一种花生油体膜蛋白修饰的脂质体及其制备方法转让专利

申请号 : CN202110201400.9

文献号 : CN112957266B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 唐文婷蒲传奋

申请人 : 青岛农业大学

摘要 :

本发明公开了一种花生油体膜蛋白修饰的脂质体及其制备方法,属于保健食品或化妆品加工技术领域。本发明提供一种利用花生油体膜蛋白稳定脂质体的方法,基于天然植物油体蛋白独特的空间拓扑结构,实现脂质体稳化修饰。其方法是将蛋黄卵磷脂,胆固醇、α‑生育酚、吐温‑80、模型载荷分散于无水乙醇,经减压蒸发除去乙醇以形成薄膜,再将提取的花生油体膜蛋白分散于缓冲液中,经薄膜水化和超声法制得纳米脂质体。花生油体膜蛋白镶嵌于脂质体中的磷脂双分子层中,降低了磷脂双分子层疏水区的流动性,从而提高了脂质体中模型载荷的贮藏保留率。本发明有望实现新型脂质体传输载体的稳态化设计,突破脂质体的实际应用瓶颈。

权利要求 :

1.一种花生油体膜蛋白修饰的脂质体的制备方法,其特征在于,包括以下步骤;

(1)制备花生油体膜蛋白;

(2)称取蛋黄卵磷脂、胆固醇、α‑生育酚和吐温‑80加入无水乙醇中,均匀分散形成溶液A,溶液A减压旋蒸至形成一层透明脂膜;

(3)将步骤(1)所述花生油体膜蛋白分散于磷酸缓冲液中,配制成溶液B;

(4)将步骤(3)的溶液B加至步骤(2)所得的透明脂膜中,水化超声处理即得花生油体膜蛋白修饰的脂质体;

所述步骤(1)包括以下步骤:

(a)将花生仁放入三羟甲基氨基甲烷盐酸盐缓冲液中浸泡8‑12h;

(b)取浸泡后的花生仁放入含有MgCl2的三羟甲基氨基甲烷盐酸盐缓冲液中,打浆得到花生匀浆,过滤取滤液,离心,收集乳状物;

(c)将收集的乳状物分散于三羟甲基氨基甲烷盐酸盐缓冲液中,离心处理,收集乳状物,重复此步骤,最终得到乳状物D;

(d)将步骤(c)最终获得的乳状物D分散于正己烷中,冰浴超声,离心处理,去除有机相,收集沉淀,在保护气氛下吹干,即得花生油体膜蛋白;

所述三羟甲基氨基甲烷盐酸盐缓冲液浓度为10mM,pH值为7.5;

步骤(2)中所述蛋黄卵磷脂、胆固醇、α‑生育酚和吐温‑80的质量比为(6‑10):1:0.2:

0.1;所述减压旋蒸温度为40‑50℃;

步骤(3)中所述磷酸缓冲液浓度为10 mM ,pH值为7.0;所述溶液B中花生油体膜蛋白质量浓度为0.01‑0.03%;

步骤(4)所述超声处理为功率300‑500W,处理时间15‑20min。

2.根据权利要求1所述的花生油体膜蛋白修饰的脂质体的制备方法,其特征在于,步骤(a)中所述花生仁与所述三羟甲基氨基甲烷盐酸盐缓冲液的料液比为1kg∶10‑50L。

3.根据权利要求1所述的花生油体膜蛋白修饰的脂质体的制备方法,其特征在于,步骤(b)中所述三羟甲基氨基甲烷盐酸盐缓冲液中MgCl2的浓度为3mM;所述浸泡后的花生仁与所述含有MgCl2的三羟甲基氨基甲烷盐酸盐缓冲液料液比为1kg∶10‑50L;

