一种低温溶剂热制备纳米级钴基软铋矿高效光催化剂的方法转让专利

申请号 : CN202011408378.7

文献号 : CN112547078B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 潘成思王震林张颖娄阳董玉明朱永法

申请人 : 江南大学

摘要 :

本发明公开了一种低温溶剂热制备纳米级钴基软铋矿高效光催化剂的方法,属于环境科学与无机材料制备领域。本发明采用溶剂热法制备一种纳米级钴基软铋矿高效光催化剂Bi25CoO40。本发明利用铋盐和钴盐在特定的碱液体系中沉淀,然后在一定温度与适宜时间下进行溶剂热反应,制得纳米级钴基软铋矿高效光催化。本发明方法成本低、工艺简单、易于控制,为其他类似结构的纳米级软铋矿光催化剂制备提供借鉴;所得催化剂有颗粒粒径小、活性高的特点,对染料和酚类等水中有机污染物表现出良好的可见光催化降解活性,在可见光有机污染物降解领域拥有广泛的潜在应用前景。

权利要求 :

1.一种制备纳米级钴基软铋矿Bi25CoO40光催化剂的方法,其特征在于,所述方法包括如下步骤:

(1)将强碱溶于溶剂中,配置1~3mol/L的碱液A;所述溶剂为水和乙醇的混合体系;其中,水与乙醇的体积比为(0:30)~(22.5:7.5);

3+ 2+

(2)将铋盐和钴盐按照Bi 与Co 摩尔比为(1.2~2.5):0.1加入到碱液A中,形成固体沉淀,分离、收集固体沉淀;然后置于反应容器中100℃~180℃下进行溶剂热反应6~48h,反应结束后,固液分离,收集固体沉淀,洗涤、干燥;其中铋盐选自如下任意一种或多种:硝酸铋、氯化铋、醋酸铋。

2.根据权利要求1所述的方法,其特征在于,所述步骤(2)中铋盐相对碱液A的摩尔浓度为0.04~0.1mol/L。

3.根据权利要求1所述的方法,其特征在于,所述步骤(2)中钴盐选自如下任意一种或多种:硝酸钴、六水合硝酸钴、醋酸钴、氯化钴。

4.权利要求1‑3任一项所述方法制得的一种纳米级钴基软铋矿高效光催化剂Bi25CoO40。

5.权利要求4所述的纳米级钴基软铋矿高效光催化剂Bi25CoO40在降解有机污染物中的应用。

说明书 :

一种低温溶剂热制备纳米级钴基软铋矿高效光催化剂的方法

技术领域

[0001] 本发明涉及一种低温溶剂热制备纳米级钴基软铋矿高效光催化剂的方法,属于环境科学与无机材料制备领域。

背景技术

[0002] 光催化作为高效和低能耗的环境治理技术,近年来得到广泛的研究。半导体光催化剂的性能受到催化剂颗粒粒径的影响,颗粒粒径小则具有相对较大的比表面积和较短的
光生电子传输路径,有利于污染物的扩散和光生电子较快转移至催化剂表面进行反应。将
新型、大尺寸光催化剂纳米化,是目前光催化研究的热点方向。
[0003] 铋盐是无机半导体光催化剂中较常见的一类。软铋矿是近年来刚发现的铋盐光催化剂的一种,对其光催化性能的研究具有较大意义。目前软铋矿光催化剂的制备多采用水
热合成、高温固相反应等方法,颗粒粒径多处在微米级,其可见光活性仍具有较大的提升空
间。例如中国专利CN105129850A提出了一种水热法制备钒酸铋软铋矿的方法,但钒酸铋软
铋矿的颗粒粒径为1‑2μm,活性较差,添加硼氢化钠情况下,80min分钟内还未完全降解4‑氨
基苯酚。中国专利CN101147859A提出一种溶剂热法合成钛酸铋软铋矿的方法,虽使用溶剂
热方法,但颗粒粒径为5‑20μm,粒径仍不能有效减小。美国专利US20110155971A1提出一种
水热法合成钛酸铋软铋矿的方法,其粒径虽处在纳米级,但钛酸铋禁带宽度大于3.0eV,不
能有效利用太阳光。印度专利IN201841028670A提出一种水热法合成铁酸铋软铋矿的方法,
其铁位缺陷较多,且颗粒粒径为1mm。除已发表的专利外,目前文献上也多采用水热反应或
高温固相方法合成新型软铋矿光催化剂(比如:Wang Pei et al.Ultrason.Sonochem.38,
2017,289–297,Zhang Lei et al.CrystEngComm.2015,17,6527‑6537,Hu Jin Song et 
al.RSC Adv.2015,5,78457),同样普遍存在粒径过大、可见光活性低的问题。

