一种三维打印设备中的六轴机器人的轴动作优化方法转让专利

申请号 : CN202011473683.4

文献号 : CN112776341B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 袁烽陆明

申请人 : 同济大学上海一造科技有限公司

摘要 :

本发明提供了一种三维打印设备中的六轴机器人的轴动作优化方法,包括以下步骤;步骤S1,采集待打印的3D模型的结构点阵模型数据;步骤S2,将结构点阵模型数据导入3D打印机中,步骤S3,选择需要优化的轴关节;步骤S4,将结构点阵模型数据中的待打印的目标点定义为目标原点坐标P;步骤S5,将目标原点坐标P与待优化的轴关节之间建立机械变换结构式;步骤S6,根据轴关节需求的动作角度,从机械变换结构式倒推打印目标原点坐标P的行动轨迹角度。本发明公开了一种适用于三维打印设备中的六轴机器人中的便捷、稳定的轴动作优化方法。

权利要求 :

1.一种三维打印设备中的六轴机器人的轴动作优化方法,包括3D打印机,3D打印机驱动连接有六轴机器人,所述六轴机器人一端驱动设置在3D打印机上,所述六轴机器人的另一端驱动连接有3D打印头,所述3D打印头对应所述3D打印机的打印仓;其特征在于:所述3D打印中的轴动作优化方法包括以下步骤;

步骤S1,采集待打印的3D模型的结构点阵模型数据;

步骤S2,将结构点阵模型数据导入3D打印机中,

步骤S3,选择需要优化的轴关节;

步骤S4,将结构点阵模型数据中的待打印的目标点定义为目标原点坐标P;

步骤S5,将目标原点坐标P与待优化的轴关节之间建立机械变换结构式;

步骤S6,根据轴关节需求的动作角度,从机械变换结构式倒推打印目标原点坐标P的行动轨迹角度;

所述步骤S5中,还包括,

步骤b1,根据目标原点坐标P定义以目标原点坐标P为原点的目标原点坐标系步骤b2,旋转变换Rx是围绕P点上的3D打印头的喷口的喷涂方向旋转的旋转变换矩阵;

步骤b3,定义待调节的轴关节上与3D打印头之间的相对轴关节上法兰的变换是轴关节的法兰tool与3D打印头的喷口flange之间的相对变换位置关系;

步骤b4,根据机械臂的变换结构获得,机械变换结构式

为底座到3D打印头的喷口flange之间的位置关系;

所述步骤b3中,还包括,根据六轴机器人的tx和tz,tz为待调节的轴关节上的法兰中心与3D打印头中心轴线的法线,tx是tz位于D打印头中心轴线上的交点至3D打印头的端部的喷口之间直线;所述 为 法兰的坐标平面的Z轴的方向向量为vflange,vflange在世界坐标系的X轴和Y轴上的投影为vfx和vfy;法兰的坐标平面的X轴方向向量为xflange,法兰的坐标平面的Y轴方向向量为yflange;待调节的轴关节动作角度为0时,推算出旋转变换Rx中的θ角度;

所述六轴机器人包括基本主轴和腕部运动次轴,所述主轴包括驱动连接底座的本体回旋轴A1,驱动连接本体回旋轴A1和大臂运动轴A2,驱动连接大臂运动轴A2和小臂运动轴A3;

所述腕部运动次轴包括与小臂运动轴A3驱动连接的手腕旋转轴A4,与手腕旋转轴A4驱动连接的手腕摆动轴A5,与手腕摆动轴A5驱动连接的3D打印头的圆周转动轴A6。

2.根据权利要求1所述的一种三维打印设备中的六轴机器人的轴动作优化方法,其特征在于:所述步骤S4中,还包括,步骤a1,将六轴机器人根部的底座定义为世界坐标系;

步骤a2,将结构点阵模型数据导入3D打印机,根据结构点阵模型数据和打印头的位置设定3D模型的目标原点坐标P,p=(x,y,z)。

3.根据权利要求2所述的一种三维打印设备中的六轴机器人的轴动作优化方法,其特征在于:所述步骤b1中,还包括,所述目标原点坐标系 中;根据3D打印头的喷打方向定义目标原点坐标系为

