一种双酚A磁性分子印迹聚合物的制备方法及其在双酚A荧光检测中的应用转让专利

申请号 : CN201910850827.4

文献号 : CN112552469B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 卢一辰张佳凤熊晓辉李婷婷肖维玮毛佳昊陈昊东郑彬洪鸿亮

申请人 : 南京工业大学

摘要 :

本发明公开了一种双酚A磁性分子印迹聚合物的制备方法及其在双酚A荧光检测中的应用,通过对Fe3O4纳米粒子表面进行改性,在此基础上通过溶胶凝胶法合成Fe3O4@SiO2纳米粒子,并用MPS进行双键化修饰,得到理想磁性核vinyl‑Fe3O4@SiO2。进一步与模板分子双酚A、4‑VP、TRIM、AIBN在乙腈溶液中聚合形成新型核壳结构的BMMIPs。把所得到的BMMIPs应用到样品前处理中,结合吖啶橙与双酚A的荧光反应,建立在液态食品样品中双酚A的快速富集、分离和检测方法。本发明具有操作简单,抗干扰能力强,灵敏度高,耗时较短等优点。

权利要求 :

1.一种双酚A磁性分子印迹聚合物的制备方法,其特征在于,合成的步骤包括:步骤一:将Fe3O4@SiO2分散在甲醇中,滴加MPS‑甲醇溶液,搅拌,通过磁铁收集所得双键化修饰的vinyl‑Fe3O4@SiO2;称取(a) g的双酚A、(b) μL的4‑乙烯基吡啶、(c) mL无水乙腈混合均匀,在冰浴和氮气保护下搅拌均匀,待反应结束后置于4 ℃条件下过夜保存;在混合物中加入(d) g vinyl‑Fe3O4@SiO2、(e) mL的三羟甲基丙烷三甲基丙烯酸酯、(f) mL 偶氮二异丁腈乙腈溶液,氮气保护下先在50 ℃下反应6 h,接着在60 ℃下反应24 h,通过外加磁场进行产物分离并将其洗净干燥待用;

步骤二:将步骤一得到的材料用甲醇‑醋酸混合溶液进行索氏提取,待模板分子洗脱完全后将洗净产物真空干燥,即得到双酚A磁性分子印迹聚合物 (BMMIPs);

(d)/(a) =5‑8(w/w),(b)/(c)=5‑15(v/v),(c)/(d)=280‑320(v/w),(c)/(e)=8‑12(v/v);其中当(a):(b):(e)=1:4:15时,合成的印迹聚合物材料吸附量和特异性最佳。

2.根据权利要求1所述的制备方法,其特征在于:所述步骤一中 (b)/(c)= 7‑10 (v/v),(b)/(f)=5‑15(v/v),(c)/(d)=290‑310 (v/w)。

3.根据权利要求1所述的制备方法,其特征在于:所述步骤一中在冰浴和氮气保护下搅拌20‑35 min,加入的AIBN‑乙腈溶液中AIBN质量为130‑150mg,乙腈体积为80‑90 mL。

4.根据权利要求1所述的制备方法,其特征在于:所述步骤二甲醇‑醋酸混合溶液中甲醇与醋酸体积比值为5‑12,索氏提取的时间为25‑32 h。

5.基于权利要求1所述制备方法制备获得的磁性分子印迹聚合物的双酚A荧光检测方法,其特征在于,检测步骤如下:

1)称取适量BMMIPs,加入到一定量的液态食品样品中,室温下摇床振荡,用磁铁分离BMMIPs,倒去上清液,收集BMMIPs;

2)加入适量的无水甲醇到步骤1)收集的BMMIPs中进行超声洗脱三次,合并洗脱液并氮气吹干,再用适量超纯水复溶后加入荧光反应体系,包括:(g) mL 吖啶橙溶液;(h) µL H2SO4溶液;(i) mL FeSO4溶液;(j) mL H2O2溶液,并用超纯水定容至10 mL,摇匀后于恒温水浴中放置15 min,自然冷却至室温后,测定其荧光强度,通过外标法计算实际样品中双酚A含量。