发明内容

[0004] 为了解决上述问题,本发明首次提出一种新型溶剂发制备纳米级钴基软铋矿Bi25CoO40光催化剂的方法,所得催化剂的颗粒粒径小、降解污染物活性好,有很好的环境化
学应用前景。
[0005] 本发明的第一个目的是提供一种制备纳米级钴基软铋矿Bi25CoO40光催化剂的方法,所述方法包括如下步骤:
[0006] (1)利用强碱溶于溶剂中,配置1~3mol/L的碱液A;
[0007] (2)将铋盐和钴盐加入到碱液A中,形成固体沉淀,分离、收集固体沉淀;然后置于反应容器中进行溶剂热反应,反应结束后,固液分离,收集固体沉淀,洗涤、干燥。
[0008] 在本发明的一种实施方式中,所述步骤(1)溶剂为乙醇,或者水和乙醇的混合体系。
[0009] 在本发明的一种实施方式中,所述步骤(1)溶剂中水和乙醇的体积比为(0:30)~(22.5:7.5)。
[0010] 在本发明的一种实施方式中,所述步骤(1)中强碱包括如下任意一种或多种:氢氧化钠、氢氧化钾。
[0011] 在本发明的一种实施方式中,所述步骤(2)中铋盐与钴盐中Bi3+与Co2+的摩尔比为(1.2~2.5):0.1。
[0012] 在本发明的一种实施方式中,所述步骤(2)中铋盐相对碱液A的摩尔浓度为0.04~0.1mol/L;优选0.04~0.083mol/L。
[0013] 在本发明的一种实施方式中,所述步骤(2)中铋盐选自如下任意一种或多种:硝酸铋、氯化铋、醋酸铋。
[0014] 在本发明的一种实施方式中,所述步骤(2)中钴盐选自如下任意一种或多种:硝酸钴、六水合硝酸钴、醋酸钴、氯化钴。
[0015] 在本发明的一种实施方式中,所述步骤(2)中形成固体沉淀的过程是在10‑40℃下进行的。
[0016] 在本发明的一种实施方式中,所述步骤(2)中溶剂热反应中的溶剂同步骤(1)中的溶剂。
[0017] 在本发明的一种实施方式中,所述步骤(2)中溶剂热反应的反应温度为100℃~180℃。
[0018] 在本发明的一种实施方式中,所述步骤(2)中溶剂热反应的反应时间为6~48h。
[0019] 在本发明的一种实施方式中,所述步骤(2)中洗涤是将固体沉淀洗涤至中性。
[0020] 在本发明的一种实施方式中,所述步骤(2)中干燥是采用60℃鼓风烘箱干燥。
[0021] 在本发明的一种实施方式中,上述纳米级钴基软铋矿高效光催化剂Bi25CoO40的制备方法具体包括如下步骤:
[0022] (1)碱溶液配制:用30ml去离子水和乙醇混合溶液将0.03~0.09mol强碱溶解得到碱液A;碱液A浓度为1~3mol/L;
[0023] (2)铋‑钴混合盐溶液配制:将1.2~2.5mmol铋盐和0.1mmol钴盐加入碱液A中,得到混合溶液B;溶液B搅拌30min后,将得到的黄褐色沉淀转移至对位聚苯(PPL)内衬的反应
釜内,100℃~180℃溶剂热反应6~48h;离心、用去离子水和乙醇洗涤步骤3得到的固体颗
粒至pH为7,转移至60℃鼓风烘箱干燥即得产物。
[0024] 本发明的第二个目的是利用上述方法提供一种纳米级钴基软铋矿高效光催化剂Bi25CoO40。
[0025] 在本发明的一种实施方式中,该催化剂的颗粒粒径为80‑300nm。
[0026] 本发明的第三个目的是将上述的纳米级钴基软铋矿高效光催化剂Bi25CoO40应用于降解有机污染物中。
[0027] 有益效果:
[0028] 与现有技术相比,本发明提出的纳米级钴基软铋矿高效光催化剂Bi25CoO40具有如下优点:本发明合成的光催化剂具有颗粒粒径小、活性高等优点。本发明的纳米级钴基软铋
矿高效光催化剂Bi25CoO40颗粒粒径显著小于已有报道的软铋矿光催化剂,如Bi25VO40(1‑2μ
m)、Bi12TiO20(1‑1.8μm)等。本发明的纳米级光催化剂在可见光下3h能完全降解MB,此外对
无色有机污染物如苯酚、4‑氯苯酚等同样表现出一定的降解活性。
[0029] 本发明提出制备钴基软铋矿高效光催化剂Bi25CoO40的方法是溶剂热法,相较于水热和高温固相反应,本发明的方法所需温度较低,能很好地控制所制得催化剂的形貌和颗
粒粒径大小,避免颗粒的团聚。本发明为其它类似纳米级软铋矿光催化剂的制备提供了借
鉴。