步骤(b)中所述离心处理为温度4℃,转速9600rpm离心30min。

4.根据权利要求1所述的花生油体膜蛋白修饰的脂质体的制备方法,其特征在于,步骤(c)中所述离心处理为温度4℃,转速9600rpm离心20‑30min;所述乳状物与所述三羟甲基氨基甲烷盐酸盐缓冲液的料液比为1kg∶1‑6L。

5.根据权利要求1所述的花生油体膜蛋白修饰的脂质体的制备方法,其特征在于,步骤(d)中所述乳状物D与所述正己烷的体积比为1∶10;所述离心处理为温度4℃,转速10000rpm离心10‑20min;所述保护气氛为氮气。

6.一种如权利要求1~5任一项所述的制备方法制备的花生油体膜蛋白修饰的脂质体。

说明书 :

一种花生油体膜蛋白修饰的脂质体及其制备方法

技术领域

[0001] 本发明涉及保健食品和化妆品加工技术领域,特别是涉及一种花生油体膜蛋白修饰的脂质体及其制备方法。

背景技术

[0002] 脂质体是由磷脂或其类似物分散于水相,自发形成的具有双分子层结构的封闭囊泡。其具有天然膜生物的结构、流动性和两侧不对称性,被广泛用作活性物质的包埋基质和
天然生物膜的模型。脂质体双分子层可同时包埋亲水和疏水性物质,具有较好的生物相容
性,无免疫抑制作用,并可定向传输至某些器官或组织中,提高被包埋物的有效作用浓度。
将脂质体的粒径控制在纳米尺度并对其进行适当修饰,可进一步提高脂质体的生物相容性
和体内靶向性。随着生物技术的快速发展,脂质体的制备技术日趋完善,在食品、化妆品行
业也显示出巨大的应用前景。
[0003] 用于脂质体构建的磷脂多为天然磷脂或其类似物,在加工及贮藏过程中易氧化水解;作为自组装包埋传输体系,脂质体在使用过程中可能存在颗粒聚集、融合、破裂、易氧化
渗漏等问题,在体内也可能存在易被酶水解和巨噬细胞吞噬的问题。因此,由于纳米脂质体
中的磷脂双分子层具有一定的流动性且易受环境因素的影响而氧化变质,所以纳米脂质体
的刚性和稳定性一定程度上限制了其应用范围。部分辅助膜材的添加能增加其稳定性,但
也在一定程度上增大了其组成和结构的多样性和复杂性。所以如何对脂质体进行修饰,以
提高被修饰后的脂质体的结构刚性、贮存稳定性及氧化稳定性性能是目前的主要研究方
向。

