一种穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法转让专利

申请号 : CN202011264134.6

文献号 : CN112501559B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 倪俊李辉靳兆峰祁松松范秋林李灿伦景加荣郭腾乔宏

申请人 : 上海卫星装备研究所

摘要 :

本发明公开了一种穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法;该方法为先在聚酰亚胺薄膜基材上制孔,再在带孔聚酰亚胺薄膜基材的一个面上真空蒸发卷绕镀金属铝反射层,最后在镀铝带孔聚酰亚胺薄膜基材的另一面磁控溅射卷绕镀ITO导电层。这样制备的ITO导电层在孔内可以与金属铝反射层叠加起来形成“电连接器”,即使ITO导电层出现局部断裂,亦可通过孔内电连接器连通金属铝反射层来消除静电,从而消除因ITO导电层断裂而无法消除静电的隐患。

权利要求 :

1.一种穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法,其特征在于,所述方法包括如下步骤:

S1、在聚酰亚胺薄膜基材上制孔,得到带孔聚酰亚胺薄膜;

S2、在带孔聚酰亚胺薄膜的一个面上真空蒸发卷绕镀金属铝反射层,得镀铝带孔聚酰亚胺薄膜;

S3、在镀铝带孔聚酰亚胺薄膜的非镀铝侧磁控溅射卷绕镀ITO导电层;在孔内的ITO导电层与金属铝反射层叠加。

2.根据权利要求1所述的穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法,其特征在于,所述聚酰亚胺薄膜的厚度为12.5μm~50μm。

3.根据权利要求1所述的穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法,其特征在于,所述制孔的孔径为1~5mm。

4.根据权利要求1所述的穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法,其特征在于,所述金属铝反射层的厚度为120~150nm。

5.根据权利要求1所述的穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法,其特征在于,所述ITO导电层的厚度为30~40nm。

6.根据权利要求1所述的穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法,其特征在于,步骤S1中,所述制孔是利用机械凹凸模切制孔技术在聚酰亚胺薄膜上进行的。

7.根据权利要求1或6所述的穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法,其特征在于,制孔过程中,通过精密重力感应器控制整体恒张力控制,确保聚酰亚胺薄膜表面在张力平衡制孔过程中不受影响。

8.根据权利要求7所述的穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法,其特征在于,所述整体恒张力控制为调节收卷15%~25%张力输出。

9.根据权利要求1所述的穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法,其特征在于,步骤S2具体是在高真空环境下,通过卷对卷方式在带孔聚酰亚胺薄膜的一个面上利用热蒸发技术卷绕镀制高纯度金属铝反射层。

10.根据权利要求1所述的穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法,其特征在于,步骤S3具体是在高真空环境下通过卷对卷方式在镀铝带孔聚酰亚胺薄膜的非镀铝侧磁控溅射卷绕镀制ITO导电层。

说明书 :

一种穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法

技术领域

[0001] 本发明涉及飞行器热控材料技术领域,具体涉及一种穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法。

背景技术

[0002] 航天器运行的轨道呈现超高真空状态,在海拔600km处,大气压力在10‑7Pa以下;‑9 ‑10 ‑10 ‑12
1200km处压力约为10 Pa;10000km处压力约为10 Pa;月球表面的压力约为10 ~10 Pa。
‑2
在环模航天器服役轨道空间的地面模拟试验中,真空度一般也需要优于6.5×10 Pa。
[0003] 多层隔热组件是利用多层反射屏与间隔物迭合而成的隔热材料,在真空条件下,多层隔热组件可有效地阻止残余气体的导热,隔热性能尤为突出。多层隔热组件内部具有
气体,则会大大降低多层隔热组件的隔热效果。防静电聚酰亚胺薄膜镀铝二次表面镜(也称
“面膜”)是敷设在多层隔热组件面向太空的一侧,可有效降低多层隔热组件的温度。根据现
有的多层隔热组件加工工艺要求,防静电聚酰亚胺薄膜镀铝二次表面镜与多层隔热组件本
体需要缝合在一起。
[0004] 因此,除了多层隔热组件本身开设放气孔,防静电聚酰亚胺薄膜镀铝二次表面镜也需开设放气孔。防静电聚酰亚胺薄膜镀铝二次表面镜如不开设放气孔,则会与多层形成
密闭空腔。航天器及多层隔热组件内部的空气将难以有效排除,残余气体将渗透在多层隔
热组件内部,降低多层隔热组件的导热性能。
[0005] 此外,航天器发射入轨或热试验建立真空的过程非常短暂,在从地面大气压到相对高真空的过程中,如不能进行有效放气,将会导致多层隔热组件急速膨胀。膨胀的多层隔
热组件会在其安装尼龙搭扣的部位产生拉应力,严重时甚至可能造成脱落、开缝,影响多层
隔热组件的固定和隔热效果。
[0006] 为了减小多层隔热组件内部的气体残余,提高排空效率,需在防静电聚酰亚胺薄膜镀铝二次表面镜表面开孔。由于防静电聚酰亚胺薄膜二次表面镜上的ITO导电层为脆性
的陶瓷材料,在多层隔热组件加工过程中,ITO导电层容易断裂,ITO断裂后的表面静电无法
消除,存在隐患。因此需要一种新的穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法。
[0007] 目前国内还没有性能稳定的穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜产品供应,一般采购未穿孔的防静电聚酰亚胺薄膜镀铝二次表面镜产品,在后续制作多层隔热组
件时还需在防静电聚酰亚胺薄膜镀铝二次表面镜上制孔,容易破坏ITO导电层的连续性,从
而造成面膜的防静电性能不稳定。