6.根据权利要求5所述的检测方法,其特征在于:所述步骤2)加入的无水甲醇体积为1‑

5 mL,超声时间为2‑6 min。

7.根据权利要求5所述的检测方法,其特征在于:所述 (h)/(g)=30‑50(v/v);(h)/(i)=

130‑150(v/v);(h)/(j)=60‑100 (v/v)。

8.根据权利要求5所述的检测方法,其特征在于:所述步骤2)中吖啶橙浓度为2.5×10‑5 ‑5  ‑1 ‑3 ‑3  ‑1

‑3.0×10 mol L ,H2SO4溶液浓度为4.5×10 ‑5.5×10 mol L ,FeSO4溶液浓度为0.5‑3 ‑3 ‑1 ‑3 ‑3 ‑1

×10 ‑1.5×10  mol L ,H2O2溶液浓度为1.5×10 ‑2.5×10  mol L 。

9.一种权利要求1‑4任一所述制备方法制备获得的双酚A磁性分子印迹材料。

10.一种权利要求1‑4任一所述制备方法制备获得的双酚A磁性分子印迹聚合物在测量实际样品中双酚A含量的应用。

说明书 :

一种双酚A磁性分子印迹聚合物的制备方法及其在双酚A荧光

检测中的应用

技术领域

[0001] 本发明涉及了合成一种具有特异性富集双酚A的磁性分子印迹纳米材料,并将该材料应用于液态食品介质的双酚A荧光检测。该方法的建立可以达到对复杂食品样品中的
双酚A的特异性富集与快速分离检测的目的,属于分析化学领域。

背景技术

[0002] 双酚A是一种具有较强生物毒性和内分泌干扰作用的环境雌激素,广泛应用于食品级包装材料和塑料制品中,可经食物链传递,进入人体内并产生蓄积作用,干扰人体的内
分泌系统,由此引发的农产品及食品安全问题受到了人们的广泛关注。
[0003] 目前,对复杂环境中污染物的监控存在两大难题:①样品前处理繁琐、提取特异性不强导致后续检测灵敏度低;②检测成本高、耗时不便捷。对于前处理材料而言,常用的富
集和分离的吸附剂有硅胶、氧化铝、佛罗里硅土等。由于其吸附谱较广,在复杂基质中容易
产生目标物的吸附量的竞争抑制以及净化效果差的不利结果。而现有食品双酚A的检测方
法中,应用最为广泛的主要有:色谱法、分光光度法和免疫分析法。但同样受到样品前处理
的提取效率低、杂质干扰大、提取耗时耗力等问题的影响。目前仍然没有一个很好的方法对
食品中的双酚进行特异性富集和分离A。此外,样品预处理的常用材料缺乏对这些高灵敏度
检测方法的选择性。因此,需要制备一种高选择性的双酚A检测识别材料,以应对复杂的操
作条件和高昂的时间成本。
[0004] 分子印迹技术是通过化学方法合成对目标分析物有特异性识别功能的聚合手段,所得到的聚合材料具有与待测物相匹配的“孔穴”结构。该“锁钥”结构能识别目标物的结
构,从而选择性地结合目标物,而其他的干扰物质则不能与之结合,因此可以起到分离、富
集目标物的浓度。与抗体、酶或生物分子相比,分子印迹具有如下优点:①制备成本相对较
低;②分子印迹材料具有优秀的物理和化学稳定性。因此,分子印迹技术成为样品前处理研
究热门。
[0005] 分子印迹固相萃取作为分子印迹聚合物最成熟的一门技术,已商品化应用于BPA等有机污染的前处理过程中。但传统的分子印迹固相萃取过程一般在固相萃取柱管中进
行,其装柱操作繁琐、会产生高压、萃取过程耗时,这在一定程度上限制了分子印迹固相萃
取的广泛应用。磁性分子印迹萃取的方法可解决上述问题,并保持分子印迹固相萃取的优
点。磁性分子印迹固相萃取是指使分子印迹聚合物带有磁性,可通过外加磁场分离,避免了
传统分子印迹固相萃取装柱、上样等耗时操作。与传统的分子印迹固相萃取技术相比,磁性
分子印迹固相萃取在分离和富集实际样品中的靶标分子方面具有明显的优势。具体为:首
先,在外加磁场的作用下,磁性分子印迹聚合物能快速地完成吸附、回收及洗脱等富集分离
过程,整个操作过程耗时短;其次,由于磁场对磁性分子印迹聚合物具有特殊的选择性磁响
应,在没有外加磁场时,磁性分子印迹聚合物能够悬浮在含有大量固体颗粒的实际样品中,
同时吸附和富集靶标分子,可以避免洗脱过程中共存固体颗粒性物质的干扰;此外,磁性分
子印迹固相萃取的上样量可调,可实现自动化应用,满足对实际样品分析的自动化、微量化
和高通量化的需求。
[0006] 现场实时快速检测已经成为实现当前社会对食品从源头到餐桌的全方位监控其质量安全的必要手段。荧光分析法作为一种简单、实用的分析方法,具有选择性好、多种可
测定参数、灵敏度高和检测手段简便等优点,常用于水体中的重金属检测。但食品中的某些
基质背景会导致荧光信号的改变,从而影响结果的准确性,因此该方法在食品中的应用常
受限于样品的前处理方法。然而,磁性分子印迹的固相萃取前处理给荧光检测提供了一个
快速便捷的途径。

