一种具有双冷源系统的混合动力冷藏车转让专利

申请号 : CN202011484300.3

文献号 : CN112721784B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 田翔蔡英凤陈龙孙晓东朱镇王勇刘光龙

申请人 : 江苏大学

摘要 :

本发明公开了一种具有双冷源系统的混合动力冷藏车,包含发动机、主电源变换器、定子电源变换器、电源系统、双转子电机、驱动桥、第一制冷系统、第二制冷系统和天然气低温储罐。该混合动力冷藏车具备纯电动驱动模式、发动机单独驱动模式、混合驱动模式以及行车充电模式,能够适应不同的行驶工况,节能效益明显。此外,在原有压缩机式制冷系统的基础上,充分利用液化天然气低温特性,增加了一组制冷系统将液化天然气自身的冷量引入车厢内,用于冷藏车车厢降温,减少了电能的消耗并降低了气化器的能耗。两套独立的制冷系统既可以实现车厢内快速降温,又互为补充实现容灾机制,能够为冷藏车车厢内持续供冷,极大地拓展了其应用领域。

权利要求 :

1.一种具有双冷源系统的混合动力冷藏车,其特征在于,包含发动机(1)、主电源变换器(2)、定子电源变换器(3)、电源系统(4)、双转子电机(5)、驱动桥(6)、第一制冷系统(7)、第二制冷系统(8)和天然气低温储罐(9);

所述双转子电机(5)两端分别与所述发动机(1)和所述驱动桥(6)机械连接;所述双转子电机(5)通过所述主电源变换器(2)和所述定子电源变换器(3)与所述电源系统(4)电气连接;所述电源系统(4)与第一制冷系统(7)直接电气连接;所述发动机(1)通过所述第二制冷系统(8)与所述天然气低温储罐(9)管路连接;

所述双转子电机(5)包括电滑环(51)、外壳(52)、定子绕组(53)、永磁体(54)、内转子绕组(55)、内转子(56)、外转子(57)、和轴承(58),所述外壳(52)通过所述轴承(58)一端支撑在所述内转子(56)上,另一端支撑在所述外转子(57)上,所述定子绕组(53)安装在所述外壳(52)的内侧,所述外转子(57)通过所述轴承(58)安装在所述内转子(56)上,所述电滑环(51)嵌套安装在所述内转子(56)上,所述内转子绕组(55)安装在所述内转子(56)的外侧,所述永磁体(54)安装在所述外转子(57)的内外两侧;

所述第一制冷系统(7)包含压缩机(71)、冷凝器(72)、节流阀(73)和主蒸发器(74),依次通过管路连接;

所述第二制冷系统(8)包括工质泵(81)、三通调节阀(82)、副蒸发器(83)、气化器(84),缓冲气罐(86)和电动开关阀(85),依次通过管路连接,所述三通调节阀(82)的一个出口与所述副蒸发器(83)的进口相连,另一个出口与所述副蒸发器(83)的出口相连;

所述第一制冷系统(7)中主蒸发器(74)安装在冷藏厢顶端的后部位置,所述第二制冷系统(8)中副蒸发器(83)安装在冷藏厢顶端的前部位置;

所述第一制冷系统(7)中压缩机(71)为电动压缩机;

具体工作模式主要有以下四种运行模式:

模式1:冷藏车在停车模式下,发动机(1)处于关闭状态,若电源系统(4)的电池荷电状态大于30%时,车厢内所需冷量由第一制冷系统(7)提供;若电源系统(4)的电池荷电状态小于或等于30%时,发动机(1)起动通过连接轴带动双转子电机(5)的内转子(56)一起旋转,主电源变换器(2)将发动机输出的动能转化为电能为电源系统(4)进行充电,此时车厢内所需冷量由第二制冷系统(8)提供;

模式2:当冷藏车的车速v小于等于25km/h时,且电源系统(4)的电池荷电状态大于30%时,车辆所需的驱动力由双转子电机(5)提供,车辆工作在纯电驱动模式下,有效提高了车辆的经济性,此时车厢内所需冷量由第一制冷系统(7)提供;

