一种仿生海洋防污皮肤及其制备方法转让专利

申请号 : CN202110092480.9

文献号 : CN112898626B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 田丽梅靳会超王建福殷玥高铭谣商延赓赵杰孙霁宇

申请人 : 吉林大学

摘要 :

本发明公开了一种仿生海洋防污皮肤及其制备方法,属于仿生材料技术领域。其由底层、多孔微结构层、微胶囊、仿珊瑚触手和仿珊瑚粘液组成,所述的底层由硅橡胶和聚氨酯复合而成,厚度为1~5mm;多孔结构层为硅橡胶材质,的厚度为1~5mm,其多孔结构的孔径1~100μm,多孔结构层中还包含有1~3wt%的微胶囊,所述的微胶囊包裹硅油或或食用油,多孔结构层表面还设有仿珊瑚触手,仿珊瑚触手由硅橡胶制成,触手为梯形圆柱或圆台状,触手高度h的范围为5~15mm,触手圆心间距a的范围为1mm~5mm,触手的末端直径和底部直径比m:n范围为0.5~0.8;仿珊瑚粘液为硅油或或食用油,涂覆在多孔结构层表面。该材料具有强吸附、防污的特点、加入了微胶囊提高了SLIPS稳定性。

权利要求 :

1.一种仿生海洋防污皮肤,其特征在于,其由底层、多孔微结构层、微胶囊、仿珊瑚触手和仿珊瑚粘液组成,所述的底层由硅橡胶和聚氨酯复合而成,多孔微结构层为硅橡胶材质, 其多孔微结构的孔径1~100μm;仿珊瑚触手由硅橡胶制成,触手为梯形圆柱或圆台状,触手高度h的范围为5~15mm,触手圆心间距a的范围为1mm~5mm,触手的末端直径和底部直径比m:n范围为0.5~0.8;仿珊瑚粘液为硅油或食用油,涂覆在多孔微结构层表面;多孔微结构层中还包含有1~3 wt%的微胶囊,微胶囊粒径50~1000μm,所述的微胶囊包裹硅油或食用油;微胶囊壁材为海藻酸钙,海藻酸钙与硅油/可食用油的质量比范围为2~0.5:1。

2.根据权利要求1所述的仿生海洋防污皮肤,其特征在于,底层厚度为1~5mm。

3.根据权利要求1所述的仿生海洋防污皮肤,其特征在于,多孔微结构层的厚度为1~

5mm。

4.根据权利要求1所述的仿生海洋防污皮肤,其特征在于,底层中硅橡胶与聚氨酯的质量比范围为1:1~4。

5.一种如权利要求1所述的仿生海洋防污皮肤的制备方法,其特征在于,制备步骤如下:

(1)仿生微胶囊的制备

采用天然聚合物海藻酸钙作为壁材,硅油或可食用油作为芯材制备仿生微胶囊来模拟珊瑚粘液的分泌;首先将2g硅油或可食用油加入到200ml去离子水中,然后加入10~40g的表面活性剂,然后磁力搅拌5分钟~1小时制备油/水乳液,之后加入海藻酸钙溶液并超声1个小时,海藻酸钙溶液中海藻酸钙与硅油/可食用油的质量比范围为2~0.5:1;之后缓慢加入3~5%浓度的氯化钙溶液并磁力搅拌,在显微镜下观察胶囊的形成情况,等大量胶囊形成后,将所得溶液移入真空干燥箱中真空干燥数小时,最后得到仿生微胶囊;

(2)仿珊瑚触手的制备

此步骤对仿生触手的制作采用脱模法/影印法;首先采用3D打印触手的负模具,然后在硅橡胶溶液中加入固化剂,用机械搅拌器搅拌30分钟,搅拌完成后移入真空干燥箱中脱泡,抽真空20分钟,直到没有气泡冒出;将脱泡完成后的硅橡胶溶液倒入3D打印的负模具中,让溶液均匀流到每一个孔隙中,然后将模具移到加热平台在60℃下加热1个小时此时硅橡胶溶液未完全固化,然后用塑料片刮走模具中的多余硅橡胶,只剩下触手部分;