4.根据权利要求3所述的一种三维打印设备中的六轴机器人的轴动作优化方法,其特征在于:所述步骤b2中,还包括,所述旋转变换Rx中,

5.根据权利要求4所述的一种三维打印设备中的六轴机器人的轴动作优化方法,其特征在于:所述手腕旋转轴A4或/和圆周转动轴A6的变换角度趋向于0或等于0。

6.一种三维打印设备,其特征在于:采用权利要求1~权利要求5中任一权利要求中所述的六轴机器人的轴动作优化方法。

说明书 :

一种三维打印设备中的六轴机器人的轴动作优化方法

技术领域

[0001] 本发明涉及机械自动化控制领域,具体涉及一种三维打印设备中的六轴机器人的轴动作优化方法。

背景技术

[0002] 三维打印主流按打印路径分为层级打印和空间结构打印。一般来说用abs, pla,混凝土,金属堆焊,热固性材料等。本发明在上述打印方式都可以有应用的空间。
[0003] 目前机器人三维打印的主要方法是通过描述一系列的三维空间点,通过离线文件的形式传输给机器人,机器人再通过内置的反向运动学算法算出机器人自身每个轴的需要转动的度数,从而使得自身的末端工具头能够达到目标点。
[0004] 在传统的六轴机器人包括驱动连接在底座的本体回旋轴A1和3D打印头之间的,驱动连接本体回旋轴A1、大臂运动轴A2、小臂运动轴A3、手腕旋转轴 A4、手腕摆动轴A5、圆周转动轴A6。六轴机器人在三维打印中,对围绕TCP坐标的法向量,即3D打印头的喷口方向向量的转动并不敏感。如图1是未经过动作优化的六个关节轴在时间轴上的动作变化曲线,图2是经过动作优化后的六个关节轴在时间轴上的动作变化曲线。现有技术中,采用的方法,例如,专利: CN201811562534.8,一种基于时间分组的机械臂关节轨迹优化方法;以及专利: CN201310145357.4,一种基于遗传算法的移动机械臂轨迹规划优化方法公开的均是采用优化运动轨迹的方式,需要大量时间进行数值迭代优化,操作繁琐,实现动作的初步优化,优化效果不佳。从图1和图2的曲线变化中,对所有关节轴进行运动优化,减小不必要的运动;其中手腕旋转轴A4变换角度接近0度或等于0度。调节手腕旋转轴A4或/和圆周转动轴A6的变换状态能控制六轴机器人其他关节的运行轨迹;即手腕旋转轴A4变换角度接近0度或等于0度时六轴机器人其他关节的运行轨迹趋向于动作优化曲线。
[0005] 因此,需要研发一种便捷优化六轴机器人动作的方法。通过调节局部的关节轴运动状态从而调节运动轨迹。