模式3:当冷藏车的车速v大于25km/h时,若电源系统(4)电量的电池荷电状态大于30%时,车辆所需的驱动力可由发动机(1)单独提供或者由发动机(1)和双转子电机(5)共同提供,即车辆工作在发动机单独驱动模式或混合驱动模式下;此时车厢内所需冷量可由第二制冷系统(8)提供,或者也可由第一制冷系统(7)及第二制冷系统(8)共同提供,从而实现车厢内快速降温,若电源系统(4)的电池荷电状态小于或等于30%时,车辆工作在行车充电模式,即发动机(1)输出的一部分动能驱动车辆正常行驶,另一部分动能则带动双转子电机(5)的内转子(56)一并旋转,通过电滑环(51)由主电源变换器(2)将这部分动能转换为电能,并存储在电源系统(4)中,此时,车厢内所需冷量由第二制冷系统(8)提供;

模式4:当冷藏车运行在制动模式下,制动力主要由双转子电机(5)实现再生制动提供,不足的部分由摩擦制动提供,车辆驱动桥(6)带动双转子电机(5)的外转子(57)一并旋转,并与定子绕组(53)通过磁场耦合产生制动力矩,由定子电源变换器(3)将车辆的动能转换为电能,存储在电源系统(4)中,此时,车厢内所需冷量由第一制冷系统(7)提供。

2.如权利要求1所述的一种具有双冷源系统的混合动力冷藏车,其特征在于,所述发动机(1)为液化天然气发动机。

3.如权利要求1所述的一种具有双冷源系统的混合动力冷藏车,其特征在于,所述主蒸发器(74)和所述副蒸发器(83)中均配有风扇。

说明书 :

一种具有双冷源系统的混合动力冷藏车

技术领域

[0001] 本发明涉及冷藏车技术领域,具体涉及一种具有双冷源系统的混合动力冷藏车。

背景技术

[0002] 近年来,随着国民生活品质的提高,对于生鲜食物以及速冻食品的需求量呈现出爆发式地增长,也极大地推动了冷链物流行业的发展。冷藏车作为其中的关键环节,直接影
响食品的安全,故对其性能以及可靠性提出了较高的要求。
[0003] 目前,我国冷藏车主要分为机械式冷藏车、液氮式冷藏车和冷板式冷藏车等。其中机械式冷藏车在市场中占主流,它是通过发动机带动制冷机工作制冷,故其燃油消耗量较
大,与同类型的普通货车相比,其尾气排放量将增加30%以上。此外,即使在停车时也需要
发动机正常工作,确保制冷机能够提供足够的冷量维持车厢内的低温。液氮冷藏车存在使
用成本高、液氮充注受到限制,不易推广等劣势。冷板冷藏车中的冷板装置较重且需要占据
车厢的容积,故适合于中、短途运输,无法满足长途冷链运输的需求。

发明内容

[0004] 本发明的目的在于提供一种可以有效节约车辆运营成本,减少尾气污染物排放,环境友好度高,环保效益大、运行可靠性强的具有双冷源系统的混合动力冷藏车,适用于对
存储环境要求高冷链运输的场景。
[0005] 为实现上述目的,本发明采取以下技术方案:一种具有双冷源系统的混合动力冷藏车,其特征在于,包含发动机、主电源变换器、定子电源变换器、电源系统、双转子电机、驱
动桥、第一制冷系统、第二制冷系统和天然气低温储罐;
[0006] 所述双转子电机两端分别与所述发动机和所述驱动桥机械连接;所述双转子电机通过所述主电源变换器和所述定子电源变换器与所述电源系统电气连接;所述电源系统与
第一制冷系统直接电气连接;所述发动机通过所述第二制冷系统与所述天然气低温储罐管
路连接;
[0007] 所述双转子电机包括电滑环、外壳、定子绕组、永磁体、内转子绕组、内转子、外转子、和轴承,所述外壳通过所述轴承一端支撑在所述内转子上,另一端支撑在所述外转子
上,所述定子绕组安装在所述外壳的内侧,所述外转子通过所述轴承安装在所述内转子上,
所述电滑环嵌套安装在所述内转子上,所述内转子绕组安装在所述内转子的外侧,所述永
磁体安装在所述外转子的内外两侧;
[0008] 所述第一制冷系统包含压缩机、冷凝器、节流阀和主蒸发器,依次通过管路连接;
[0009] 所述第二制冷系统包括工质泵、三通调节阀、副蒸发器、气化器,缓冲气罐和电动开关阀,依次通过管路连接,所述三通调节阀的一个出口与所述副蒸发器的进口相连,另一
个出口与所述副蒸发器的出口相连。
[0010] 进一步,所述发动机为液化天然气发动机。
[0011] 进一步,所述主蒸发器和所述副蒸发器中均配有风扇。
[0012] 进一步,所述第一制冷系统中主蒸发器安装在车厢顶端的后部位置,所述第二制冷系统中副蒸发器安装在车厢顶端的前部位置。
[0013] 进一步,所述第一制冷系统中压缩机为电动压缩机。
[0014] 本发明的有益效果是:本发明公开的一种具有双冷源系统的混合动力冷藏车,在动力系统中引入双转子电机,实现了发动机与车轮转速解耦,使其具备多种运行模式适应
不同的行驶工况,提高了整车的经济性。采用了液化天然气(LNG)发动机,减少了燃烧后尾
气污染物的排放,对环境更加友好。此外在原有压缩机式制冷系统的基础上,充分利用液化
天然气低温特性,增加了一组制冷系统将液化天然气自身的冷量引入车厢内,用于冷藏车
车厢降温,减少了电能的消耗并降低了气化器的能耗,达到节能环保的目的。与现有技术相
比,本发明具有可靠性高、实用性强以及车辆运营成本低等优势。