发明内容

[0004] 本发明的目的是提供一种花生油体膜蛋白修饰的脂质体及其制备方法,以解决上述现有技术存在的问题。受天然植物油体结构启发,本发明采用花生油体膜蛋白作为脂质
体膜材的组成成分之一。花生油体膜蛋白可镶嵌于磷脂双分子层中,降低了磷脂双分子层
疏水区的流动性,从而提高了其结构刚性、贮存稳定性及氧化稳定性。在以芹菜素为模型载
荷的花生油体膜蛋白修饰的脂质体中,经180d贮藏后,芹菜素保留率达91.3%,较传统无修
饰脂质体保留率(49.1%)提高85.9%。
[0005] 为实现上述目的,本发明提供了如下方案:本发明提供一种花生油体膜蛋白修饰的脂质体,所述花生油体膜蛋白镶嵌于脂质体中的磷脂双分子层中。
[0006] 植物油体是由单层磷脂‑油体膜蛋白组成的生物膜覆盖的甘油三酯球形结构,为谷物、油料的贮油亚细胞单元。油体膜蛋白是维持油体在多种环境压力下稳定性的重要组
成成分。油体膜蛋白质主要包括油体蛋白(oleosin)、油体钙蛋白(caleosin)和油体固醇蛋
白(steroleosin)三大类,其中油体蛋白是油体膜蛋白的主要成分。不同来源的油体蛋白结
构类似,大都包含三个肽段区域:N‑端、中间疏水区和C‑端。N‑端和C‑端位于油体表面,中间
疏水区叠贯穿于磷脂单层并嵌入甘油三酯内部,使得油体蛋白能够牢固地结合在油体表
面,贡献于油体的环境稳定性。
[0007] 本发明还提供了所述的花生油体膜蛋白修饰的脂质体的制备方法,包括以下步骤;
[0008] (1)制备花生油体膜蛋白;
[0009] (2)称取蛋黄卵磷脂、胆固醇、α‑生育酚、吐温‑80和模型载荷加入无水乙醇中均匀分散形成溶液A,溶液A减压旋蒸至形成一层透明脂膜;
[0010] (3)将步骤(1)所述花生油体膜蛋白分散于磷酸缓冲液中,
[0011] 配制成溶液B;
[0012] (4)将步骤(3)的溶液B加至步骤(2)所得的透明脂膜中,水化超声处理即得花生油体膜蛋白修饰的脂质体。
[0013] 作为本发明的进一步优化,所述步骤(1)包括以下步骤:
[0014] (a)将花生仁放入三羟甲基氨基甲烷盐酸盐(Tris‑HCl)缓冲液中浸泡8‑12h;
[0015] (b)取浸泡后的花生仁放入含有MgCl2的三羟甲基氨基甲烷盐酸盐缓冲液中,打浆5min,得到花生匀浆,过滤取滤液,离心处理,收集乳状物;
[0016] (c)将收集的乳状物分散于三羟甲基氨基甲烷盐酸盐(Tris‑HCl)缓冲液中,离心处理,收集乳状物,此步骤重复3次,最终得到乳状物D;
[0017] (d)将步骤(c)最终获得的乳状物D分散于正己烷中,冰浴超声,离心处理,去除有机相,收集沉淀,在保护气氛下吹干,即得花生油体膜蛋白;
[0018] 所述三羟甲基氨基甲烷盐酸盐缓冲液浓度为10mM,pH值为7.5。
[0019] 作为本发明的进一步优化,步骤(2)中所述蛋黄卵磷脂、胆固醇、α‑生育酚、吐温‑80和模型载荷的质量比为(6‑10):1:0.2:0.1:(0.1‑1);所述减压旋蒸温度为40‑50℃。
[0020] 作为本发明的进一步优化,模型载荷为芹菜素。
[0021] 作为本发明的进一步优化,步骤(3)中所述磷酸缓冲液浓度为10mM,pH值为7.0;所述溶液B中花生油体膜蛋白质量浓度为0.01‑0.03%。
[0022] 作为本发明的进一步优化,所述超声处理条件为功率300‑500W,工作1s,暂停1s,处理时间15‑20min。
[0023] 作为本发明的进一步优化,步骤(a)中所述花生仁与所述三羟甲基氨基甲烷盐酸盐缓冲液的料液比为1kg∶10‑50L,最优为1kg∶10L。
[0024] 作为本发明的进一步优化,步骤(b)中所述三羟甲基氨基甲烷盐酸盐缓冲液中MgCl2的浓度为3mM;所述浸泡后的花生仁与所述含有MgCl2的三羟甲基氨基甲烷盐酸盐缓冲
液料液比为1kg∶10‑50L,最优为1kg∶10L;
[0025] 步骤(b)中所述离心处理为温度4℃,转速9600rpm离心30min。
[0026] 作为本发明的进一步优化,步骤(c)中所述离心处理为温度4℃,转速9600rpm离心20‑30min;所述乳状物与所述三羟甲基氨基甲烷盐酸盐缓冲液的料液比为1Kg∶1‑6L,最优
为1Kg∶1L。
[0027] 作为本发明的进一步优化,步骤(d)中所述乳状物D与所述正己烷的体积比为1∶10;所述离心处理为温度4℃,转速10000rpm离心10‑20min;所述保护气氛为氮气。
[0028] 本发明基于天然大豆油体的拓扑稳定结构,利用仿生学中生物启发理念,提出模拟油体结构的稳态脂质体构建策略,所得脂质体生物相容且具有良好的稳定性。
[0029] 本发明公开了以下技术效果:
[0030] 1.本发明中所用的稳定脂质体的花生油体膜蛋白为食品来源,可安全、有效的应用于食品领域。
[0031] 2.天然花生油体中,花生油体膜蛋白贯穿镶嵌于磷脂单层。受生物仿生启发,本发明提取花生油体膜蛋白,将其作为脂质体膜的构成成分,花生油体膜蛋白的引入增强了磷
脂双分子层的排列有序性,降低了磷脂双分子层疏水区的流动性,与胆固醇共同强化了脂
质体膜的结构刚性。配方中的α‑生育酚可有效降低脂质体贮藏过程中的脂质氧化。
[0032] 3.本发明提供的花生油体膜蛋白修饰的脂质体提高了模型载荷芹菜素在贮藏期间的保留率,提供了一种脂质体的稳态构建方法。

