一种模具表面耐磨防粘纳米复合TiSiCN涂层及其制备方法转让专利

申请号 : CN202110137221.3

文献号 : CN112962057B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 赵彦辉李彤史文博肖金泉刘忠海于宝海

申请人 : 中国科学院金属研究所

摘要 :

本发明属于金属材料表面处理技术领域,具体涉及一种模具表面耐磨防粘纳米复合TiSiCN涂层及其制备方法。在基体表面依次是Ti层、TiN层、TiSiN层以及TiSiCN层,TiSiCN层的厚度为2~20微米。本发明采用磁场增强电弧离子镀技术完成,该方法制备的纳米复合耐磨防粘涂层除具有较好的耐磨性能外,还具有硬度高、涂层韧性好、抗铝粘连、抗高温氧化等优点,可显著提高模具的耐磨性能,延长模具的使用寿命,尤其适用于铝合金成型模具,具有优异的防铝合金粘连的效果。

权利要求 :

1.一种模具表面耐磨防粘纳米复合TiSiCN涂层,其特征在于,在基体表面依次是Ti层、TiN层、TiSiN层形成过渡层以及TiSiCN层,TiSiCN层的厚度为2~20微米;

按照原子百分比计,TiSiCN涂层中含Ti 5~19.4at.%,含Si 3~3.9at.%,含C 63.2~90at.%,含N 2~15.6at.%;

纳米压痕测试涂层硬度为5~35GPa,静态水接触角为90~130°;

Ti层、TiN层、TiSiN层形成过渡层厚度分别为0.1~1.0微米、0.2~2.0微米、0.8~3.0微米;

所述的模具表面耐磨防粘纳米复合TiSiCN涂层的制备方法,采用磁场增强电弧离子镀技术,在模具表面制备耐磨防粘纳米复合TiSiCN涂层,具体步骤如下:(1)工件预清洗:工件表面经喷砂后在金属清洗液中超声清洗5~20分钟,然后在无水酒精溶液中脱水,后经热风吹干后装入真空室内的工件架上,等待镀膜;

‑3 ‑2

(2)离子清洗:当真空室内真空度达到2×10 Pa~2×10 Pa时,对真空室加热至300~

530℃并保温0.5~2小时,以去除工件表面及真空室壁挥发出的杂质气体;然后向真空室内通入氩气,气压控制在0.3~3Pa之间,基体加脉冲负偏压在‑20~‑300V范围,开启电弧增强气体辉光放电,对工件表面进行离子清洗20~120分钟;

(3)镀过渡层:采用纯钛靶和钛硅合金靶,离子清洗后,调整真空室内氩气气压,控制在

0.5~2Pa范围内,调脉冲负偏压至‑20V~‑500V,同时开启钛靶弧源,弧电流为60~150A,沉积Ti膜即过渡层Ti层5~60分钟;后向真空室内通入氮气,气压控制在0.5~5Pa范围内,调脉冲负偏压至‑20V~‑500V,调整钛靶弧电流为60~150A,沉积TiN膜即过渡层TiN层5~60分钟;后调整真空室内氮气气压,控制在0.5~5Pa范围内,调脉冲负偏压至‑20V~‑500V,同时开启钛硅合金靶弧源,弧电流为60~150A,沉积TiSiN膜即过渡层TiSiN层5~60分钟;

(3)镀TiSiCN层:采用钛硅合金靶,设定真空室内气压为0.5~5Pa范围;对基体施加脉冲负偏压‑20V~‑400V;调节靶电流为60~150A,逐渐通入甲烷或乙炔气体,甲烷或乙炔气体流量逐渐增大,而氮气流量逐渐减少,维持真空室内整体气压控制在2.8~5Pa范围,甲烷或乙炔气体与氮气的流量比控制在10%~90%,当甲烷或乙炔气体与氮气的流量比稳定后,再继续沉积20~240分钟,总的沉积时间控制在40~300分钟;