附图说明

[0015] 为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于
本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他
的附图,其中:
[0016] 图1是根据本发明公开的一种具有双冷源系统的混合动力冷藏车的示意图;
[0017] 图2是本发明冷藏车车厢内部布置示意图。
[0018] 图中:201‑驾驶室;202‑冷藏厢;203‑车体底盘;204‑回风槽

具体实施方式

[0019] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
[0020] 详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。通过参考附图描述的
实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
[0021] 图1为根据本发明公开的一种具有双冷源系统的混合动力冷藏车的示意图,仅以示意方式显示与本发明有关的构成。如图1所示的一种具有双冷源系统的混合动力冷藏车
包含发动机1、主电源变换器2、定子电源变换器3、电源系统4、双转子电机5、驱动桥6、第一
制冷系统7、第二制冷系统8和天然气低温储罐9。双转子电机5两端分别与发动机1和驱动桥
6机械(刚性)连接;双转子电机5通过主电源变换器2和定子电源变换器3与电源系统4电气
连接;电源系统4与第一制冷系统7直接电气连接;发动机1通过第二制冷系统8与天然气低
温储罐9由管路连接;这里优选的发动机方案为液化天然气(LNG)发动机,液化天然气的主
要成分为甲烷,其无色、无味且无腐蚀性,燃烧后的污染物几乎没有,被公认是地球上最干
净的化石能源,属于清洁能源的一种。
[0022] 双转子电机5包括电滑环51、外壳52、定子绕组53、永磁体54、内转子绕组55、内转子56、外转子57、和轴承58,外壳52通过轴承58一端支撑在内转子56上,另一端支撑在外转
子57上,定子绕组53安装在外壳52的内侧,外转子57通过轴承58安装在内转子56上,电滑环
51嵌套安装在内转子56上,内转子绕组55安装在内转子56的外侧,永磁体54安装在外转子
57的内外两侧;发动机1的输出轴与双转子电机5的内转子56相连,外转子57直接与驱动桥6
相连。
[0023] 第一制冷系统7包含压缩机71、冷凝器72、节流阀73和主蒸发器74,依次通过管路连接,形成密闭的系统,制冷剂可在其中不断的循环流动。首先,液态的制冷剂通过在主蒸
发器74中吸热被气化成低温低压的气体形式;随后经压缩机71吸入并压缩成高温高压的气
体;再经过冷凝器72进行放热,进而冷却剂以高压液态形式存在,经过节流阀73形成低温低
压的液体,最终流回主蒸发器74,从而实现循环制冷的目的。这里优选的方案中,压缩机为
电动压缩机,能够将电能转化为机械能从而实现对气体的压缩,形成高温高压的气体;主蒸
发器74中配有风扇,可将冷量吹入冷藏车车厢内,便于更好地降温控制。主蒸发器74优选的
安装方式在车厢顶端后部的风道内。
[0024] 第二制冷系统8包括工质泵81、三通调节阀82、副蒸发器83、气化器84,缓冲气罐86和电动开关阀85,依次通过管路连接,形成密闭的系统。其中三通调节阀82的一个出口与副
蒸发器83的进口相连,另一个出口与副蒸发器83的出口相连。这里优选的方案中,副蒸发器
