内积;
[0152] 模块206求取重构后的功率信号,具体为:重构后的功率信号记为Snew,所用求取公式为:
[0153]
[0154] 其中:
[0155] ||*||F为*的Frobenus范数。
[0156] 下面提供一个具体实施案例,进一步说明本发明的方案
[0157] 图3为本发明具体实施案例的流程示意图。如图3所示,具体包括以下步骤:
[0158] 步骤301获取按时间顺序采集的信号序列S;
[0159] 步骤302求取分解级数,具体为:分解级数记为M,所用求取公式为:
[0160]
[0161] 其中:
[0162] N:所述信号序列S的长度,
[0163] SNR为所述信号序列S的信噪比,
[0164] 表示对 下取整,
[0165] max|S|表示所述信号序列S中元素绝对值的最大值,
[0166] min|S|表示所述信号序列S中元素绝对值的最小值;
[0167] 步骤303求取主模式分解因子,具体为:第m个主模式分解因子记为am,所用求取公式为:
[0168]
[0169] 其中:
[0170] m=1,2,···,M为级数序号,
[0171] σ为所述信号序列S的均方差,
[0172] T为所述信号序列S的采样间隔;
[0173] 步骤304求取分解系数,具体为:第m个分解系数记为ωm,所用求取公式为:
[0174]
[0175] 其中:
[0176] φ为中间参数矢量,
[0177] a=[a1,a2,···,aM]为主模式分解因子矢量,
[0178] divφ表示所述主模式分解因子矢量φ的散度;
[0179] 步骤305求取主模式分解函数,具体为:第m个主模式分解函数记为求取um,所用求取公式为:
[0180]
[0181] 其中:
[0182] 表示卷积运算,
[0183] x为候选矢量,
[0184] δ[*]表示自变量为*的δ函数,
[0185] *表示任一自变量,
[0186] 表示x和ωmS的内积;
[0187] 步骤306求取重构后的功率信号,具体为:重构后的功率信号记为Snew,所用求取公式为:
[0188]
[0189] 其中:
[0190] ||*||F为*的Frobenus范数。
[0191] 本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统
而言,由于其与实施例公开的方法相对应,所以描述较为简单,相关之处参见方法部分说明
即可。
[0192] 本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据
本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不
应理解为对本发明的限制。