一种液相法喷涂工艺制备晶须增韧复合涂层的方法转让专利

申请号 : CN202110092088.4

文献号 : CN112851330B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 白宇胡永宝柳琪王玉

申请人 : 西安交通大学

摘要 :

本发明公开一种液相法喷涂工艺制备晶须增韧复合涂层的方法,属于纳米热防护涂层制备领域,将晶须与陶瓷基纳米粉体混合后加入到溶剂中,然后加入分散剂和柔软剂得到悬浮液,将悬浮液球磨后,通过离心雾化器喷出,雾化的悬浮液在等离子喷涂的等离子体热源作用下熔化并撞击基体表面,得到晶须增韧复合陶瓷涂层。该方法制备周期短,工艺简单,易于控制,可大规模生产,具有广阔的应用市场。

权利要求 :

1.一种液相法喷涂工艺制备晶须增韧复合涂层的方法,其特征在于,将晶须与陶瓷基纳米粉体混合后加入到溶剂中,然后加入分散剂和柔软剂得到悬浮液,将悬浮液球磨后,进入离心雾化器的离心喷嘴后进行旋转,由喷嘴喷出纳米颗粒包覆晶须的球状团聚颗粒,球状团聚颗粒在等离子喷涂的等离子体热源作用下熔化并撞击基体表面,得到晶须增韧复合陶瓷涂层;

其中,离心雾化器的离心雾化喷嘴的进气孔外孔压力为0.5~3MPa,内孔压力为0.5~

3MPa;

等离子喷涂的喷涂参数如下:喷涂电压为80~130V、电流为300~500A、主汽流量为50~200slpm、辅气流量为15~30slpm、喷涂距离为50~110mm。

2.根据权利要求1所述的一种液相法喷涂工艺制备晶须增韧复合涂层的方法,其特征在于,晶须与纳米粉体材料混合时,晶须的质量百分数为10%~90%。

3.根据权利要求1所述的一种液相法喷涂工艺制备晶须增韧复合涂层的方法,其特征在于,晶须为碳化硅、氧化锆、氮化硅、莫来石或氧化铝,晶须的长径比为5‑100。

4.根据权利要求1所述的一种液相法喷涂工艺制备晶须增韧复合涂层的方法,其特征在于,陶瓷基纳米粉体为纳米级的氧化钇稳定氧化锆、稀土锆酸盐、铈酸镧、钽酸钇、LaMgAl11O19或Y3Al5O12。

5.根据权利要求4所述的一种液相法喷涂工艺制备晶须增韧复合涂层的方法,其特征在于,稀土锆酸盐为锆酸镧、锆酸铈、锆酸钪或锆酸钇。

6.根据权利要求1所述的一种液相法喷涂工艺制备晶须增韧复合涂层的方法,其特征在于,溶剂为蒸馏水和/或乙醇;分散剂为柠檬酸三铵或聚丙烯氨酸,柔软剂为PEG‑1000。

7.根据权利要求1所述的一种液相法喷涂工艺制备晶须增韧复合涂层的方法,其特征在于,悬浮液中晶须与纳米粉体总质量含量为10~60%;分散剂和柔软剂的质量均为悬浮液质量的0.1~2%。

8.根据权利要求1所述的一种液相法喷涂工艺制备晶须增韧复合涂层的方法,其特征在于,球磨前先对悬浮液超声分散进行球磨,球磨时采用的球磨机转速为200~400r/min,球磨时间为4~24h;球磨后的悬浮液通过蠕动泵传送给离心雾化器,蠕动泵的转速为1~

300ml/min。

说明书 :

一种液相法喷涂工艺制备晶须增韧复合涂层的方法

技术领域

[0001] 本发明属于涂层制备技术领域,具体涉及一种液相法喷涂工艺制备晶须增韧复合涂层的方法。

背景技术

[0002] 热障涂层广泛应用于航空发动机、燃气轮机、高端控制阀等热端部件表面,是具有热防护和热阻挡作用的功能化涂层。热障涂层的应用大大提升了发动机的使用寿命和热效
率。但是由于陶瓷涂层其自身脆性大、断裂韧性低的特性,使其在长期服役的过程中不可避
免的发生开裂,随着裂纹的扩展最终导致涂层剥落失效。随着更高推重比、传热比的要求,
传统的陶瓷涂层日益的满足不了未来发展的需求。晶须可以通过侨联、偏转、拔出等效应被
广泛地应用于陶瓷材料的增韧,可以有效地解决涂层脆性过大而导致的涂层开裂及裂纹扩
展问题。但是目前热障涂层中晶须掺杂复合涂层可依赖的技术手段如CVD、PVD等存在设备
要求高、技术实施难度大、成本较高、工艺过程不易控制、成功率较低等问题难以进行工业
化应用。

