一种基于嘌呤母体的荧光探针化合物及其制备方法和应用转让专利

申请号 : CN202010185820.8

文献号 : CN112341463B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 郑童童李翰林陈葳陆鸿飞

申请人 : 江苏科技大学

摘要 :

本发明公开了一种基于嘌呤母体的荧光探针化合物,还公开上述荧光探针化合物的制备方法以及在检测钯离子和铜离子方面的应用。本发明以嘌呤环和3‑吲哚甲醛为荧光基团,水合肼为连接基团,合成了一种基于嘌呤母体的荧光探针化合物,所得到的荧光探针化合物对铜钯离子选择性高,检测灵敏度高,因此其具有结构稳定、选择性好、灵敏度高以及低毒性的优点;本发明制备方法步骤简单,原料易得,所得产品为固体粉末,易于存储。

权利要求 :

1.一种基于嘌呤母体的荧光探针化合物,其特征在于:所述化合物具有如下结构式:

2.权利要求1所述的基于嘌呤母体的荧光探针化合物的制备方法,其特征在于,所述方法为:先以嘧啶环母体和噻吩酸为原料,于有机溶剂中进行反应,得到中间体I;再将中间体I溶于有机溶剂中与水合肼反应,得到中间体II;最后将中间体II和3‑吲哚甲醛溶解于有机溶剂中反应得到基于嘌呤母体的荧光探针化合物;

其中,嘧啶环母体的结构式为:噻吩酸的结构式为:

中间体I的结构式为:

中间体II的结构式为:

3.根据权利要求2所述的基于嘌呤母体的荧光探针化合物的制备方法,其特征在于:中间体I具体采用如下方法制得:将嘧啶环母体和2‑噻吩甲酸溶解于有机溶剂中,将混合物料于70~80℃下回流搅拌,反应后将反应物料冷却至室温,去除有机溶剂,水洗,过滤,粗产物用硅胶柱色谱法纯化,得到中间体I,其中,嘧啶环母体与2‑噻吩甲酸的混合摩尔比为1:5~1:6;

所得中间体I的结构式为:

4.根据权利要求3所述的基于嘌呤母体的荧光探针化合物的制备方法,其特征在于:中间体II具体采用如下方法制得:将中间体I和水合肼溶解于有机溶剂中,将混合物料于65℃反应,反应后将反应物料冷却至室温,过滤,用甲醇冲洗所得固体产物,并烘干,得到中间体II,其中,中间体I与水合肼的混合摩尔比为1:5~1:6;

所得中间体II的结构式为:

5.根据权利要求4所述的基于嘌呤母体的荧光探针化合物的制备方法,其特征在于:用中间体II和3‑吲哚甲醛制备荧光探针化合物的具体方法为:将中间体II和3‑吲哚甲醛溶解于有机溶剂中,N2保护下,将混合物料于70~80℃下回流搅拌,反应完成后,将反应物料冷却至室温,减压除去溶剂,将粗产物通过重结晶纯化,得到荧光探针化合物;其中,中间体II与3‑吲哚甲醛的混合摩尔比为1:1.5~1:2。

6.权利要求1所述的基于嘌呤母体的荧光探针化合物在检测溶液中铜离子方面的应用。

7.权利要求1所述的基于嘌呤母体的荧光探针化合物在检测溶液中钯离子方面的应用。

8.权利要求1所述的基于嘌呤母体的荧光探针化合物在同时检测溶液中钯离子和铜离子方面的应用。

说明书 :

一种基于嘌呤母体的荧光探针化合物及其制备方法和应用

技术领域

[0001] 本发明涉及一种基于嘌呤母体的荧光探针化合物,还涉及上述荧光探针化合物的制备方法以及在检测钯离子和铜离子方面的应用,属于荧光探针技术领域。

背景技术

[0002] 铜(Cu)是人体中第三种最丰富和必需的微量元素,并且在各种生理过程(例如细胞呼吸,脑功能和骨骼形成)中发挥关键作用。但是,它的缺乏和超负荷都会导致几种严重
的疾病,例如阿尔茨海默氏病,帕金森氏病,门克斯,代谢紊乱和心脏病。另一方面,作为铂
族元素(PGE)之一的钯,被广泛应用于各个领域,主要是因为催化剂被用于有机分子和各种
药物的合成中。但是,钯的广泛使用不可避免地会对环境和人类健康构成巨大威胁。因此,
2+ 2+
欧洲药品评估局设定,饮用水中Pd 和Cu 的最大饮食摄入量每人每天少于1.5‑15μg和
1.3ppm(1.3mg/L)。