发明内容

[0007] 本发明提供一种磁性分子印迹纳米材料的制备方法与该材料串联荧光检测技术在液态食品介质中检测双酚A的应用。其内容主要分三个部分:①磁性分子印迹材料的合
成;②荧光检测方法的条件优化;③实际样品中的应用。
[0008] 本发明还提供了该检测方法的实施方式,包括以下步骤:
[0009] 步骤一:称取300mg的Fe3O4@SiO2分散在90mL甲醇中,通入氮气搅拌5min后通过滴液漏斗缓慢滴加5mL MPS‑甲醇溶液(MPS:甲醇=1:4,v/v),并在30℃下继续搅拌24h。通过
磁铁收集所得双键化修饰的vinyl‑Fe3O4@SiO2,并用甲醇溶液洗数次,真空下干燥保存。称
取(a)g的双酚A(bisphenol A,简称:BPA)、(b)μL的4‑乙烯基吡啶(4‑vinylpyridine,简称:
4‑VP)、(c)mL无水乙腈混合均匀,在冰浴和氮气保护下搅拌均匀,待反应结束后置于4℃条
件下过夜保存;在混合物中加入(d)g vinyl‑Fe3O4@SiO2、(e)mL的三羟甲基丙烷三甲基丙烯
酸酯(trimethylolpropane trimethacrylate,简称:TRIM)、(f)mL偶氮二异丁腈(2,2'‑
Azobis(isobutyronitrile),简称:AIBN)乙腈溶液,氮气保护下先在50℃下反应6h,接着在
60℃下反应24h。通过外加磁场进行产物分离并将其洗净干燥待用;
[0010] 步骤二:将步骤一得到的材料用甲醇‑醋酸混合溶液进行索氏提取,待模板分子洗脱完全后将洗净产物真空干燥,即得到双酚A磁性分子印迹聚合物(BMMIPs)。
[0011] 为了验证BMMIPs的吸附特异性,实验过程中还需合成非印迹聚合物(BMNIPs)作为对照。除了不加模板分子双酚A,BMNIPs的合成条件与BMMIPs一致;
[0012] 基于磁性分子印迹聚合物的双酚A荧光检测方法,步骤如下:
[0013] 步骤三:称取适量步骤二得到的BMMIPs,加入到一定量的液态食品介质中,室温下摇床振荡5min,用磁铁分离BMMIPs,倒去上清液,收集BMMIPs;
[0014] 步骤四:加入适量的无水甲醇到步骤三收集的BMMIPs中进行超声洗脱三次,合并洗脱液并氮气吹干,再用适量超纯水复溶后加入荧光反应体系,包括:(g)mL吖啶橙溶液;
(h)μL H2SO4溶液;(i)mL FeSO4溶液;(j)mL H2O2溶液。并用超纯水定容至10mL,摇匀后于恒
温水浴中放置15min,自然冷却至室温后,测定其荧光强度,通过外标法计算实际样品中双
酚A含量。
[0015] 所述步骤一中(d)/(a)=5‑8(w/w),(b)/(c)=5‑15(最佳为7‑10,v/v),(b)/(f)=5‑15(最佳为7‑10,v/v),(c)/(d)=280‑320(最佳为290‑310,v/w),(c)/(e)=8‑12(v/v);
[0016] 所述步骤一中在冰浴和氮气保护下搅拌20‑35min(最佳为25‑30min),加入的AIBN‑乙腈溶液中AIBN质量为130‑150mg(最佳为140‑150mg),乙腈体积为80‑90mL(最佳为
85‑90);
[0017] 所述步骤二进行索氏提取的甲醇‑醋酸混合溶液中甲醇与醋酸体积比值为5‑12(最佳为8‑11),步骤一所得材料与甲醇‑醋酸混合溶液的比值为1:1000,索氏提取的时间为
25‑32h(最佳为27‑30h);