(3)仿生多孔微结构层的制备

多孔微结构层的制备主要采用牺牲模板法,首先将PDMS加入乙酸乙酯,PDMS与乙酸乙酯的质量比为范围为1~3:1,在机械搅拌器下搅拌1个小时,然后将一定量的牺牲粒子加入上述溶液中,牺牲粒子与硅橡胶的质量比范围为8~1:1,然后再加入1~3 wt%步骤(1)中制备的仿生微胶囊,在机械搅拌器搅拌1个小时,之后超声1个小时增加分散性;将上述溶液移入真空干燥箱中在80℃下进行脱泡处理,将乙酸乙酯蒸发完毕;然后在上述溶液中加入硅橡胶的固化剂,在机械搅拌器下搅拌30分钟,然后再次移入真空干燥箱中脱泡处理,等到没有气泡冒出时,取出溶液倒入步骤(2)的含触手的模具中,倒入的溶液厚度为1~5mm,然后移到加热平台在60℃下加热1个小时,此时触手基本固化完成,而多孔微结构层为半固化状态;

(4)底层的制备

在硅橡胶中加入聚氨酯,硅橡胶与聚氨酯的质量比范围为1:1~4,然后加入10~20 wt%的固化剂并在机械搅拌器搅拌1个小时,然后移入真空干燥箱中进行脱泡处理,在没有气泡冒出时,将溶液倒入步骤(3)的多孔微结构层上面,之后将模具移到加热平台上,在60℃下加热3个小时,直到所有涂层完成固化;

(5)多孔微结构的形成

将步骤(4)得到的固化成形的防污皮肤和模具分离,放到100℃热水中,将步骤(3)中的牺牲粒子溶解掉,溶解完毕后,在真空干燥箱中干燥,直到表面不再有水分,最后得到多孔微结构;

(6)涂覆硅油/可食用油

将硅油或可食用油缓慢滴到步骤(5)所获取的样品表面,使表面存在薄薄一层硅油或可食用油,即可得到所述的仿生海洋防污皮肤。

6.根据权利要求5所述的仿生海洋防污皮肤的制备方法,其特征在于,步骤(3)中所述的牺牲粒子为NaCl颗粒和/或葡萄糖颗粒。

说明书 :

一种仿生海洋防污皮肤及其制备方法

技术领域

[0001] 本发明属于仿生材料技术领域。

背景技术

[0002] 海洋生物污损是指细菌、藻类,藤壶等海洋中的污损生物粘附在水下表面上的一种现象,浸入海洋中的任何表面均受海洋生物污损的影响。当海洋生物污损发生时,会在水
下表面逐渐积累造成表面粗糙度的上升,从而造成船体航行阻力的上升,为了保持航速,则
需要更多的燃料消耗,直接带来了运输成本的上升。过量的燃料使用还会增强CO2、SO2等温
室气体的排放,导致温室效应。生物污损还会加速水下表面的腐蚀,造成表面的破损,影响
海洋中设备、设施的安全,同时也增加了维护成本。海洋生物污损还会造成生物入侵,当污
损生物随船到达另一个海域时,可能由于没有天敌而对当地的生态系统造成毁灭性破坏。
传统的防污防腐涂层由于含有毒物质而逐渐被世界各种禁用,开发新型绿色、高效的防污
防腐涂层成为装备表面防护所面临的重大技术难题。
[0003] 目前新型的无毒防污防腐技术有低表面能型、微纳结构仿生型等,然而低表面涂层与基底附着力差,微纳结构仿生涂层的微纳结构容易在复杂的恶劣环境下被破坏而造成
防污性能失效,从而使它们的应用价值大大减少。仿生超滑表面(SLIPS)是一种新型高效、
绿色的防污技术,SLIPS是由润滑液/多孔微结构组成的二元表面,目前报道的SLIPS由于润
滑液容易在流体冲刷作用下流失而长期使用稳定性较差,并且在基底上的附着力差,这些
缺点限制了它们的工程应用。 花环肉质软珊瑚(Sarcophyton trocheliophorum)是一种固
着生长在海底岩石上的海洋生物(图1),发明人通过长期观察发现珊瑚在海洋环境中总是
保持干净整洁的表面,说明其有防污能力。通过研究发现珊瑚有多重防污策略:(1)SLIPS防
污,其表面存在SLIPS液固二元基本结构,通过分泌粘液保持其SLIPS稳定性及表现出防污
性能;(2)表面触手扫掠防污,珊瑚表面触手通过摆动使污损生物难以附着。另外的研究发
现,珊瑚在流体作用下并不会被冲走,因此其和基底的附着力较大。