发明内容

[0003] 发明目的:本发明所要解决的技术问题是提供一种基于嘌呤母体的荧光探针化合2+ 2+ 2+
物,该荧光探针化合物既能独立检测溶液中的Pd 或Cu ,也能够同时检测溶液中的Pd 和
2+
Cu ,并且检测时不受溶液中其它金属离子的干扰。
[0004] 本发明还要解决的技术问题是提供上述基于嘌呤母体的荧光探针化合物的制备方法。
[0005] 发明内容:为解决上述技术问题,本发明所采用的技术方案为:
[0006] 一种基于嘌呤母体的荧光探针化合物,所述化合物具有如下结构式:
[0007]
[0008] 上述基于嘌呤母体的荧光探针化合物的制备方法,所述方法为:先以嘧啶环母体和噻吩酸为原料,于有机溶剂中进行反应,得到中间体I;再将中间体I溶于有机溶剂中与水
合肼反应,得到中间体II;最后将中间体II和3‑吲哚甲醛溶解于有机溶剂中反应得到基于
嘌呤母体的荧光探针化合物。
[0009] 其中,中间体I具体采用如下方法制得:
[0010] 将嘧啶环母体和2‑噻吩甲酸溶解于有机溶剂中,将混合物料于70~80℃下回流搅拌,反应后将反应物料冷却至室温,去除有机溶剂,水洗,过滤,粗产物用硅胶柱色谱法纯
化,得到中间体I,其中,嘧啶环母体与2‑噻吩甲酸的混合摩尔比为1∶5~1∶6;
[0011] 所得中间体I的结构式为:
[0012]
[0013] 其中,中间体II具体采用如下方法制得:
[0014] 将中间体I和水合肼溶解于有机溶剂中,将混合物料于高温下反应,反应后将反应物料冷却至室温,过滤,用甲醇冲洗所得固体产物,并烘干,得到中间体II,其中,中间体I与
水合肼的混合摩尔比为1∶5~1∶6;
[0015] 所得中间体II的结构式为:
[0016]
[0017] 其中,用中间体II和3‑吲哚甲醛制备荧光探针化合物的具体方法为:
[0018] 将中间体II和3‑吲哚甲醛溶解于有机溶剂中,N2保护下,将混合物料于70~80℃下回流搅拌,反应完成后,将反应物料冷却至室温,减压除去溶剂,将粗产物通过重结晶纯
化,得到荧光探针化合物;其中,中间体II与3‑吲哚甲醛的混合摩尔比为1∶1.5~1∶2。
[0019] 上述基于嘌呤母体的荧光探针化合物在检测溶液中铜离子或钯离子方面的应用。
[0020] 上述基于嘌呤母体的荧光探针化合物在同时检测溶液中钯离子和铜离子方面的应用。
[0021] 本发明合成方法的反应式为:
[0022]
[0023] 相比于现有技术,本发明技术方案具有的有益效果为:
[0024] 本发明以嘌呤环和3‑吲哚甲醛为荧光基团,水合肼为连接基团,合成了一种基于嘌呤母体的荧光探针化合物,所得到的荧光探针化合物对铜钯离子选择性高,与铜钯离子
反应速度快,检测灵敏度高,本发明的荧光探针化合物具有结构稳定、选择性好、灵敏度高
以及低毒性的优点;本发明制备方法步骤简单,原料易得,所得产品为固体粉末,易于存储。