发明内容

[0003] 本发明针对晶须掺杂复合涂层制备困难而提供一种原料成本低、工艺简单、易于控制、可大规模工业应用的液相法喷涂制备晶须增韧复合涂层的方法。
[0004] 为实现上述目的,本发明采用的技术方案如下:
[0005] 一种液相法喷涂工艺制备晶须增韧复合涂层的方法,将晶须与陶瓷基纳米粉体混合后加入到溶剂中,然后加入分散剂和柔软剂得到悬浮液,将悬浮液球磨后,通过离心雾化
器喷出,雾化的悬浮液在等离子喷涂的等离子体热源作用下熔化并撞击基体表面,得到晶
须增韧复合陶瓷涂层。
[0006] 本发明进一步的改进在于,晶须与纳米粉体材料混合时,晶须的质量百分数为10%~90%。
[0007] 本发明进一步的改进在于,晶须为碳化硅、氧化锆、氮化硅、莫来石或氧化铝,晶须的长径比为5‑100。
[0008] 本发明进一步的改进在于,陶瓷基纳米粉体为纳米级的氧化钇稳定氧化锆、稀土锆酸盐、铈酸镧、钽酸钇、LaMgAl11O19或Y3Al5O12。
[0009] 本发明进一步的改进在于,稀土锆酸盐为锆酸镧、锆酸铈、锆酸钪或锆酸钇。
[0010] 本发明进一步的改进在于,溶剂为蒸馏水和/或乙醇;分散剂为柠檬酸三铵或聚丙烯氨酸,柔软剂为PEG‑1000。
[0011] 本发明进一步的改进在于,悬浮液中晶须与纳米粉体总质量含量为10~60%;分散剂和柔软剂的质量均为悬浮液质量的0.1~2%。
[0012] 本发明进一步的改进在于,球磨前先对悬浮液超声分散进行球磨,球磨时采用的球磨机转速为200~400r/min,球磨时间为4~24h;球磨后的悬浮液通过蠕动泵传送给离心
雾化器,蠕动泵的转速为1~300ml/min。
[0013] 本发明进一步的改进在于,离心雾化器的离心雾化喷嘴的进气孔外孔压力为0.5~3MPa,内孔压力为0.5~3MPa。
[0014] 本发明进一步的改进在于,等离子喷涂的喷涂参数如下:喷涂电压为80~130V、电流为300~500A、主汽流量为50~200slpm、辅气流量为15~30slpm、喷涂距离为50~110mm。
[0015] 与现有技术相比,本发明具有以下有益效果:
[0016] 本发明采用一种液相的外送粉方式并利用等离子喷涂方法有效地制备出晶须增韧复合涂层,液相法的有益之处在于其工艺技术跨过造粒这个环节,在混合溶液进入离心
雾化器的离心喷嘴后进行旋转,由喷嘴喷出会形成一种纳米颗粒包覆晶须的球状团聚颗
粒,有效地保证了晶须的活性且减少了晶须在造粒过程的损耗,使得晶须能够在涂层陶瓷
层间完美的保留且弥散分布,大大地提高了涂层的断裂韧性,从而构造一种类“钢筋混凝
土”的涂层结构,因此对航空发动机的性能提升具有深远且重大的意义。本发明解决了纳米
陶瓷涂层由于脆性高、断裂韧性低,使其在长期服役过程中不可避免发生开裂的问题。与现
有的CVD法、PVD法和喷雾造粒加喷涂的方法相比,具有设备要求不高,工艺简单,控制要求
低,易于工业化推广等优点,因此市场应用前景也十分广阔。
[0017] 进一步的,本发明中的等离子喷涂的工艺参数中,喷涂电压为80~130V,能够保证功率低一些,进而使能等离子体热源温度低些,因为太高的温度会使晶须熔化。喷涂距离为
50~110mm,不能太远,太远的话,可能无法实现喷涂。

附图说明

[0018] 图1为液相法喷涂工艺制备晶须增韧的流程图。
[0019] 图2为实施例1制备的氧化锆晶须增韧氧化钇稳定氧化锆的涂层截面图。
[0020] 图3为实施例1制备的氧化锆晶须增韧氧化钇稳定氧化锆的涂层断面微观图。