发明内容

[0004] 受上述这些现象的启发,本发明力求克服传统SLIPS防污表面的缺陷,设计了一种与基底附着力增强型自补充粘液双重的仿生海洋防污皮肤及其制备方法。
[0005] 本发明所采用的技术方案如下:
[0006] 一种仿生海洋防污皮肤,由底层、多孔微结构层、微胶囊、仿珊瑚触手和仿珊瑚粘液组成,所述的底层由硅橡胶和聚氨酯复合而成,厚度为1~5mm;多孔微结构层为硅橡胶材
质,的厚度为1~5mm,其多孔微结构的孔径1~100μm,多孔微结构层中还包含有1~3 wt%的
微胶囊(粒径50~1000μm),所述的微胶囊包裹硅油或或食用油,多孔微结构层表面还设有
仿珊瑚触手,仿珊瑚触手由硅橡胶制成,触手为梯形圆柱或圆台状,触手高度h的范围为5~
15mm,触手圆心间距a的范围为1mm~5mm,触手的末端直径和底部直径比m:n范围为0.5~
0.8;仿珊瑚粘液为硅油或食用油,涂覆在多孔微结构层表面。
[0007] 所述硅油粘度值范围5~10000cps,食用油包括葵花籽油和玉米油。
[0008] 所述微胶囊的壁材为海藻酸钙,海藻酸钙与硅油/可食用油的质量比范围为2~0.5:1。
[0009] 一种仿生海洋防污皮肤的制备方法,具体步骤如下:
[0010] (1)仿生微胶囊的制备
[0011] 采用天然聚合物海藻酸钙作为壁材,硅油或可食用油作为芯材制备仿生微胶囊来模拟珊瑚粘液的分泌。首先将硅油或可食用油加入一定量的去离子水和表面活性剂(如
Span 80),表面活性剂质量分数为5~20 wt%,然后磁力搅拌5分钟~1小时制备油/水乳液,
之后加入海藻酸钙溶液(海藻酸钙与硅油/可食用油的质量比范围为2~0.5:1)并超声1个
小时,之后缓慢加入3~5%浓度的氯化钙溶液并磁力搅拌,在显微镜下观察胶囊的形成情
况,等大量胶囊形成后,将所得溶液移入真空干燥箱中真空干燥数小时,最后得到仿生微胶
囊。
[0012] (2)仿珊瑚触手的制备
[0013] 此步骤对仿生触手的制作采用脱模法/影印法。首先采用3D打印触手的负模具,然后制在硅橡胶溶液中加入固化剂,用机械搅拌器搅拌30分钟,搅拌完成后移入真空干燥箱
中脱泡,抽真空20分钟,直到没有气泡冒出。将脱泡完成后的硅橡胶溶液倒入3D打印的负模
具中,让溶液均匀流到每一个孔隙中,然后将模具移到加热平台在60℃下加热1个小时(此
时硅橡胶溶液未完全固化),然后用塑料片刮走模具中的多余硅橡胶,只剩下触手部分。
[0014] (3)仿生多孔微结构层的制备
[0015] 多孔微结构的制备主要采用牺牲模板法。首先将PDMS加入乙酸乙酯(质量比为范围为1~3:1),在机械搅拌器下搅拌1个小时,然后将一定量的牺牲粒子加入上述溶液中,牺
牲粒子与硅橡胶的质量比范围为8~1:1),然后再加入1~3 wt%步骤(1)中制备的仿生微胶
囊,在机械搅拌器搅拌1个小时,之后超声1个小时增加分散性。将上述溶液移入真空干燥箱
中在80℃下进行脱泡处理,将乙酸乙酯蒸发完毕。然后在上述溶液中加入硅橡胶的固化剂,
在机械搅拌器下搅拌30分钟,然后再次移入真空干燥箱中脱泡处理,等到没有气泡冒出时,
取出溶液倒入步骤(2)的含触手的模具中,倒入的溶液厚度约为1~5mm,然后移到加热平台
在60℃下加热1个小时,此时触手基本固化完成,而多孔微结构层为半固化状态。
[0016] (4)底层的制备
[0017] 在硅橡胶中加入聚氨酯(硅橡胶与聚氨酯的质量比范围为1:1~4),然后加入10~20 wt%的固化剂并在机械搅拌器搅拌1个小时,然后移入真空干燥箱中进行脱泡处理,在没
有气泡冒出时,将溶液倒入步骤(3)的多孔微结构层上面,之后将模具移到加热平台上,在
60℃下加热3个小时,直到所有涂层完成固化。
[0018] (5)多孔微结构的形成
[0019] 将步骤(4)得到的固化成形的防污皮肤和模具分离,放到100℃热水中,将步骤(3)中的牺牲粒子溶解掉,溶解完毕后,在真空干燥箱中干燥,直到表面不再有水份,最后得到
多孔微结构。
[0020] (6)涂覆硅油/可食用油
[0021] 将硅油或可食用油缓慢滴到步骤(5)所获取的样品表面,使表面存在薄薄一层硅油或可食用油,即可得到所述的仿生海洋防污皮肤。
[0022] 所述的牺牲粒子为NaCl颗粒和/或葡萄糖颗粒。
[0023] 本发明的有益效果:
[0024] 1、本发明与基底之间的附着力强;
[0025] 2、本发明采用无毒材料制成,不会对环境造成污染;
[0026] 3、本发明的防污能力强。