发明内容

[0006] 本发明克服了现有技术的不足,提供了一种适用于三维打印设备中的六轴机器人中的便捷、稳定的轴动作优化方法。
[0007] 为达到上述目的,本发明采用的技术方案为:一种三维打印设备中的六轴机器人的轴动作优化方法,包括3D打印机,3D打印机驱动连接有六轴机器人,所述六轴机器人一端驱动设置在3D打印机上,所述六轴机器人的另一端驱动连接有3D打印头,所述3D打印头对应所述3D打印机的打印仓。
[0008] 3D打印中的轴动作优化方法包括以下步骤;
[0009] 步骤S1,采集待打印的3D模型的结构点阵模型数据;
[0010] 步骤S2,将结构点阵模型数据导入3D打印机中,
[0011] 步骤S3,选择需要优化的轴关节;
[0012] 步骤S4,将结构点阵模型数据中的待打印的目标点定义为目标原点坐标P;
[0013] 步骤S5,将目标原点坐标P与待优化的轴关节之间建立机械变换结构式;
[0014] 步骤S6,根据轴关节需求的动作角度,从机械变换结构式倒推打印目标原点坐标P的行动轨迹角度。
[0015] 本发明一个优选的实施方案中,步骤S4中,还包括,步骤a1,将六轴机器人根部底座定义为世界坐标系;步骤a2,将结构点阵模型数据导入3D打印机,根据结构点阵模型数据和打印头的位置设定3D模型的目标原点坐标P, p=(x,y,z)。
[0016] 本发明一个优选的实施方案中,步骤S5中,还包括,步骤b1,根据目标原点坐标P定义以目标原点坐标P为原点的目标原点坐标系 步骤b2,旋转变换Rx是围绕P点上的3D打印头的喷口的喷涂方向旋转的旋转变换矩阵;步骤b3,定义待调节的轴关节上与3D打印头之间的相对轴关节上法兰的变换 是法兰tool与3D打印头的喷口flange之间的相对变换位置关系;步骤 b4,根据机械臂的变换结构获得,机械变换结构式为底座到3D打印头的喷口flange之间的位置关系。
[0017] 本发明一个优选的实施方案中,所述步骤b1中,还包括,所述目标原点坐标系中;根据3D打印头的喷口的喷打方向定义目标原点坐标系为本发明一个优选的实施方案中,步骤b2中,还包括,所述旋转变换Rx中,
[0018] 本发明一个优选的实施方案中,步骤b3中,还包括,根据六轴机器人的tx和 tz,tz为待调节的轴关节上的法兰中心与3D打印头中心轴线的法线,tx是tz位于 D打印头中心轴线上的交点至3D打印头端部喷口之间直线;所述 为
[0019] 本发明一个优选的实施方案中,法兰的坐标平面的Z轴的方向向量为vflange, vflange在世界坐标系的X轴和Y轴上的投影为vfx和vfy;法兰的坐标平面的X轴方向向量为xflange,法兰的坐标平面的Y轴方向向量为yflange;待调节的轴关节动作角度为0时,推算出旋转变换Rx中的θ角度。
[0020] 本发明一个优选的实施方案中,六轴机器人包括基本主轴和腕部运动次轴,所述主轴包括驱动连接底座的本体回旋轴A1,驱动连接本体回旋轴A1和大臂运动轴A2,驱动连接大臂运动轴A2和小臂运动轴A3;所述腕部运动次轴包括与小臂运动轴A3驱动连接的手腕旋转轴A4,与手腕旋转轴A4驱动连接的手腕摆动轴A5,与手腕摆动轴A5驱动连接的3D打印头的圆周转动轴A6。
[0021] 本发明一个优选的实施方案中,手腕旋转轴A4或/和圆周转动轴A6的变换角度趋向于0或等于0。
[0022] 本发明一个优选的实施方案中,一种三维打印设备,采用六轴机器人的轴动作优化方法。
[0023] 本发明解决了技术背景中存在的缺陷,本发明有益的技术效果是:
[0024] 本发明公开了一种适用于三维打印设备中的六轴机器人中的便捷、稳定的轴动作优化方法。
[0025] 第一,通过根据六轴机器人中的关节轴的动作的限定反向推导出打印轨迹的角度,进一步提升了打印的稳定性、便捷性、节能性的同时,还进一步提升了动作优化方法的便捷性。
[0026] 第二,通过进一步定义手腕旋转轴A4或/和圆周转动轴A6的动作变换角度的调节,实现对六轴机器人的稳定控制提供了简便的控制方法,通过控制一个关节轴的变换角度从而实现所有轴的动作优化和控制稳定性。

附图说明

[0027] 下面结合附图和实施例对本发明进一步说明。
[0028] 图1是现有技术中的六轴机器人的各个轴在时间轴上的运动角度曲线图;
[0029] 图2是现有技术中的对六轴机器人运动优化后的各个轴在时间轴上的运动角度曲线图;
[0030] 图3是现有技术中的六轴机器人J1~J4阶段的打印轨迹的俯视结构示意图;
[0031] 图4是现有技术中的六轴机器人J1~J4阶段的打印轨迹的正视结构示意图;
[0032] 图5是本发明的优选实施例中六轴机器人驱动连接3D打印头的结构示意图一;
[0033] 图6是本发明的优选实施例中六轴机器人驱动连接3D打印头的结构示意图二;
[0034] 图7是本发明的优选实施例中六轴机器人的结构示意图;
[0035] 图中附图标记的含义;A0‑底座,A1‑本体回旋轴,A2‑大臂运动轴,A3‑小臂运动轴,A4‑手腕旋转轴,A5‑手腕摆动轴,A6‑圆周转动轴;1‑六轴机器人,2‑ 法兰,3‑3D打印头,31‑喷口。