发明内容

[0008] 本发明的目的在于针对上述现有技术存在的不足,提供一种穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法,该方法为先在聚酰亚胺薄膜基材上制孔,再在带孔聚酰
亚胺薄膜基材的一个面上真空蒸发卷绕镀金属铝反射层,最后在镀铝带孔聚酰亚胺薄膜基
材的另一面磁控溅射卷绕镀ITO导电层,这样制备的ITO导电层在孔内可以与金属铝反射层
叠加起来形成“电连接器”,即使ITO导电层出现局部断裂,亦可通过孔内电连接器连通金属
铝反射层来消除静电,从而消除因ITO导电层断裂而无法消除静电的隐患。
[0009] 本发明的目的是通过以下技术方案来实现的:
[0010] 本发明涉及一种穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜制备方法,所述方法包括如下步骤:
[0011] S1、在聚酰亚胺薄膜基材上制孔,得到带孔聚酰亚胺薄膜;
[0012] S2、在带孔聚酰亚胺薄膜的一个面上真空蒸发卷绕镀金属铝反射层,得镀铝带孔聚酰亚胺薄膜;
[0013] S3、在镀铝带孔聚酰亚胺薄膜的非镀铝侧磁控溅射卷绕镀ITO导电层;在孔内的ITO导电层与金属铝反射层叠加。此处的ITO导电层与金属铝反射层叠加起来形成电连接
器。
[0014] 作为本发明的一个实施方案,所述聚酰亚胺薄膜的厚度为12.5μm~50μm。
[0015] 作为本发明的一个实施方案,所述制孔的孔径为1~5mm。在制孔过程中,孔径越大实现导电层与金属铝反射层叠加导通相对越容易;而在低孔径(1mm)的孔内要实现ITO导电
层与金属铝反射层叠加导通则存在诸多技术困难。本发明通过大量的创造性劳动进行技术
难点攻关,最终通过对蒸发镀铝层的厚度以及对磁控溅射ITO导电膜工艺的严格控制实现
在在低孔径(1mm)的孔内也实现导电层与金属铝反射层叠加形成电连接器。
[0016] 作为本发明的一个实施方案,所述金属铝反射层的厚度为120‑150nm。内既满足热辐射性能又能孔内导通的实现。
[0017] 作为本发明的一个实施方案,所述ITO导电层的厚度为30‑40nm。对应的方块电阻在1‑10k。在本发明的体系中,导电层太薄导电性不满足,导电层太厚热辐射性能不能满足。
[0018] 作为本发明的一个实施方案,步骤S1中,所述制孔是利用机械凹凸模切制孔技术在聚酰亚胺薄膜上进行的。
[0019] 作为本发明的一个实施方案,制孔过程中,通过整体恒张力控制确保聚酰亚胺薄膜表面在张力平衡制孔过程中不受影响。
[0020] 作为本发明的一个实施方案,所述整体恒张力控制是通过精密重力感应器控制。
[0021] 作为本发明的一个实施方案,所述整体恒张力控制为调节收卷15%~25%张力输出。
[0022] 作为本发明的一个实施方案,所述制孔的工艺参数为:制孔间距为12~20mm,制孔频率为0.5~0.8S,运行速度为2.0~3.0m/mim。更优选为:制孔间距为12.5mm,制孔频率为
0.5S,运行速度为3m/mim。
[0023] 作为本发明的一个实施方案,步骤S2具体是在高真空环境下,通过卷对卷方式在带孔聚酰亚胺薄膜的一个面上利用热蒸发技术卷绕镀制高纯度金属铝反射层。镀层厚度在
120nm‑150nm之间,高真空环境是为了防止高纯铝在高温时被氧化,采用高纯度铝便于多层
阻隔组件获得高反射率。
[0024] 作为本发明的一个实施方案,步骤S3具体是在高真空环境下通过卷对卷方式在镀铝带孔聚酰亚胺薄膜的非镀铝侧磁控溅射卷绕镀制ITO导电层。
[0025] 作为本发明的一个实施方案,步骤S3中,磁控溅射卷绕镀制ITO的工艺参数为:收放卷张力40~60N,功率为4.5~5.5KW,工艺气体氧含量2.2~2.8%,运行速度为1.5~
2.5m/min。更优选为:收放卷张力50N,功率为5KW,工艺气体氧含量2.5%,运行速度为2m/
min。
[0026] 与现有技术相比,本发明具有如下有益效果:
[0027] 1)本发明采用先制孔后镀膜技术制备穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜时,脆性的ITO导电层通过预制孔与金属铝反射层连通,即形成电连接器,即使后续制作
多层隔热组件时ITO导电层的连续性有所破坏,其防静电性能也几乎不受损害;
[0028] 2)本发明的制备方法简单可控,易于规模化生产,产品可大面积使用,有效提高多层隔热组件防静电性能的可靠性;
[0029] 3)本发明制得的穿孔型防静电聚酰亚胺薄膜二次表面镜在热辐射性能上满足标准要求,镀铝面与ITO导电层两端导电性满足要求,提高产品的可靠性。