附图说明

[0033] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施
例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图
获得其他的附图。
[0034] 图1为本发明花生油体膜蛋白镶嵌于脂质体中的磷脂双分子层示意图;
[0035] 图2为实施例1制备的花生油体膜蛋白修饰的芹菜素脂质体粒径分布图;
[0036] 图3为实施例1制备的花生油体膜蛋白修饰的芹菜素脂质体的透射电镜图;
[0037] 图4为4℃避光贮藏条件下实施例1制备的花生油体膜蛋白修饰的芹菜素脂质体与对比例1制备的芹菜素脂质体中芹菜素的保留率的对比图;
[0038] 图5为实施例1制备的花生油体膜蛋白修饰的芹菜素脂质体与对比例1制备的芹菜素脂质体中脂质体双分子层疏水区分子流动性对比图。

具体实施方式

[0039] 现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
[0040] 应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每
个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中
间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括
或排除在范围内。
[0041] 除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的
实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所
有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的
文献冲突时,以本说明书的内容为准。
[0042] 在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实
施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。
[0043] 关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
[0044] 本发明中花生油体膜蛋白镶嵌于脂质体中的磷脂双分子层示意图,见图1。
[0045] 实施例1
[0046] (1)将50g去皮花生仁放入500mL Tris‑HCl缓冲液中,在温度4℃浸泡12小时。沥出涨润的花生仁,加入到500mL MgCL2浓度为3mM的Tris‑HCl缓冲液中,用打浆机匀浆搅拌
5min,得到均一的花生匀浆。采用三层滤布过滤以除去渣滓,滤液于4℃,9600rpm的条件离
心处理30min。
[0047] (2)按照料液比按1g:1mL的比例将收集乳状物均匀分散于Tris‑HCl缓冲溶液中,在4℃,9600rpm的条件下离心30min,收集乳状物,此步骤重复3次,得到乳状物D。
[0048] (3)按照体积比1:10将所得乳状物D按分散于正己烷中,冰浴超声,在4℃,10000rpm条件下离心处理10min去除有机相,收集沉淀利用氮气吹干,即得花生油体膜蛋
白。
[0049] (4)按照质量比6:1:0.2:0.1:0.1依次称取蛋黄卵磷脂,胆固醇、α‑生育酚、吐温‑80和芹菜素,将以上原料加入无水乙醇使其分散均匀,40℃减压旋蒸至形成一层透明脂膜。