[0018] 所述步骤三加入的无水甲醇体积为1‑5mL(最佳为1‑3mL),超声时间为2‑6min;所述步骤一与步骤四中(c)/(g)=40‑60(最佳为40‑50,v/v);(h)/(g)=30‑50(最佳为30‑40,
v/v);(h)/(i)=130‑150(最佳为130‑140,v/v);(h)/(j)=60‑100(v/v);
[0019] 所述步骤四中吖啶橙浓度为2.5×10‑5‑3.0×10‑5mol L‑1,H2SO4溶液浓度为4.5×‑3 ‑3 ‑1 ‑3 ‑3 ‑1
10 ‑5.5×10 mol L ,FeSO4溶液浓度为0.5×10 ‑1.5×10 mol L ,H2O2溶液浓度为1.5
‑3 ‑3 ‑1
×10 ‑2.5×10 mol L 。
[0020] 所述制备方法制备获得的双酚A磁性分子印迹材料。
[0021] 所述的双酚A磁性分子印迹聚合物在测量实际样品中双酚A含量的应用,应用流程如图7所示。
[0022] 本发明采用磁性纳米材料为核,包覆了硅层,能够提供更大的表面积,较其他裸磁材料分散性更好,这种具有壳‑核结构的磁性分子印迹材料将磁性颗粒完全包埋,不易泄
露,识别位点在聚合物微球表面,对目标物的结合效率和分离效率更高。同时,该材料具有
超强顺磁性,能在外界磁场作用下实现快速磁分离,极大规避了现有富集净化小柱的过柱
时间长、样品基质阻塞柱体的现象。
[0023] 此外,本发明基于双酚A对羟自由基与吖啶橙的氧化还原反应的抑制作用来测定双酚A,具体原理为:在酸性介质中羟基自由基可以氧化吖啶橙导致荧光淬灭,双酚A能够部
分的清除羟自由基,致使荧光猝灭,利用荧光信号降低和双酚A浓度的线性相关性进行定量
检测。同时,引入合成的磁性分子印迹材料作为其前处理材料,极大改善了该检测方法因样
品基质导致的灵敏度低、检测平行差等问题。并建立了基于磁性分子印迹为前处理的双酚A
的荧光检测新方法。该方法操作简便、试剂便宜,灵敏度高。因此本发明提供了一种能在液
态复杂食品介质中富集、分离、检测双酚A的方法,有望在食品快速检测方面得到推广和应
用。
[0024] 有益效果:本发明通过对Fe3O4纳米粒子表面进行改性,在此基础上通过溶胶凝胶法合成Fe3O4@SiO2纳米粒子,并用MPS进行双键化修饰,得到理想磁性核vinyl‑Fe3O4@SiO2。
进一步与模板分子双酚A、4‑VP、TRIM、AIBN在乙腈溶液中聚合形成新型核壳结构的BMMIPs。
把所得到的BMMIPs应用到样品前处理中,结合吖啶橙与双酚A的荧光反应,建立在液体食品
样品中双酚A的快速富集、分离和检测方法。本发明具有操作简单,抗干扰能力强,灵敏度
高,耗时较短等优点。对实际样品(超纯水、矿泉水、橙汁等)进行了加标回收,回收率为
‑1
80.23%‑116.75%,相对标准偏差小于7.2%,样品检出限为16.5μg L (根据三倍基线噪音
值计算得出)。
[0025] 所述磁性分子印迹纳米材料在荧光检测食品中双酚A中的应用。
[0026] 本发明的基于磁性分子印迹纳米材料与荧光在双酚A的检测方法具有以下优点:
[0027] (1)本方法合成材料过程步骤简单,易操作;
[0028] (2)合成得到的磁性分子印迹聚合物的吸附量大并且能够特异性吸附;
[0029] (3)采用荧光材料吖啶橙可以提高反应灵敏度;
[0030] (4)本方法中所用实验设备可便携式,适合用现场检测;
[0031] (5)本方法特异性强、干扰相对较少、准确可靠。