附图说明

[0027] 图1 花环肉质软珊瑚的表面触手、粘液/多孔SLIPS结构、固着生长特性。
[0028] 图2 防污皮肤的基本结构(a)为立体图,(b)为侧视图,(c)为俯视图。
[0029] 图3 采用3D打印的负模结构图。
[0030] 图4防污性能测试结果图;
[0031] 图5附着力性能测试结果图。

具体实施方式

[0032] 实施例1
[0033] (1)仿生微胶囊的制备
[0034] 采用天然聚合物海藻酸钙作为壁材,硅油或可食用油作为芯材制备仿生微胶囊来模拟珊瑚粘液的分泌。首先将硅油或可食用油加入一定量的去离子水和表面活性剂(如
Span 80),表面活性剂质量分数为5~20 wt%,然后磁力搅拌一定时间(5分钟~1小时)制备
油/水乳液,之后加入海藻酸钙溶液(海藻酸钙与硅油/可食用油的质量比范围为2:1~0.5:
1)并超声1个小时,之后缓慢加入3~5%浓度的氯化钙溶液并磁力搅拌,在显微镜下观察胶
囊的形成情况,等大量胶囊形成后,将所得溶液移入真空干燥箱中真空干燥数小时,最后得
到仿生微胶囊。
[0035] (2)仿珊瑚触手的制备
[0036] 此步骤对仿生触手的制作采用脱模法/影印法。首先采用3D打印触手的负模具,如图3所示。然后制在硅橡胶溶液中加入固化剂,用机械搅拌器搅拌30分钟,搅拌完成后移入
真空干燥箱中脱泡,抽真空20分钟,直到没有气泡冒出。将脱泡完成后的硅橡胶溶液倒入3D
打印的负模具中,让溶液均匀流到每一个孔隙中,然后将模具移到加热平台在60℃下加热1
个小时(此时硅橡胶溶液未完全固化),然后用塑料片刮走模具中的多余硅橡胶,只剩下触
手部分。
[0037] (3)仿生多孔微结构层的制备
[0038] 多孔微结构的制备主要采用牺牲模板法。首先将PDMS加入乙酸乙酯(质量比为范围为1:1~3:1),在机械搅拌器下搅拌1个小时,然后将一定量的牺牲粒子(如NaCl颗粒,葡
萄糖颗粒)加入上述溶液中(牺牲粒子:硅橡胶质量比范围为8:1~1:1),然后再加入1~3 
wt%步骤(1)中制备的仿生微胶囊,在机械搅拌器搅拌1个小时,之后超声1个小时增加分散
性。将上述溶液移入真空干燥箱中在80℃下进行脱泡处理,将乙酸乙酯蒸发完毕。然后在上
述溶液中加入硅橡胶的固化剂,在机械搅拌器下搅拌30分钟,然后再次移入真空干燥箱中
脱泡处理,等到没有气泡冒出时,取出溶液倒入步骤(2)的含触手的模具中,倒入的溶液厚
度约为1~5mm,然后移到加热平台在60℃下加热1个小时,此时触手基本固化完成,而多孔
微结构层为半固化状态。
[0039] (4)底层的制备
[0040] 在硅橡胶中加入聚氨酯(质量比范围为1:1~1:4),然后加入一定量的固化剂并在机械搅拌器搅拌1个小时,然后移入真空干燥箱中进行脱泡处理,在没有气泡冒出时,将溶