具体实施方式

[0036] 现在结合附图和实施例对本发明作进一步详细的说明,这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
[0037] 需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、底、顶等),则该方向性指示仅用于解释在某一特定姿态下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
[0038] 如图5~图7所示,本实施例公开了一种三维打印设备中的六轴机器人1的轴动作优化方法,包括3D打印机,3D打印机驱动连接有六轴机器人1,六轴机器人1一端驱动设置在3D打印机上,六轴机器人1的另一端驱动连接有3D打印头3,3D打印头3对应3D打印机的打印仓;六轴机器人1包括基本主轴和腕部运动次轴,主轴包括驱动连接底座A0的本体回旋轴A1,驱动连接本体回旋轴 A1的大臂运动轴A2,驱动连接大臂运动轴A2和小臂运动轴A3;腕部运动次轴包括与小臂运动轴A3驱动连接的手腕旋转轴A4,与手腕旋转轴A4驱动连接的手腕摆动轴A5,与手腕摆动轴A5驱动连接的3D打印头3的圆周转动轴A6。手腕旋转轴A4或/和圆周转动轴A6的变换角度趋向于0或等于0。本申请中是针对手腕旋转轴A4的变换角度趋向于0或等于0进行优化的方法。
[0039] 具体的,3D打印中的轴动作优化方法包括以下步骤:
[0040] 步骤S1,采集待打印的3D模型的结构点阵模型数据。
[0041] 步骤S2,将结构点阵模型数据导入3D打印机中。
[0042] 步骤S3,选择需要优化的轴关节。
[0043] 步骤S4,将结构点阵模型数据中的待打印的目标点定义为目标原点坐标P。
[0044] 步骤a1,将六轴机器人1根部底座A0定义为世界坐标系。
[0045] 步骤a2,将结构点阵模型数据导入3D打印机,根据结构点阵模型数据和打印头的位置设定3D模型的目标原点坐标P,p=(x,y,z)。
[0046] 步骤S5,将目标原点坐标P与待优化的轴关节之间建立机械变换结构式。步骤b1,根据目标原点坐标P定义,以目标原点坐标P为原点的目标原点坐标系 目标原点坐标系 中;根据3D打印头3的喷打方向定义目标原点坐标系为
[0047] 步骤b2,旋转变换Rx是围绕P点上的喷口31的喷涂方向旋转的旋转变换矩阵;旋转变换Rx中,
[0048] 步骤b3,定义待调节的轴关节上与3D打印头3之间的相对法兰2的变换是法兰2即tool与3D打印头3的喷口31即flange之间的相对变换位置关系;根据六轴机器人
1的tx和tz,tz为待调节的轴关节上的法兰2中心与3D打印头3的中心轴线的法线,tx是tz位于D打印头中心轴线上的交点至3D打印头3端部喷口31之间的直线或线段; 为
[0049] 步骤b4,根据机械臂的变换结构获得,机械变换结构式:
[0050] 为底座A 0到3D打印头3的喷口31即flange 之间的位置关系。法兰2的坐标平面的Z轴的方向向量为vflange,vflange在世界坐标系的X轴和Y轴上的投影为vfx和vfy;法兰2的坐标平面的X轴方向向量为 xflange,法兰2的坐标平面的Y轴方向向量为yflange;待调节的轴关节动作角度为0 时, 算出旋转变换Rx中的θ角度。
[0051] 步骤S6,根据轴关节需求的动作角度,从机械变换结构式倒推打印目标原点坐标P的行动轨迹角度。
[0052] 实施例一
[0053] 具体的,如图5~图7所示,六轴机器人1根部底座A 0定义为世界坐标系,确定目标点坐标系的目标原点坐标p=(x,y,z)。目标平面坐标系的X轴方向为3D 打印头3的喷口31T方向。设目标点坐标系的Z轴方向为Tx=(r,0,z3) ,其中z3 是一个未知量,r是一个非零实数,使得Z轴的向量从Top视图上看,平行于世界坐标系的X轴。但不仅限于此,在其他实施例中Z轴也可以假设成平行于世界坐标系的Y轴或任意方向。确定Tz的z3的值。由于目标点坐标系的各个方向轴之间是垂直的。