附图说明

[0030] 图1为实施例1制备的宽光谱响应软铋矿基纳米级高效光催化剂Bi25CoO40的X射线衍射谱图;
[0031] 图2为实施例1制备的宽光谱响应软铋矿基纳米级高效光催化剂Bi25CoO40的扫描电子显微镜图像;
[0032] 图3为实施例1制备的宽光谱响应软铋矿基纳米级高效光催化剂Bi25CoO40的紫外‑可见光漫反射吸收光谱;(其中对比实验微米颗粒的制备采用高温水热法,参考文献Zhang 
Lei et al.CrystEngComm.2015,17,6527‑6537。)
[0033] 图4为实施例1制备的宽光谱响应软铋矿基纳米级高效光催化剂Bi25CoO40可见光催化降解亚甲基蓝曲线;(其中对比实验微米颗粒的制备采用高温水热法,参考文献Zhang 
Lei et al.CrystEngComm.2015,17,6527‑6537。)
[0034] 图5为实施例1制备的宽光谱响应软铋矿基纳米级高效光催化剂Bi25CoO40对亚甲‑5
基蓝、罗丹明B(2×10 mol/L、100ml)、4‑氯苯酚(5ppm、50ml)、苯酚(5ppm、50ml)染料的去除
率(统一采用300W氙灯,酚类检测采用超高效液相色谱)。