液倒入步骤(3)的多孔微结构层上面,之后将模具移到加热平台上,在60℃下加热3个小时,
直到所有涂层完成固化。
[0041] (5)多孔微结构的形成
[0042] 将步骤(4)得到的固化成形的防污皮肤和模具分离,放到100℃热水中,将步骤(3)中的牺牲粒子溶解掉,溶解完毕后,在真空干燥箱中干燥,直到表面不再有水份,最后得到
多孔微结构。
[0043] (6)涂覆硅油/可食用油
[0044] 将硅油或可食用油缓慢滴到步骤(5)所获取的样品表面,使表面存在薄薄一层硅油或可食用油,即可得到本发明的与基底附着力增强型自补充粘液双重仿生防污皮肤。
[0045] 性能测试
[0046] (1)防污性能测试
[0047] 由于海洋生物污损的初始阶段通常是生物膜的形成,而生物膜形成的主要贡献者是海洋细菌,因此以常见的海洋细菌泛养副球菌(Paracoccus pantotrophus)进行了防污
性能测试。在测试中,以纯硅橡胶作为对照组,对本发明的防污皮肤浸入上述细菌溶液中在
水流冲刷作用下培育7天,测试结果如图4所示。由实验后的光学图像可以看出,本发明防污
皮肤表面相对干净,表面白斑状细菌膜较少,而对照组的纯硅橡胶表面较脏。光密度
(Optical density, OD)在600nm波长处的测量结果如图4柱状图所示,同样证明了本发明
防污皮肤的防污效果出众。
[0048] (2)附着力性能测试
[0049] 采用《ASTM‑D4541‑2009拉开法附着力试验》测试标准,采用黄铜作为基底,对防污皮肤的附着力进行了测试,测试结果如图5所示,可以看出本发明防污皮肤的附着力相对于
纯硅橡胶有显著提高。
[0050] 机理解释
[0051] 1)防污的机理
[0052]  触手防污:珊瑚触手在流体冲刷作用下摆动,使皮肤表面形成一个不稳定表面,从而使污损生物难以识别,对于附着的污损生物,则触手摆动起到扫掠作用,从而使污
损生物脱附。
[0053]  SLIPS防污:硅油、可食用油和多孔微结构组成的液/固二元SLIPS超滑表面,使得污损生物难以附着。
[0054] 2)SLIPS稳定性机理
[0055] 使用微胶囊包裹硅油、可食用油模拟珊瑚分泌粘液,当表面粘液在流体冲刷作用下流失时,微胶囊在外界环境压力作用下破裂,释放内部硅油、可食用油补充到防污皮肤表
面,从而增强SLIPS的稳定性。
[0056] 3)附着力增强机理
[0057] 由于硅橡胶类材料表面能低,与基底的附着力较低,而聚氨酯附着力较高,通过硅橡胶与聚氨酯复合来构造互穿聚合物网络结构(Interpenetrating Polymer Network,
IPN),从而提升本发明防污皮肤与基底的附着力,增强其工程应用能力。