[0054] 目标点坐标系的X轴垂直于目标点坐标系的Z轴,即:Tx=(x1,y1,z1);Tx·Tz=0;上式展开可得:x1·r+y1·0+z1·z3=0;可得: 汇总后,求得Tz:
[0055] 所以Tz,即目标点的坐标系的Z轴方向向量的长度也能被计算出来,记为 Len。
[0056]
[0057]
[0058]
[0059] 设: 所以/Len=r*L;
[0060] 单元化Tz,使之成为长度为1的向量,即把Tz的每个分量都除以L’:约去r,可得单元化后的
[0061] 由于Z轴叉乘X轴便可获得Y轴向量: 汇总三个基向量和坐标原点,以目标原点坐标P为原点的目标原点坐标系:
其中, 中的0,0,0,1的定义,是确保这个变换是刚体变换的2个条件之一。还有一个条件是Tx,Ty,Tz都是单位向量,且相互垂直,该变换是刚体变换。
[0062] 因为在三维打印中,机器人围绕目标点平面坐标系的X轴进行旋转而不影响打印效果,转多少度,是需要要求得的结果。设围绕目标点平面的X轴旋转,为围绕P点的X轴的旋转变换矩阵:Rx;
[0063] 3D打印头3的转角皆为正交。定义待调节的轴关节上与3D打印头3之间的相对圆周转动轴A6上的法兰2的变换 是法兰2即tool与3D打印头3的喷口31即flange之间的相对变换位置关系;根据六轴机器人1的tx和tz, tz为待调节的轴关节上的法兰2中心与3D打印头3中心轴线的法线,tx是tz位于 3D打印头3中心轴线上的交点至3D打印头3端部喷口31之间直线。tx和tz皆为已知量,得到这个工具头相对法兰2的变换
[0064] 根据六轴机器人1的结构,可得: 为底座A 0 到3D打印头3的喷口31即flange之间的位置关系。 在右上角加‑1是逆向,等同于是从喷口31与法兰2之间的相对变换位置关系。公式 的左边都为已
知项,所以求得的矩阵也是已知的,计算可得:
[0065]
[0066] 其中,记录下以下向量:
[0067]
[0068]
[0069]
[0070]
[0071] 当手腕旋转轴A4的变换角度是0或接近与0的时候,如图6所示的机械臂的Top视图。由图6可见,法兰2的坐标平面的Z轴的方向向量为vflange,vflange在世界坐标系的X轴和Y轴上的投影为vfx和vfy;可得:vfx=a13,vfy=a23。法兰2的坐标平面的X轴方向向量为xflange,法兰2的坐标平面的Y轴方向向量为yflange;与手腕旋转轴A4的旋转轴的中轴线平行。可得: xflange=a14,yflange=a24。因为vflange平行于手腕旋转轴A4的旋转轴的中轴线,所以可得,手腕旋转轴A4的旋转角度是0;得出, 即为:
[0072] 把得到的a13,a23,a14,a24代入方程,这是个未知量为θ的一元方程,计算求得θ:
[0073]
[0074] 把θ代入实际场景,算出结果,得出优化算法。在确定θ后,通过:
[0075]
[0076] 其中b13,b23,b33即为目标平面坐标系的z轴的方向向量的x、y、z的三个分量,计算可得:
[0077]
[0078] 得出优化动作轨迹。
[0079] 本发明工作原理:如图5~图7所示,采集待打印的3D模型的结构点阵模型数据;将结构点阵模型数据导入3D打印机中,选择需要优化的轴关节;将结构点阵模型数据中的待打印的目标点定义为目标原点坐标P;将目标原点坐标P与待优化的轴关节之间建立机械变换结构式;根据轴关节需求的动作角度,从机械变换结构式倒推打印目标原点坐标P的行动轨迹角度。
[0080] 以上具体实施方式是对本发明提出的方案思想的具体支持,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在本技术方案基础上所做的任何等同变化或等效的改动,均仍属于本发明技术方案保护的范围。