83中也配有风扇,并安装在车厢顶端前部的风道内。天然气低温储罐9中的液态天然气通过
工质泵81经三通调节阀82泵入副蒸发器83中,由风扇将低温液态天然气的冷量通过鼓风方
式输出至车厢内,并可通过改变三通调节阀82的双向开度来调节流经副蒸发器83中低温液
态天然气的流量,达到增大冷量供应的目的。副蒸发器83流出的液态天然气经过气化器84
形成气态天然气后,进入缓冲气罐86中贮存。开启电动开关阀85后,气态天然气将流入发动
机进行燃烧。
[0025] 现结合图2对冷藏车车厢内部布置结构进行说明,冷藏厢202固定安装在车体底盘203上,而第一制冷系统7中主蒸发器74安装在冷藏厢202顶端的后部位置,第二制冷系统8
中副蒸发器83安装在冷藏厢顶端的前部位置,冷藏厢202内部布有回风槽204,便于形成气
流的环路,从而实现对冷藏厢202内部温度的控制。
[0026] 本发明的具体工作模式主要有以下四种运行模式:
[0027] (1)冷藏车在停车模式下,发动机1处于关闭状态,若电源系统4的电量较高(电池荷电状态大于30%)时,车厢内所需冷量由第一制冷系统7提供;若电源系统4的电量较低
(电池荷电状态小于或等于30%)时,发动机1起动通过连接轴带动双转子电机5的内转子56
一起旋转,主电源变换器2将发动机输出的动能转化为电能为电源系统4进行充电,此时车
厢内所需冷量由第二制冷系统8提供;
[0028] (2)当冷藏车运行在低速(车速v小于等于25km/h)条件下,且电源系统4的电量较高(电池荷电状态大于30%)时,车辆所需的驱动力由双转子电机5提供,车辆工作在纯电驱
动模式下,有效提高了车辆的经济性,此时车厢内所需冷量由第一制冷系统7提供;
[0029] (3)当冷藏车运行在中高速(车速v大于25km/h)条件下,若电源系统4电量较高(电池荷电状态大于30%)时,车辆所需的驱动力可由发动机1单独提供或者由发动机1和双转
子电机5共同提供,即车辆工作在发动机单独驱动模式或混合驱动模式下;此时车厢内所需
冷量可由第二制冷系统8提供,或者也可由第一制冷系统7及第二制冷系统8共同提供,从而
实现车厢内快速降温。若电源系统4电量较低(电池荷电状态小于或等于30%)时,车辆工作
在行车充电模式,即发动机1输出的一部分动能驱动车辆正常行驶,另一部分动能则带动双
转子电机5的内转子56一并旋转,通过电滑环51由主电源变换器2将这部分动能转换为电
能,并存储在电源系统4中。此时,车厢内所需冷量由第二制冷系统8提供。
[0030] (4)当冷藏车运行在制动模式下,制动力主要由双转子电机5实现再生制动提供,不足的部分由摩擦制动提供。车辆驱动桥6带动双转子电机5的外转子57一并旋转,并与定
子绕组53通过磁场耦合产生制动力矩,由定子电源变换器3将车辆的动能转换为电能,存储
在电源系统4中。此时,车厢内所需冷量由第一制冷系统7提供。
[0031] 通过本发明提供的一种具有双冷源系统的混合动力冷藏车,能够适应不同的行驶工况,有效地提高了车辆运行的可靠性与经济性。两套独立的制冷系统既可以实现车厢内
快速降温,又互为补充实现容灾机制,能够为冷藏车车厢内持续供冷,拓展了应用领域,尤
其适用于对制冷条件要求较高的医用领域,例如疫苗、血液制品等的长途冷链运输。
[0032] 以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在
本发明的保护范围内。