附图说明

[0030] 通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
[0031] 图1为先制孔后镀膜穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜的制备流程图;
[0032] 图2为穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜的制孔流程图;
[0033] 图3为穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜的镀铝和镀ITO流程图。

具体实施方式

[0034] 下面结合实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员
来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保
护范围。
[0035] 实施例1
[0036] 本实施例涉及先制孔后镀膜穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜的制备方法,流程如图1所示。首先利用机械凹凸模切制孔技术在聚酰亚胺薄膜(即图1中的基材)
上进行制孔(即带孔聚酰亚胺薄膜),通过精密重力感应器做整体恒张力控制,确保聚酰亚
胺薄膜表面在张力平衡制孔过程中不受影响;然后再在高真空环境下,通过卷对卷方式在
带孔聚酰亚胺薄膜基材的一个面上利用热蒸发技术卷绕镀制高纯度金属铝反射层(即图1
中的金属层),得镀铝带孔聚酰亚胺薄膜,高真空环境是为了防止高纯铝在高温时被氧化,
采用高纯度铝便于多层阻隔组件获得高反射率;最后再在高真空环境下通过卷对卷方式在
镀铝带孔聚酰亚胺薄膜的非镀铝侧磁控溅射卷绕镀制ITO导电层。
[0037] 本实施例具体包括如下步骤:
[0038] (一)聚酰亚胺薄膜(12.5μm)的制孔工序:如图2所示,首先接入0.55MPa的清洁压缩空气,并检查并清洁设备并安装机械凹凸模切设备,安装待制孔的12.5μm的聚酰亚胺薄
膜,启动电源,调节收卷15%张力输出,设定运行速度为3m/min,孔径为1mm,制孔间距为
12.5mm,制孔频率为0.5S,开始监视系统和卷绕系统制孔和计米。完成制孔工艺(即到达设
定的制孔米数)后,关闭机器停止制孔,取样检测,关电和关气。
[0039] (二)带孔聚酰亚胺薄膜的镀高反射Al层工序:如图3所示,首先在真空蒸发卷绕镀膜机上装好高纯Al丝,清洁真空室,在放卷辊上安装带孔聚酰亚胺薄膜基材,调张力;然后
关真空室抽真空,当达到真空度要求后,预热蒸发舟;当蒸发舟到达设定温度后,启动卷绕
系统,并调节卷绕参数。运动状态稳定后,开启蒸发舟档板,并继续调节卷绕蒸发镀铝工艺
参数,直到镀铝层的厚度到达设定值(本实施例中镀铝层厚度为140nm),开始计米数,并对
镀膜过程进行监控。带孔聚酰亚胺薄膜基材的镀铝长度到达设定值后,依次关闭蒸发舟电
源、蒸发舟档板和卷绕系统,关闭抽真空系统,打开真空室并卸膜、取样,检测太阳吸收比和
半球发射率,测量结果如表1‑3,将合格产品包装好待用。
[0040] 表1聚酰亚胺镀铝薄膜(12.5μm)
[0041]
[0042] (三)镀铝带孔聚酰亚胺薄膜的镀导电ITO层工序:如图3所示,首先清洁真空室,将太阳吸收比和半球发射率检测合格的镀铝带孔聚酰亚胺薄膜翻面安装在磁控溅射卷绕镀
膜机的放卷辊上,调张力;然后关真空室抽真空,当达到真空度要求后,充入氩气和氧气进