具体实施方式

[0035] 实施例1:
[0036] 将0.03mol NaOH溶于15ml去离子水和15ml乙醇混合溶液中(即体积比1:1,浓度1M),加入2.5mmol的Bi(NO3)3·5H2O(即0.083M)和0.1mmol的Co(NO3)2·6H2O(即0.0033M),
搅拌30min,将黄褐色沉淀转移至50mL对位聚苯(PPL)内衬的反应釜内(溶剂1:1水:乙醇),
在180℃溶剂热6h,冷却至室温,产物离心,用去离子水和乙醇洗涤至pH为7,在60℃烘干,即
得到产物Bi25CoO40。
[0037] 实施例2:
[0038] 将0.06mol NaOH溶于22.5ml去离子水和7.5ml乙醇混合溶液中(即体积比3:1,浓度2M),加入1.2mmol的(CH3CO2)3Bi(即0.04M)和0.1mmol的CoCl2(即0.0033M),搅拌30min,
将黄褐色沉淀转移至50mL对位聚苯(PPL)内衬的反应釜内(溶剂3:1水:乙醇),在150℃溶剂
热24h,冷却至室温,产物离心,用去离子水和乙醇洗涤至pH为7,在60℃烘干,即得到产物
Bi25CoO40。
[0039] 实施例3:
[0040] 将0.09mol KOH溶于30ml乙醇中(浓度3M),加入1.6mmol的BiCl3(即0.053M)和0.1mmol的C4H6CoO4(即0.0033M),搅拌30min,将黄褐色沉淀转移至50mL对位聚苯(PPL)内衬
的反应釜内(溶剂为乙醇),在100℃溶剂热48h,冷却至室温,产物离心,用去离子水和乙醇
洗涤至pH为7,在60℃烘干,即得到产物Bi25CoO40。
[0041] 对实施例1‑3所得催化剂进行结构表征:
[0042] 图1为实施例1制备的宽光谱响应软铋矿基纳米级高效光催化剂Bi25CoO40的X射线衍射谱图,X射线衍射是分析样品的晶型和结晶性的技术。由X射线衍射结果可以看出,所制
得催化剂Bi25CoO40结晶性好,无不纯相,对应于PDF No.39‑0871。
[0043] 图2为实施例1制备的宽光谱响应软铋矿基纳米级高效光催化剂Bi25CoO40的扫描电子显微镜图像,扫描电子显微镜是分析催化剂形貌和颗粒粒径大小的技术。由扫描结果
可以看出,催化剂颗粒粒径处于80‑300nm之间,呈现出块状结构,并且颗粒分散性较高。
[0044] 图3为实施例1制备的宽光谱响应软铋矿基纳米级高效光催化剂Bi25CoO40的紫外‑可见光漫反射吸收光谱,漫反射图谱是分析物质吸光特性。其中,对比实验微米颗粒的制备
采用高温水热法,参考文献Zhang Lei et al.CrystEngComm.2015,17,6527‑6537。由图3中
结果可以看出,相较于微米级颗粒,纳米级颗粒的吸光范围发生明显的向低波数移动(蓝
移)趋势,原因在于纳米颗粒的量子尺寸效应的影响,尺寸下降带隙变宽,被电子占据分子
轨道能级与未被占据分子轨道能级之间的宽度随颗粒直径减小而增大。
[0045] 实施例2‑3所得催化剂的结构表征结果与实施例1基本相同。
[0046] 实施例4
[0047] 以亚甲基蓝为典型污染物代表:准确称取0.05g实施例1所得催化剂粉末,将其加‑5
入到100ml浓度为2×10 mol/L的亚甲基蓝水溶液中,超声波作用下制成悬浮液,黑暗下搅
拌处理30min,达到吸附平衡,用300W氙灯作为光源,420nm截止滤光片滤除紫外光,可见光
照射下进行反应。开始前1h每30min取4ml的样品,此后1h取4ml样品,离心去除催化剂,用紫
外分光光度计分析剩余溶液的亚甲基蓝浓度。
[0048] 采用相同的方法,将2×10‑5mol/L的亚甲基蓝分别替换为罗丹明B(2×10‑5mol/L、100ml)、4‑氯苯酚(5ppm、50ml)、苯酚(5ppm、50ml),测定相应目标污染物的去除效果。
[0049] 结果如图4、5所示,具体结果见表1。
[0050] 表1该光催化剂以及微米颗粒对四种目标污染物的降解去除效果
[0051]
[0052] 其中,去除率的含义为:C/Co(C表示取点时样品浓度;Co表示污染物初始浓度)
[0053] 实施例2和3的降解结果与实施例1基本相同。
[0054] 对比例1探究碱液浓度对催化剂的影响
[0055] 参照实施例1,将NaOH的浓度分别替换为0.1M、5M,其他条件不变,制备不出相应的复合光催化剂。在0.1M NaOH浓度下,存在较多的CoO杂相;在5M NaOH浓度下铋盐容易被乙
醇还原为铋单质。
[0056] 参照实施例4中的应用过程,结果发现:在同等条件下降解MB,0.1M和5M的去除率分别为15%和12%。
[0057] 对比例2
[0058] 参照实施例1,将Co(NO3)2·6H2O的替换等摩尔量的为克钛酸四丁酯(Ti(OC4H9)4),其他条件不变,制得相应的钛酸铋复合氧化物光催化剂。
[0059] 所得催化剂虽然其颗粒尺寸在纳米级50-100nm,但其禁带宽度大于3eV,因而不能对可见光有响应。
[0060] 参照实施例4中的应用过程,结果发现:在同等可见光条件下降解MB,去除率为0%,没有光催化活性。