[0050] (5)将步骤(3)花生油体膜蛋白分散于磷酸缓冲液中,配制成溶液B,溶液B中花生油体膜蛋白浓度为0.03%;将溶液B加至步骤(4)获得的透明脂膜中,在超声功率300W,工作
1s,暂停1s,水化超声处理15min,即得花生油体膜蛋白修饰的芹菜素脂质体。
[0051] 本实施例浓度为Tris‑HCl缓冲液浓度为10mM,pH值为7.5。
[0052] 本实施例磷酸缓冲液浓度为10mM,pH值为7.0。
[0053] 实施例2
[0054] (1)将50g去皮花生仁放入2500mL Tris‑HCl缓冲液中,在温度4℃浸泡12小时。沥出涨润的花生仁,加入到2000mL MgCL2浓度为3mM的Tris‑HCl缓冲液中,用打浆机匀浆搅拌
5min,得到均一的花生匀浆。采用三层滤布过滤以除去渣滓,滤液于4℃,9600rpm的条件离
心处理30min。
[0055] (2)按照料液比按1g:6mL的比例将收集乳状物均匀分散于Tris‑HCl缓冲溶液中,在4℃,9600rpm的条件下离心25min,收集乳状物,此步骤重复3次,得到乳状物D。
[0056] (3)按照体积比1:10将所得乳状物D按分散于正己烷中,冰浴超声,在4℃,10000rpm条件下离心处理20min去除有机相,收集沉淀利用氮气吹干,即得花生油体膜蛋
白。
[0057] (4)按照质量比8:1:0.2:0.1:1依次称取蛋黄卵磷脂,胆固醇、α‑生育酚、吐温‑80和模型载荷芹菜素,将以上原料加入无水乙醇使其分散均匀,45℃下减压旋蒸至形成一层
透明脂膜。
[0058] (5)将步骤(3)花生油体膜蛋白分散于磷酸缓冲液中,配制溶液B,溶液B中花生油体膜蛋白浓度为0.03%;将溶液B加至步骤(4)获得的透明脂膜中,在超声功率500W,工作
1s,暂停1s,水化超声处理18min,即得花生油体膜蛋白修饰的芹菜素脂质体。
[0059] 本实施例浓度为Tris‑HCl缓冲液浓度为10mM,pH值为7.5。
[0060] 本实施例磷酸缓冲液浓度为10mM,pH值为7.0。
[0061] 实施例3
[0062] (1)将50g去皮花生仁放入2000mL Tris‑HCl缓冲液中,在温度4℃浸泡12小时。沥出涨润的花生仁,加入到2500mL MgCL2浓度为3mM的Tris‑HCl缓冲液中,用打浆机匀浆搅拌
5min,得到均一的花生匀浆。采用三层滤布过滤以除去渣滓,滤液于4℃,9600rpm的条件离
心处理30min。
[0063] (2)按照料液比按1g:4mL的比例将收集乳状物均匀分散于Tris‑HCl缓冲溶液中,在4℃,9600rpm的条件下离心20min,收集乳状物,此步骤重复3次,得到乳状物D。
[0064] (3)按照体积比1:10将所得乳状物D按分散于正己烷中,冰浴超声,在4℃,10000rpm条件下离心处理15min去除有机相,收集沉淀利用氮气吹干,即得花生油体膜蛋
白。
[0065] (4)按照质量比10:1:0.2:0.1:0.6依次称取蛋黄卵磷脂,胆固醇、α‑生育酚、吐温‑80和模型载荷芹菜素,将以上原料加入无水乙醇使其分散均匀,50℃下减压旋蒸至形成一
层透明脂膜。
[0066] (5)将步骤(3)花生油体膜蛋白分散于磷酸缓冲液中,配制溶液B,溶液B中花生油体膜蛋白浓度为0.02%;将溶液B加至步骤(4)获得的透明脂膜中,在超声功率420W,工作
1s,暂停1s,水化超声处理20min,即得花生油体膜蛋白修饰的芹菜素脂质体。
[0067] 本实施例浓度为Tris‑HCl缓冲液浓度为10mM,pH值为7.5。
[0068] 本实施例磷酸缓冲液浓度为10mM,pH值为7.0。