附图说明

[0032] 图1所示的是印迹聚合物BMMIPs1和非印迹聚合物BMNIPs1的等温吸附曲线。
[0033] 图2所示的是印迹聚合物BMMIPs1和非印迹聚合物BMNIPs1的吸附动力学曲线。
[0034] 图3所示的是印迹聚合物BMMIPs1和非印迹聚合物BMNIPs1的吸附选择性。
[0035] 图4所示的是印迹聚合物BMMIPs2和非印迹聚合物BMNIPs2的等温吸附曲线。
[0036] 图5所示的是印迹聚合物BMMIPs2和非印迹聚合物BMNIPs3的等温吸附曲线。
[0037] 图6所示的是荧光测定双酚A的标准曲线图。
[0038] 图7所示的是磁性印迹聚合物的合成与在荧光检测食品介质中双酚A的应用流程图。

具体实施方式

[0039] 以下通过结合实施例和附图来详细说明来对本发明作进一步详细描述,但本发明并不仅限于以下的实施例。
[0040] 下面将结合实施例和附图来详细说明。
[0041] Fe3O4@SiO2纳米粒子的合成方法:将1.0g经柠檬酸盐改性的Fe3O4分散在含有20mL超纯水中,120mL 2‑丙醇和4mL氨水(32wt%)的溶液中。超声处理30min后,通入氮气在室温
下搅拌5min后逐滴加入20mL的2‑丙醇和4mL的TEOS。在连续搅拌20h后,用磁铁将产物Fe3O4@
SiO2从混合物中分离出来。并用超纯水和乙醇通过磁铁洗涤若干次,真空条件下干燥储存。
[0042] 双键修饰的vinyl‑Fe3O4@SiO2纳米粒子的制备方法:称取300mg的Fe3O4@SiO2分散在90mL甲醇中,通入氮气搅拌5min后通过滴液漏斗缓慢滴加5mL MPS‑甲醇溶液(MPS:甲醇
=1:4,v/v),并在30℃下继续搅拌24h。通过磁铁收集所得双键化修饰的vinyl‑Fe3O4@SiO2,
并用甲醇溶液洗数次,真空下干燥保存。
[0043] 实施例1
[0044] 一种双酚A磁性分子印迹聚合物的制备方法,包括以下步骤:
[0045] 步骤一:将0.0428g的双酚A(BPA)、775μL的4‑VP、90mL无水乙腈混合均匀,在冰浴和氮气保护下搅拌均匀,反应结束后置于冰箱在4℃条件下过夜保存。在混合物中加入
‑1
0.3gFe3O4@SiO2、9mL的TRIM、90mL浓度为167mg mL 的AIBN乙腈溶液,氮气保护下先在50℃
下反应6h,接着在60℃下反应24h。通过外加磁场进行产物分离并将其洗净干燥待用;
[0046] 步骤二:将步骤一得到材料用甲醇‑醋酸混合溶液(9:1,v/v)进行索氏提取30h,将洗净产物真空干燥,即得到双酚A磁性分子印迹聚合物(BMMIPs1)。除了不加模板分子双酚
A,对应的非印迹聚合物(BMNIPs1)制备条件与BMMIPs1一致。
[0047] 将实施例1制得的双酚A磁性分子印迹纳米材料进行吸附性能检测,具体如下:
[0048] 1、等温吸附性能:称取10mg的BMMIPs1(或BMNIPs1)于10mL的具塞离心管中,加入5mL乙腈:水=1:9(v/v)的BPA溶液,其中BPA溶液的浓度设置在0.1‑1mM之间。将离心管放置
在摇床,在25℃,190rpm条件下震荡24h。用磁铁将BMMIPs1(BMNIPs1)与溶液分离,上清液过
0.22μm滤膜。
[0049] 用紫外分光光度计在278nm处检测其浓度Qe,每个浓度重复试验两次。通过下列公‑1
式计算得出聚合物材料对BPA的吸附平衡容量Qe(mg g )。
[0050] 其中,C0是配置的BPA的浓度,C1是测得BPA的浓度,M是BPA的摩尔质量(g mol‑1),V是加入的BPA的体积(mL),m是加入的聚合物的质量(mg)。
[0051] 通过计算,如图1所示双酚A磁性分子印迹聚合物在1.0mM BPA溶液中的最大吸附‑1 ‑1
量为80.98mg g ,非印迹聚合物的最大吸附量为26.40mg g 。
[0052] 2、动态吸附性能:称取10mg的BMMIPs1(或BMNIPs1)于10mL的具塞离心管中,加入5mL乙腈:水=1:9(v/v)浓度为0.5mM的BPA溶液,将试管密封放置于25℃摇床进行振荡吸
附,分不同的时间间隔取样,测定在不同吸附时间下,聚合物材料对BPA的吸附量Qe(mg g
‑1
)。
[0053] 通过计算,如图2所示双酚A磁性分子印迹聚合物的在5min左右达到吸附平衡。