具体实施方式

[0021] 本发明技术不局限于以下所列举的具体实施方式,还包括各个具体实施方式间的任意组合。
[0022] 晶须增韧的工艺手段并不多,将晶须稳定地加入涂层更是难上加难,喷雾造粒及烧结破碎的方法对晶须破坏较大,且制备的涂层中较难存留晶须。利用PVD的方法在涂层上
生长晶须工艺难度极大还没有见报道成功案例。
[0023] 本发明的一种液相法喷涂工艺制备晶须增韧复合涂层的方法,包括如下步骤:
[0024] 一、将晶须与纳米粉体材料机械混合,得到混合产物,混合产物中晶须的质量百分数为10%~90%;
[0025] 其中,晶须为碳化硅、氧化锆、氮化硅、莫来石、氧化铝的任意一种,晶须的长径比在5‑100之间。
[0026] 纳米粉体为纳米级的氧化钇稳定氧化锆、稀土锆酸盐、铈酸镧、钽酸钇、LaMgAl11O19或Y3Al5O12。稀土锆酸盐中稀土元素为镧、铈、钪或钇。
[0027] 二、将步骤一中的混合产物中加入到溶剂中,分散剂和柔软剂配成悬浮液,其中,悬浮液中固相含量即晶须与纳米粉体总含量为10~60wt.%;分散剂和柔软剂的质量均为
悬浮液总质量的0.1~2wt.%;
[0028] 其中,溶剂为蒸馏水、无水乙醇或两者混合物。
[0029] 分散剂为柠檬酸三铵或聚丙烯氨酸,柔软剂为PEG‑1000。
[0030] 三、对步骤二中的悬浮液超声分散1小时、然后进行球磨处理,球磨机转速为200~400r/min,球磨时间4~24h;
[0031] 四、将步骤三处理完的混合溶液置于磁力搅拌器上进行搅拌,通过蠕动泵将混合溶液传送至离心雾化器,通过等离子喷枪采用等离子喷涂工艺喷出等离子体热源,经过雾
化的悬浮液在等离子喷涂作用下熔化并加速撞击金属基体表面,从而得到晶须增韧复合涂
层。
[0032] 所述步骤三中蠕动泵转速为1~300ml/min。
[0033] 步骤四中所采用的等离子喷涂工艺的喷涂参数如下:喷涂电压为80~130V、电流为300~500A、主汽流量为50~200slpm、辅气流量为15~30slpm、喷涂距离为50~110mm。
[0034] 所述步骤四中离心雾化喷嘴的进气孔外孔压力为0.5~3MPa,内孔压力为0.5~3MPa。
[0035] 下面为具体实施例。
[0036] 实施例1
[0037] 本实施方式的一种液相法喷涂工艺制备晶须增韧复合涂层的方法是按以下步骤进行的:
[0038] 一、将长径比为30左右的氧化锆晶须与氧化钇稳定的二氧化锆(氧化钇含量为8wt.%)纳米粉体加入到溶剂中,配制混合溶液,晶须与纳米粉体的质量比为1:1,混合溶液
的固相(氧化锆晶须与氧化钇稳定的二氧化锆的总量)含量为30wt.%,溶剂为蒸馏水,然后
添加聚丙烯酸铵和PEG‑1000,得到悬浮液。聚丙烯酸铵和PEG‑1000的质量均为悬浮液质量
的1wt.%。
[0039] 二、将步骤一中配制好的悬浮液超声分散1h,然后进行球磨处理,球磨机转速为300r/min,球磨时间为8h。
[0040] 三、将步骤二处理完的悬浮液置于磁力搅拌器上进行搅拌,并通过蠕动泵将悬浮液传送至等离子喷枪上方装置的离心式雾化喷嘴,蠕动泵转速为80ml/min,离心式雾化喷
嘴的内外孔压力均为1MPa。调节喷涂工艺参数:喷涂电压为100V、电流为340A、主汽流量为
70slpm、辅气流量为15slpm、喷涂距离为50mm。经过雾化的悬浮液在等离子体热源作用下熔
化并加速撞击金属基体表面,从而得到晶须增韧复合陶瓷涂层。
[0041] 四、本实施方式的工艺简图如图1所示,混合溶液进入离心式雾化喷嘴通过切向孔在喷嘴腔室内做旋转运动,在喷嘴处内外孔的压力作用下形成一种纳米颗粒包覆晶须的球
状团聚颗粒,有效地保证了晶须的活性且减少了晶须在造粒过程的损耗,如图3所示,晶须
在涂层陶瓷层间未熔化的区域起到了牵引侨联的作用,大大地提高了涂层的断裂韧性。
[0042] 参见图2,可以看出,涂层内部无裂纹,空隙较少,说明涂层和基体的结合力较好。
[0043] 实施例2
[0044] 本实施方式与实施例1不同的是:步骤一中晶须采用碳化硅晶须,混合溶液的固相含量为20wt.%,步骤二球磨处理过程中球磨时间为12h,步骤三中喷涂电压为120V、喷涂电
流为440A,蠕动泵的转速为50ml/min。其他与实施例1相同。
[0045] 实施例3