行调压;启动卷绕系统,并调节卷绕参数;接着启动阴极体,状态确认后,调节好溅射镀膜工
艺参数(收放卷张力50N,功率为5KW,工艺气体氧含量2.5%,运行速度为2m/min)开始镀ITO
导电层,并对镀膜过程进行监控;到达设定的镀膜长度30m(此时ITO导电层的厚度为35nm)
后,依次关闭阴极靶和卷绕系统,停止充气;最后关闭真空系统和真空室回温、打开真空室
并卸膜、取样,检测太阳吸收比、半球发射率和导电性能。镀膜流程完成后,关闭腔室,对真
空腔室,抽气保压;完成的产品则进行质量检测,将合格产品根据需要进行分切复卷包装
好,不合格则进行原因分析,并处理废品。
[0043] 并且,在上述实施例1的基础上,将溅射镀ITO膜工艺参数调整为收放卷张力50N,功率为5KW,工艺气体氧含量1.5%,运行速度为1.5m/min;设为对比例1。
[0044] 实施例2
[0045] 本实施例2与实施例1的不同之处在于步骤(一),其它步骤相同。
[0046] (一)聚酰亚胺薄膜(25μm)的制孔工序:首先接入0.5~0.6MPa的清洁压缩空气,并检查并清洁制孔设备,安装待制孔的25μm厚的聚酰亚胺薄膜,启动电源,调节收卷20%张力
输出,制孔间距为12.5mm,设定运行速度为2.5m/min,制孔频率为0.6S,开始制孔(制得的孔
径为1mm)和计米。完成制孔工艺后,关闭机器,取样检测。
[0047] 表2聚酰亚胺镀铝薄膜(25μm)
[0048]
[0049]
[0050] 实施例3
[0051] 本实施例3与实施例1不同的之处在于步骤(一),其它步骤相同。
[0052] (一)聚酰亚胺薄膜(50μm)的制孔工序:首先接入0.5~0.6MPa的清洁压缩空气,并检查并清洁制孔设备,安装待制孔的50μm厚的聚酰亚胺薄膜,启动电源,调节收卷25%张力
输出,制孔间距为12.5mm,设定运行速度为2.0m/min,制孔频率为0.8S,开始制孔(制得的孔
径为1mm)和计米。完成制孔工艺后,关闭机器,取样检测。
[0053] 表3聚酰亚胺镀铝薄膜(50μm)
[0054]
[0055] 实施例4、热辐射性能和导电性能测试
[0056] 实施例1‑3和对比例1的穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜样品的热辐射性能和导电性能如表4~7所示,实施例1‑3的热辐射性能和导电性能均满足技术指标要
求。
[0057] 表4穿孔型防静电聚酰亚胺薄膜(12.5μm)镀铝二次表面镜热辐射性能和导电性能
[0058]
[0059] 表5穿孔型防静电聚酰亚胺薄膜(25μm)镀铝二次表面镜热辐射性能和导电性能
[0060]
[0061] 表6穿孔型防静电聚酰亚胺薄膜(50μm)镀铝二次表面镜热辐射性能和导电性能
[0062]
[0063]
[0064] 表7穿孔型防静电聚酰亚胺薄膜(12.5μm)镀铝二次表面镜热辐射性能和导电性能
[0065]
[0066] 实施例1‑3的穿孔型防静电聚酰亚胺薄膜镀铝二次表面镜样品的孔边缘光滑干净无毛刺,薄膜表面无污染。并且,由表4‑6可知,本发明的穿孔型防静电聚酰亚胺薄膜镀铝二
次表面镜的热辐射性能满足技术指标要求;导电性能也满足技术指标要求。可见,本发明可
用于12.5um、25um和50um等厚度聚酰亚胺薄膜基材的穿孔型防静电聚酰亚胺薄膜镀铝二次
表面镜的制备。
[0067] 以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影
响本发明的实质内容。