附图说明

[0025] 图1为实施例1制得的荧光探针化合物随铜钯离子浓度变化的紫外吸收光谱曲线变化图;
[0026] 图2为实施例1制得的荧光探针化合物随钯离子浓度变化的荧光光谱曲线变化图;
[0027] 图3为实施例1制得的荧光探针化合物随铜离子浓度变化的荧光光谱曲线变化图;
[0028] 图4为实施例1制得的荧光探针化合物与钯离子反应的荧光增量对钯离子浓度的工作曲线;
[0029] 图5为实施例1制得的荧光探针化合物与铜离子反应的荧光增量对铜离子浓度的工作曲线;
[0030] 图6为实施例1制得的荧光探针化合物对铜钯离子的选择性响应荧光光谱图;
[0031] 图7为实施例1制得的荧光探针化合物在不同干扰金属离子存在的情况下与铜钯离子反应后的荧光强度变化柱状图;
[0032] 图8为实施例1制得的荧光探针化合物与钯离子反应后的响应时间图;
[0033] 图9为实施例1制得的荧光探针化合物与铜离子反应后的响应时间图;
[0034] 图10为实施例1制得的中间体I化合物的1H NMR图;
[0035] 图11为实施例1制得的中间体I化合物的13C NMR图。
[0036] 图12为实施例1制得的中间体II化合物的1H NMR图;
[0037] 图13为实施例1制得的中间体II化合物的13C NMR图。
[0038] 图14为实施例1制得的荧光探针化合物的1H NMR图;
[0039] 图15为实施例1制得的荧光探针化合物的13C NMR图。