[0069] 对比例1
[0070] 按照质量比6:1:0.2:0.1:0.1依次称取蛋黄卵磷脂,胆固醇、α‑生育酚、吐温‑80和芹菜素,将以上原料加入无水乙醇使其分散均匀,40℃下减压旋蒸至形成一层透明脂膜。将
获得的透明脂膜在超声功率300W,工作1s,暂停1s,水化超声处理15min,即得芹菜素脂质
体。
[0071] 对比例2
[0072] 按照质量比6:1:0.1:0.1依次称取蛋黄卵磷脂,胆固醇、吐温‑80和芹菜素。与对比例1的区别是未添加α‑生育酚。将以上原料加入无水乙醇使其分散均匀,40℃下减压旋蒸至
形成一层透明脂膜。将获得的透明脂膜在超声功率300W,工作1s,暂停1s,水化超声处理
15min,即得芹菜素脂质体。
[0073] 将对比例1和对比例2制得的样品于45℃条件下加速氧化1个月,之后取出测定样品的过氧化值。过氧化值测定方法如下:取0.5g样品与15mL的乙酸‑氯仿(3:1,v:v)震荡混
合1min后,将0.5mL饱和KI溶液添加到混合物中震荡混合0.5min后,避光反应3min。之后,反
应物中加入50mL蒸馏水,摇匀,以1%淀粉溶液为指示剂,以0.01M Na2S2O3滴定混合溶液,直
到蓝色消失。过氧化物值(mEq过氧化物/kg)=S×M×1000/m,其中S是Na2S2O3的体积,mL;M
是Na2S2O3的摩尔浓度,mol/L;m是样品质量,g。
[0074] 结果显示,对比例1和对比例2制得的脂质体的过氧化值分别为23.5±1.7mEq过氧化物/kg和57.0±2.6mEq过氧化物/kg,对比例2中样品的过氧化值比对比例1中增加
142.6%,表明生育酚的加入可以显著减少脂质体的氧化。
[0075] 试验例1
[0076] 实施例1制备的花生油体膜蛋白修饰的芹菜素脂质体以及对比例1制备的芹菜素脂质体粒度和Zeta电位的测定:
[0077] 采用Malvern Nano ZS马尔文激光粒度仪通过动态光散射(DLS)测量脂质体的平均粒径,多分散指数(polydispersion index,PDI)和Zeta电位。为了消除颗粒之间相互作
用产生的多种散射现象,将脂质体用与分散液相同的去离子水稀释10倍,样品均在25℃保
温2min后进行测量,实施例1制备的花生油体膜蛋白修饰的芹菜素脂质体以及对比例1制备
的芹菜素脂质体平均粒径、PDI及Zeta电位结果见表1。
[0078] 表1
[0079]
[0080] 由表1结果可见,与未修饰的芹菜素脂质体相比,花生油体膜蛋白修饰的芹菜素脂质体的平均粒径并未明显增加,仍能保持较为均一的分散度,且Zeta电位的由‑26.9±2.45
变至‑42.3±6.77,Zeta电位绝对值增大且大于30mV,说明脂质体囊泡间的静电斥力进一步
加大,分散稳定性增强。
[0081] 检测实施例1制备的花生油体膜蛋白修饰的芹菜素脂质体的粒径分布,结果见图2。图2中三条曲线为样品三次重复测定的结果,由图可见,三次测定样品均呈单峰分布,粒
径分布于20‑200nm之间,分布强度峰值位于70‑90nm之间,表明制得的脂质体为纳米级别,
且具有较为单一的粒径分布。
[0082] 透射电子显微镜观察:
[0083] 将实施例1制备的花生油体膜蛋白修饰的芹菜素脂质体采用磷酸盐缓冲液(0.05mol/L,pH=7.2)稀释10倍,滴加样品于铜网上,室温静置2min,用滤纸从铜网边缘吸
去多余样品,并于室温下干燥。室温下干燥后进行透射电子显微镜观察,结果见图3,图3中
显示花生油体膜蛋白修饰的芹菜素脂质体为规则球形颗粒。