[0054] 3、选择性吸附性能:选取了2种与双酚A结构类似的化学物2,4‑二氯苯酚(2,4‑dichlorophenol)、对苯二酚(1,4‑benzendiol)以及水杨酸(salicylic acid),和1中结构
差异较大的化学物敌草隆(diuron)和作为竞争物。以乙腈‑水混合溶液(1:9,v/v)作溶剂,
配制4种农药浓度均为0.4mM。称取10mg的BMMIPs1(或BMNIPs1)于15mL具塞试管,加入10mL配
‑1
制好的混合溶液,将试管置于25℃摇床振荡吸附5min。在吸附结束后,用转速为8000r min
离心5min,再取上清液用紫外分光光度计在相应的最大吸收波长处测得各物质的吸附浓
度,并计算出吸附量。
[0055] 如图3所示,可以看出印迹材料(BMMIPs)对0.4mM的BPA的吸附量在40mg g‑1左右,而对其同浓度的结构类似物2,4‑二氯苯酚、对苯二酚和水杨酸的吸附量分别为18.88mg g
‑1 ‑1 ‑1 ‑1
、8.11mg g 和5.63mg g ,对差异较大的敌草隆的吸附量为13.48mg g 。然而,非印迹材
料对所有待测物的吸附量小于印迹材料,且之间没有显著性差异,说明印迹材料表面形成
了特异性空穴,对双酚A具有特异性吸附,因而吸附量大于其他化学物。而非印迹材料对双
酚A和其他化学物的吸附均为非特异性,因而彼此之间的吸附量没有差异。
[0056] 实施例2
[0057] 本实施例涉及的一种磁性分子印迹聚合物串联荧光分析用于双酚A的检测,包括以下步骤:
[0058] 称取5mg实例1制得的双酚A印迹材料,加入到5mL的加标30ng mL‑1、50ng mL‑1、‑1
80ng mL 自来水实际样品中,室温下摇床振荡5min,待吸附完全后,磁铁分离,倒去上清液,
在双酚A印迹材料中加入1mL无水甲醇,超声进行洗脱,重复进行三次,将洗脱液合并后氮气
‑5 ‑1
吹干,加入超纯水,涡旋数秒,充分混合均匀后,依次加入2.7×10 mol L 吖啶橙溶液2mL,
‑3 ‑1 ‑3 ‑1 ‑3 ‑1
5.0×10 mol L H2SO4溶液80μL,1.0×10 mol L FeSO4溶液0.6mL,2×10 mol L 的H2O2溶
液1mL,用超纯水定容至10mL,摇匀后置于45℃恒温水浴中15min,自然冷却至室温后,测定
‑1 ‑1 ‑1
其荧光强度,通过外标法计算实际样品中双酚A含量。30ng mL 、50ng mL 、80ng mL 自来
水实际样品的回收率分别为85.36%、116.75%和112.18%。
[0059] 实施例3
[0060] 本实施例涉及的一种磁性分子印迹聚合物与荧光结合双酚A的检测方法,包括以下步骤:
[0061] 称取5mg实例1制得的双酚A印迹材料,加入到待测5mL的加标30ng mL‑1、50ng mL‑1 ‑1
、80ng mL 橙汁实际样品中,室温下摇床振荡5min吸附完全后,磁铁分离,倒去上清液,在
双酚A印迹材料中加入1mL无水甲醇,超声进行洗脱,重复进行三次,将洗脱液合并后氮气吹
‑5 ‑1
干,加入超纯水,涡旋,充分混合均匀后,依次加入2.7×10 mol L 吖啶橙溶液2mL,5.0×
‑3 ‑1 ‑3 ‑1 ‑3 ‑1
10 mol L H2SO4溶液80μL,1.0×10 mol L FeSO4溶液0.6mL,2×10 mol L 的H2O2溶液
1mL,用超纯水定容至刻度,摇匀后置于45℃恒温水浴15min,自然冷却至室温后,测定其荧
‑1 ‑1 ‑1
光强度,通过外标法计算实际样品中双酚A含量。30ng mL 、50ng mL 、80ng mL 橙汁实际
样品回收率分别为85.67%、114.21%、85.35%,符合定量检测要求。
[0062] 实施例4
[0063] 本实施例涉及的一种磁性分子印迹聚合物与荧光结合双酚A的检测方法,包括以下步骤:
[0064] 称取5mg实例1制得的双酚A印迹材料,加入到待测5mL的加标30ng mL‑1、50ng mL‑1 ‑1
、80ng mL 蔬菜汁实际样品中,室温下摇床振荡5min吸附完全后,磁铁分离,倒去上清液,
在双酚A印迹材料中加入1mL无水甲醇,超声进行洗脱,重复进行三次,将洗脱液合并后氮气
‑5 ‑1
吹干,加入超纯水,涡旋,充分混合均匀后,依次加入2.7×10 mol L 吖啶橙溶液2mL,5.0