具体实施方式

[0040] 下面结合具体实施例来对本发明技术方案作详细说明。
[0041] 实施例中所选用的以下所有试剂皆为市售分析纯或化学纯。
[0042] 实施例1
[0043] 本发明基于嘌呤母体的荧光探针化合物,采用如下方法制备而成:
[0044] (1)制备中间体I
[0045] 将嘧啶环母体(1.00g,3.70mmol)、2‑噻吩甲酸(2.37g,18.50mmol)、相转移催化剂DTAC(0.10g,10%mmol)、25mL POCl3以及PPA(5.00g,14.80mmol)一起溶解于二甲苯中;将
反应物料于80℃回流搅拌24h,反应完成后,将混合物料冷却至室温,旋干,得到褐色油状
物,加入冰水混合物,有大量固体析出,抽滤,得到粗产物,将粗产物通过硅胶柱色谱法纯
化,使用CH3OH/CH2Cl2(v/v,1/250)洗脱(洗脱剂为将甲醇和二氯甲烷按照体积比1∶250混合
而成),得到中间体I,中间体I为浅黄色固体(0.56g,收率42%);
[0046] 所得中间体I的结构式为:
[0047]
[0048] 本发明制得的中间体I化合物1H NMR(400MHz,DMSO‑d6)δ8.62(s,1H),8.34(dt,J=8.3,1.0Hz,1H),8.19(d,J=8.2Hz,1H),7.92(dd,J=7.3,1.2Hz,1H),7.82‑7.73(m,2H),
7.67‑7.63(m,1H),7.50‑7.46(m,1H),7.30(dd,J=8.4,1.1Hz,1H),6.96(dd,J=5.0,
3.8Hz,1H),6.83(dd,J=3.9,1.2Hz,1H).
[0049] 本发明制得的中间体I化合物13C NMR(101MHz,DMSO‑d6)δ155.70,152.28,150.71,148.35,134.46,132.65,131.73,131.50,130.72,130.57,130.54,130.26,129.09,128.77,
128.35,127.74,126.50,122.33.
[0050] (2)制备中间体II
[0051] 将中间体I(0.29g,0.80mmol)溶解在20mL乙醇中,然后往其中再加入水合肼(0.25g,4mmol);将混合物料于65℃下搅拌3h,反应完成后,将混合物料冷却至室温,会有固
体析出,抽滤,并用冰甲醇冲洗三遍,得到中间体II,中间体II为浅黄色粉末(0.20g,70%);
[0052] 所得中间体II的结构式为:
[0053]
[0054] 本发明制得的中间体II化合物1H NMR(400MHz,DMSO‑d6)δ 8.62(s,1H),8.37‑8.32(m,1H),8.19(d,J=8.1Hz,1H),7.92(dd,J=7.3,1.2Hz,1H),7.82‑7.74(m,2H),7.67‑
7.63(m,1H),7.50‑7.46(m,1H),7.30(dd,J=8.4,1.0Hz,1H),6.96(dd,J=5.0,3.8Hz,1H),
6.83(dd,J=3.9,1.2Hz,1H).
[0055] 本发明制得的中间体II化合物13C NMR(101MHz,DMSO‑d6)δ153.47,144.60,134.42,132.03,131.54,131.01,130.62,129.69,129.02,128.46,128.21,128.14,127.90,
127.49,126.43,122.23,118.09,79.63.
[0056] (3)制备基于嘌呤母体的荧光探针化合物
[0057] 将中间体II(200mg,0.56mmol)和3‑吲哚甲醛(122mg,0.84mmol)溶解于30mL乙醇中,N2保护下,将混合物料于70~80℃下回流搅拌20小时,反应完成后,将反应物料冷却至
室温,减压除去溶剂,将粗产物通过重结晶纯化,得到荧光探针化合物,荧光探针化合物为
黄色粉末(113mg,42%);
[0058] 所得的荧光探针化合物的结构式为:
[0059]
[0060] 本发明制得的荧光探针化合物1H NMR(400MHz,DMSO‑d6)δ11.56(d,J=20.5Hz,2H),9.29(s,1H),8.53(s,1H),8.29(d,J=8.2Hz,1H),8.17(d,J=9.2Hz,2H),7.89‑7.75
(m,3H),7.72‑7.59(m,2H),7.48(dd,J=14.1,7.7Hz,2H),7.38‑7.15(m,3H),6.95(t,J=
4.5Hz,1H),6.72(d,J=3.9Hz,1H).
[0061] 本发明制得的荧光探针化合物13C NMR(100MHz,DMSO‑d6)δ145.61,137.55,134.47,132.42,131.76,130.99,130.71,129.90,129.01,128.47,128.24,127.80,127.50,
126.46,124.95,123.07,122.45,121.04,118.57,112.89,111.95.
[0062] 将实施例1制得的荧光探针化合物在DMSO‑H2O(v/v=3∶2)溶液中进行测试,并用荧光光谱仪和紫外分光光度计进行检测,测试结果如下:
[0063] 如图1所示,荧光探针化合物本身在波长λ=375nm处有较强的紫外吸收,当往溶液中加入钯离子或铜离子后,吸收峰分别发生了38nm(从375到413nm)或42nm(从375到417nm)
的红移。
[0064] 如图2~3所示,荧光探针本身在501nm处有荧光,但随着铜离子或钯离子浓度的增加,探针在501nm处的荧光强度逐渐消失。此外,添加铜离子或钯离子导致探针溶液的荧光
颜色分别从亮黄色变为无色和浅绿色。另外,根据荧光滴定法的Benesi‑Hildebrand方程,
2+ 2+ 4 4
荧光探针与Pd 和Cu 的缔合常数估计为4.21×10和7.38×10 。因此,即使在较低的浓度
2+ 2+
下,荧光探针对Pd 和Cu 也显示出极好的敏感性。
[0065] 如图4~5所示,荧光探针与铜离子和钯离子的反应当量比分别为1∶1和2∶1。
[0066] 如图6所示,加入铜离子和钯离子之后荧光强度发生改变,从强荧光到荧光淬灭,但是加入其他金属离子之后没有产生显著的荧光强度变化,可裸眼识别,说明该荧光探针
对铜离子和钯离子同时具有高识别性,即选择性好。
[0067] 如图7所示,荧光探针在存在其他竞争性金属离子的情况下对铜离子和钯离子表现出高选择性,并且可以用作选择性荧光探针以在相对复杂的环境中识别铜离子和钯离
子。
[0068] 如图8~9所示,荧光探针在501nm处显示出明显的荧光响应,当添加Pd2+时,荧光探2+
针在501nm处的荧光强度立即降低至最小并在3分钟后保持稳定。另一方面,添加Cu 之后,
荧光探针在501nm处的荧光强度逐渐降低,并在15分钟后达到最小值,并在测量时间内保持
2+ 2+
稳定值。这些结果表明,该荧光探针可以快速检测Pd 和Cu 。