[0084] 对实施例1制备的花生油体膜蛋白修饰的芹菜素脂质体以及对比例1制备的芹菜素脂质体中芹菜素包封率的测定,测定方法如下:
[0085] 采用截留分子量为3000Da的超滤离心管在4℃条件下离心30min(10000r/min)。通过紫外可见分光光度计法在330nm处确定芹菜素标准曲线,并根据芹菜素标准曲线确定离
心上清液中游离芹菜素浓度。脂质体中芹菜素的保留率采用实际包封芹菜素的量与制备过
程中添加芹菜素量的比值表示。计算公式为:
[0086] 芹菜素包封率%=(W1‑W2)/W1×100    公式(1)
[0087] 其中W1是脂质体中添加的芹菜素量(mg),W2是游离芹菜素的量(mg),(W1‑W2)为芹菜素包封量。
[0088] 经计算,实施例1制备的花生油体膜蛋白修饰的脂质体中芹菜素包封率为93.2±0.73%,对比例1中未修饰的芹菜素脂质体中芹菜素包封率为92.9±1.59%。花生油体膜蛋
白修饰的脂质体与未修饰的芹菜素脂质体中芹菜素的包封率相当,表明油体膜蛋白修饰并
未影响脂质体对芹菜素的包封效果。
[0089] 将两种脂质体于4℃避光贮藏条件下贮存180d,按上述方法每隔30d测定其芹菜素包封量,芹菜素保留率(%)为不同贮藏时间后脂质体中包封的芹菜素量与初始包封量的比
值,结果见图4。
[0090] 由图4可得,在以芹菜素为模型载荷的花生油体膜蛋白修饰的脂质体中,经180d贮藏后,芹菜素保留率达91.3%,较传统无修饰脂质体保留率49.1%提高了85.9%。
[0091] 检测实施例1制备的花生油体膜蛋白修饰的芹菜素脂质体与对比例1制备的芹菜素脂质体中脂质体双分子层疏水区分子流动性,检测方法如下:
[0092] 脂质体双分子层疏水区分子流动性变化采用表征磷脂双分子层的疏水区微粘度‑
变化的荧光探针DPH来表征。称取适量DPH荧光探针溶于四氢呋喃中,配成浓度为2×10
3
mol/L的储备液。移取储备液1mLL于100mL容量瓶中,采用0.01mol/LPBS缓冲液(pH7.4,
‑5
0.15mol/L NaCl)定容至2×10 mol/L作为工作液。将脂质体样品与DPH工作液均匀混合,使
‑5
其终浓度为2×10 mol/L。混合液于37℃保温1h后,采用荧光分光光度计于激发波长358nm,
发射波长425nm条件下测定其荧光强度。荧光偏正度的测定条件为:先将偏正光置于0°位置
用垂直偏正光激发样品,分别测定荧光强度的垂直和水平偏正分量,记为I0,0和I0,90,再将
偏正光置于90°位置用水平偏正光激发样品,分别测定荧光强度的垂直和水平偏正分量,记
为I90,0和I90,90,按公式(2)计算样品的荧光偏正值P:
[0093]
[0094] 公式(2)中,G为光栅校正系数,G=I90,90/I90,0。
[0095] 根据样品荧光各项异性值,再按公式(3)计算其微粘度η:
[0096]
[0097] DPH存在于疏水区域并能够评估脂质体中磷脂双分子层的微粘度变化。磷脂双分子层的微粘度又与所处区域的分子流动性变化相关。检测结果见图5,由图5可见,花生油体
膜蛋白修饰的芹菜素脂质体的磷脂双分子层疏水区的微粘度明显高于未修饰脂质体,表明
前者的分子流动性低于后者,可能是因为花生油体蛋白镶嵌于磷脂双分子层中,导致疏水
区域的分子流动性降低,因此维持了其贮藏稳定性。
[0098] 以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出
的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。