‑3 ‑1 ‑3 ‑1 ‑3 ‑1
×10 mol L H2SO4溶液80μL,1.0×10 mol L FeSO4溶液0.6mL,2×10 mol L 的H2O2溶液
1mL,用超纯水定容至刻度,摇匀后置于45℃恒温水浴中15min,自然冷却至室温后,测定其
‑1 ‑1 ‑1
荧光强度,通过外标法计算实际样品中双酚A含量。30ng mL 、50ng mL 、80ng mL 橙汁实
际样品回收率分别为80.23%、90.63%、88.21%,符合定量检测要求。
[0065] 对比例1
[0066] 功能单体是印迹分子形成特异性“孔穴”的条件,为了讨论功能单体对印迹材料吸附性能的影响,本实施例在制备双酚A磁性分子印迹过程中,将甲基丙烯酸作为功能单体,
包括以下步骤:
[0067] 步骤一:将0.0428g的BPA、640μL的甲基丙烯酸(MAA)、90mL无水乙腈混合均匀,在冰浴和氮气保护下搅拌均匀,反应结束后置于冰箱在4℃条件下过夜保存。在混合物中加入
‑1
0.3g Fe3O4@SiO2、9mL的TRIM、90mL浓度为167mg mL 的AIBN‑乙腈溶液,氮气保护下先在50
℃下反应6h,接着在60℃下反应24h。通过外加磁场进行产物分离并将其洗净干燥待用;
[0068] 步骤二:将步骤一得到材料用甲醇‑醋酸混合溶液(9:1,v/v)进行索氏提取30h,将洗净产物真空干燥,即得到双酚A磁性分子印迹聚合物(BMMIPs2)。除了不加模板分子双酚
A,对应的非印迹聚合物(BMNIPs2)制备条件与BMMIPs2一致。
[0069] 将对比例1制得的双酚A磁性分子印迹纳米材料进行吸附性能检测,具体如下:
[0070] 称取10mg的BMMIPs2(或BMNIPs2)于10mL的具塞离心管中,加入5mL乙腈:水=1:9(v/v)的BPA溶液,其中BPA溶液的浓度设置在0.1‑1mM之间。将离心管放置在摇床,在25℃,
190rpm条件下震荡24h。用磁铁将BMMIPs2(BMNIPs2)与溶液分离,上清液过0.22μm滤膜。
[0071] 用紫外分光光度计在278nm处检测其浓度Qe,每个浓度重复试验三次。
[0072] 通过下列公式计算得出聚合物材料对BPA的吸附平衡容量Qe(mg g‑1)。
[0073]
[0074] 其C0是配置的BPA的浓度,C1是测得BPA的浓度,M是BPA的摩尔质量(g mol‑1),V是加入的BPA的体积(mL),m是加入的聚合物的质量(mg)。
[0075] 通过计算,如图4所示双酚A磁性分子印迹聚合物的在1.0mM BPA溶液中的最大吸‑1 ‑1
附量为87.31mg g ,非印迹聚合物的最大吸附量为68.23mg g 。根据印迹因子(imprinted 
factor,简称:IF=QeBMMIPs/QeBMNIPs)公式计算得1.28。印迹因子越趋近于1,说明印迹材料的
特异性越差。可见,功能单体甲基丙烯酸不适用于双酚A磁性印迹的合成。
[0076] 对比例2
[0077] 模板分子、功能单体、交联剂的投料比例是影响聚合反应的关键,因此本实施例在制备双酚A磁性分子印迹过程中,改变模板分子、功能单体、交联剂的投料比。具体包括以下
步骤:
[0078] 步骤一:将0.0428g的BPA、775uL的4‑VP、90mL无水乙腈混合均匀,在冰浴和氮气保护下搅拌均匀,反应结束后置于冰箱在4℃条件下过夜保存。在混合物中加入0.3g Fe3O4@
‑1
SiO2、8.6mL的TRIM、90mL浓度为167mg mL 的AIBN乙腈溶液,氮气保护下先在50℃下反应
6h,接着在60℃下反应24h。通过外加磁场进行产物分离并将其洗净干燥待用;
[0079] 步骤二:将步骤一得到材料用甲醇‑醋酸混合溶液(9:1,v/v)进行索氏提取30h,将洗净产物真空干燥,即得到双酚A磁性分子印迹聚合物(BMMIPs3)。除了不加模板分子双酚
A,对应的非印迹聚合物(BMNIPs3)制备条件与BMMIPs3一致。
[0080] 将对比例2制得的双酚A磁性分子印迹纳米材料进行吸附性能检测,具体如下:
[0081] 称取10mg的BMMIPs3(或BMNIPs3)于10mL的具塞离心管中,加入5mL乙腈:水=1:9(v/v)的BPA溶液,其中BPA溶液的浓度设置在0.1‑1mM之间。将离心管放置在摇床,在25℃,