[0046] 本实施方式与实施例1不同的是:步骤一中的晶须采用氮化硅晶须,晶须与纳米YSZ粉末的质量之比为1:3,混合溶液的固相含量20%,步骤二中的球磨时间为24h,步骤三
中的喷涂电压为80V、喷涂电流为360A,蠕动泵的转速为50ml/min,内孔气压为0.5MPa。其他
与实施例1相同。
[0047] 实施例4
[0048] 本实施方式与实施例1不同的是:步骤一中的纳米陶瓷粉体为铈酸镧,晶须与纳米铈酸镧粉末的质量之比为1:3,悬浮液中的固相含量为15wt.%。步骤二中的球磨时间为6h,
步骤三中的喷涂电压为80V、喷涂电流为360A,蠕动泵的转速为50ml/min,内外孔气压均为
0.5MPa。其他与实施例1相同。
[0049] 实施例2‑4制备的涂层的截面图与断面微观图与实施例1制备的涂层微观结构相似。
[0050] 实施例5
[0051] 一、将长径比为5的莫来石晶须与LaMgAl11O19纳米粉体加入到溶剂中,配制混合溶液,晶须与纳米粉体的质量比为1:9,混合溶液的固相(氧化锆晶须与氧化钇稳定的二氧化
锆的总量)含量为10wt.%,溶剂为蒸馏水,然后添加柠檬酸三铵和PEG‑1000,得到悬浮液。
柠檬酸三铵和PEG‑1000的质量均为悬浮液质量的0.1wt.%。
[0052] 二、将步骤一中配制好的悬浮液超声分散1h,然后进行球磨处理,球磨机转速为200r/min,球磨时间为15h。
[0053] 三、将步骤二处理完的悬浮液置于磁力搅拌器上进行搅拌,并通过蠕动泵将悬浮液传送至等离子喷枪上方离心雾化器的离心式雾化喷嘴,蠕动泵转速为300ml/min,离心式
雾化喷嘴的内外孔压力均为1MPa。调节喷涂工艺参数:喷涂电压为110V、电流为400A、主汽
流量为200slpm、辅气流量为20slpm、喷涂距离为70mm。经过雾化的悬浮液在等离子体热源
作用下熔化并加速撞击金属基体表面,从而得到晶须增韧复合陶瓷涂层。
[0054] 实施例6
[0055] 一、将长径比为100的氧化铝晶须与坦酸钇纳米粉体加入到溶剂中,配制混合溶液,晶须与纳米粉体的质量比为9:1,混合溶液的固相(氧化锆晶须与氧化钇稳定的二氧化
锆的总量)含量为60wt.%,溶剂为乙醇,然后添加聚丙烯酸铵和PEG‑1000,得到悬浮液。聚
丙烯酸铵和PEG‑1000的质量均为悬浮液质量的1wt.%。
[0056] 二、将步骤一中配制好的悬浮液超声分散1h,然后进行球磨处理,球磨机转速为400r/min,球磨时间为24h。
[0057] 三、将步骤二处理完的悬浮液置于磁力搅拌器上进行搅拌,并通过蠕动泵将悬浮液传送至等离子喷枪上方离心雾化器的离心式雾化喷嘴,蠕动泵转速为1ml/min,离心式雾
化喷嘴的内外孔压力均为1MPa。调节喷涂工艺参数:喷涂电压为130V、电流为500A、主汽流
量为150slpm、辅气流量为25slpm、喷涂距离为80mm。经过雾化的悬浮液在等离子体热源作
用下熔化并加速撞击金属基体表面,从而得到晶须增韧复合陶瓷涂层。
[0058] 实施例7
[0059] 一、将长径比为60的氧化锆晶须与锆酸镧纳米粉体加入到溶剂中,配制混合溶液,晶须与纳米粉体的质量比为5:1,混合溶液的固相(氧化锆晶须与氧化钇稳定的二氧化锆的
总量)含量为40wt.%,溶剂为蒸馏水与乙醇的混合物,然后添加聚丙烯酸铵和PEG‑1000,得
到悬浮液。聚丙烯酸铵和PEG‑1000的质量均为悬浮液质量的2wt.%。
[0060] 二、将步骤一中配制好的悬浮液超声分散1h,然后进行球磨处理,球磨机转速为300r/min,球磨时间为4h。
[0061] 三、将步骤二处理完的悬浮液置于磁力搅拌器上进行搅拌,并通过蠕动泵将悬浮液传送至等离子喷枪上方离心雾化器的离心式雾化喷嘴,蠕动泵转速为200ml/min,离心式
雾化喷嘴的内外孔压力均为1MPa。调节喷涂工艺参数:喷涂电压为80V、电流为300A、主汽流
量为50slpm、辅气流量为30slpm、喷涂距离为110mm。经过雾化的悬浮液在等离子体热源作
用下熔化并加速撞击金属基体表面,从而得到晶须增韧复合陶瓷涂层。
[0062] 传统喷涂韩晶须涂层时,需要进行造粒,然后再加入到喷枪里,采用内送粉的方式,本发明采用外送粉的方式,直接将晶须在等离子体热源作用下熔化并加速撞击基体表,
形成晶须增韧复合陶瓷涂层。