190rpm条件下震荡24h。用磁铁将BMMIPs3和BMNIPs3与溶液分离,上清液过0.22μm滤膜。
[0082] 用紫外分光光度计在278nm处检测其浓度Qe,每个浓度重复试验两次。
[0083] 通过下面的公式计算得出聚合物材料对BPA的吸附平衡容量Qe(mg g‑1)。
[0084]
[0085] 其C0是配置的BPA的浓度,C1是测得BPA的浓度,M是BPA的摩尔质量(g mol‑1),V是加入的BPA的体积(mL),m是加入的聚合物的质量(mg)。
[0086] 通过计算,如图3所示双酚A磁性分子印迹聚合物(BMMIPs3)的最大吸附量为‑1 ‑1
40.82mg g ,非印迹聚合物(BMNIPs3)的最大吸附量为32.89mg g 。与BMMIPs1相比,吸附量
减少了49.6%。同时,其印迹因子为1.24。可见,该印迹聚合物并非理想材料。
[0087] 对比例3
[0088] 为了对比商品化固相萃取小柱和磁性分子印迹材料对双酚A荧光分析方法的影响,本实施例涉及通过商品化固相萃取小柱和磁性分子印迹材料分离液态食品橙汁中的双
酚A,并通过荧光分析法进行定量,包括以下步骤:
[0089] 称取10mg实例1制得的双酚A印迹材料和C18固相萃取小柱(200mg;柱体积为3mL),‑1
分别处理5mL的30ng mL 双酚A的橙汁加标样品,吸附分离后,加入3mL无水甲醇进行洗脱,
‑5 ‑1 ‑3 ‑1
将洗脱液用氮气吹干后,加入2.7×10 mol L 吖啶橙溶液2mL,5.0×10 mol L H2SO4溶液
‑3 ‑1 ‑3 ‑1
80μL,1.0×10 mol L FeSO4溶液0.6mL,加入2×10 mol L 的H2O2溶液1mL,用超纯水定容
至10mL,摇匀后置于45℃恒温水浴中15min,自然冷却至室温后,测定其荧光强度,通过外标
法计算实际样品中双酚A含量。结果发现,利用磁性分子印迹处理后的样品加标回收率为
88.33%,而通过C18固相萃取柱后的样品加标回收率为406.51%。可见,C18固相萃取柱不
能消除食品基质对荧光检测双酚A的影响。
[0090] 结论:由上述实施例和对比例可以得出
[0091] (1)与BPA结构类似物相比较,BMNIPs对BPA有较强的选择识别能力,形成的空穴结构与BPA的分子结构较为匹配。以功能单体4‑VP合成的印迹聚合物材料比以MAA合成的特异
性更好。
[0092] (2)当功能单体选用MAA时,虽然模板分子、功能单体、交联剂制备比例同样也是最佳比例1:4:15,但是BMMIPs吸附量和BMNIPs吸附量相差不大,特异性不强。而以4‑VP为功能
单体合成的印迹聚合物吸附量,BMMIPs是BMNIPs的近3.1倍。两者差异性更大特异性更强,
所以选用4‑VP作为最佳的功能单体选择。
[0093] (3)当功能单体同样选用4‑VP时,模板分子、功能单体、交联剂制备比例为1:4:14‑1
合成的BMMIPs最大吸附量仅有40.82mg g ,是BMNIPs吸附量的近1.2倍,而以模板分子、功
能单体、交联剂制备比例为1:4:15合成的BMMIPs吸附量是BMNIPs吸附量近3.1倍,且最大可
‑1
达80.98mg g ,两者吸附量相差更大,且特异性更强。所以当模板分子、功能单体、交联剂制
备比例为(d)/(a)=5‑8(w/w),(b)/(c)=5‑15(最佳为7‑10,v/v),(c)/(d)=280‑320(最佳
为290‑310,v/w),(c)/(e)=8‑12(v/v);其中当(a):(b):(e)=1:4:15时,合成的印迹聚合
物材料吸附量和特异性最佳。(其中(a):双酚A质量,单位:g;(b):4‑VP体积,单位:μL;(c):
无水乙腈体积,单位:mL;(d):Fe3O4@SiO2质量,单位:g;(e):TRIM体积,单位:mL);
[0094] (4)合成所得的磁性分子印迹材料能特异性的识别双酚A,并能有效去除液态食品基质的干扰,确保荧光检测的准确性和灵敏度。
[0095] 最后需要注意的是,公布实施方式的目的在于帮助进一步理解本发明。但是本领域的技术人员可以理解:在不脱离本发明权利要求的精神和范围内,各种替换和修改都是
可能的。因此,本发明不应局限于实施例所公开的内容。本发明要求保护的范围以权利要求
书界定的范围为准。