(4)沉积结束后,停弧、停基体脉冲负偏压、停止通入气体、关闭轴向磁场装置,继续抽真空,工件随炉冷却至80℃以下,打开真空室,取出工件,镀膜过程结束;

借鉴自然界荷花超疏水效应,通过采用电弧离子镀技术特有的“大颗粒”缺陷构筑表面微纳结构,通过采用不与铝反应的TiN涂层为基础,通过在TiN涂层中添加Si、C元素降低涂层表面能,从而制备出适合铝合金冲压模具的TiSiCN涂层。

2.按照权利要求1所述的模具表面耐磨防粘纳米复合TiSiCN涂层,其特征在于,纳米压痕测试涂层硬度为10~30GPa,静态水接触角为100~120°。

3.根据权利要求1所述的模具表面耐磨防粘纳米复合TiSiCN涂层,其特征在于,在所使用的钛硅合金靶的靶材中,硅的原子百分比为5~30%。

说明书 :

一种模具表面耐磨防粘纳米复合TiSiCN涂层及其制备方法

技术领域:

[0001] 本发明属于金属材料表面处理技术领域,具体涉及一种模具表面耐磨防粘纳米复合TiSiCN涂层及其制备方法。背景技术:
[0002] 近十年来,我国的汽车行业发展迅速,已超过美国、日本成为第一大汽车制造和销售国,成为全球最大的汽车市场,汽车冲压模具的需求量也大大增加,给汽车模具行业带来了广阔的发展前景。
[0003] 随着全球气候变化及能源危机,轻量化、低能耗成为汽车行业发展的趋势。因此,车身冲压件必须具有质轻、高强的特点,而铝合金由于具有密度低、强度高、塑性好等优点,在汽车行业获得了广泛应用,这对汽车冲压模具提出了更高要求。冲压模具要同时具备耐磨损、抗冲击、低变形、少修复的特点。传统的模具强化技术无法同时满足这些要求,特殊的模具表面强化技术应运而生,如热扩散处理(TD)、物理气相沉积(PVD)、化学气相沉积(CVD)、超音速火焰喷涂(HVOF)等。
[0004] 与其它表面强化技术相比,PVD技术由于具有处理温度适中、涂层耐磨性及韧性好等优点,在汽车冲压模具领域获得了广泛应用。目前已有多种PVD涂层层体系如TiAlN、CrN、AlCrN、TiAlSiN、TiCN等获得了应用,有效提高了冲压模具性能及使用寿命。
[0005] 但是,相对于传统低碳钢板,铝合金材料成形能力明显降低,在传统工艺下容易产生起皱、回弹和破裂等成形缺陷,同时由于铝合金材质软,在冲压成型时冷冲压模具承受巨大的工作压力、剪切力及摩擦力,容易产生铝粉粘连在模具上,使工件表面产生拉毛、划痕等缺陷,降低了成品率及产品精度,给企业带来巨大的挑战。

发明内容

[0006] 针对现有涂层材料体系的不足,本发明的目的是提供一种模具表面耐磨防粘纳米复合TiSiCN涂层及其制备方法,使复合TiSiCN涂层既具有良好的耐磨耐冲击,又具有较好的抗铝合金粘连性能。
[0007] 为了实现上述目的,本发明的技术方案为:
[0008] 一种模具表面耐磨防粘纳米复合TiSiCN涂层,其特征在于,在基体表面依次是Ti层、TiN层、TiSiN层形成过渡层以及TiSiCN层,TiSiCN层的厚度为2~20微米。
[0009] 所述的模具表面耐磨防粘纳米复合TiSiCN涂层,按照原子百分比计,TiSiCN涂层中含Ti 5~45at.%,含Si 3~20at.%,含C10~90at.%,含N 2~50at.%。
[0010] 所述的模具表面耐磨防粘纳米复合TiSiCN涂层,优选的,按照原子百分比计,TiSiCN涂层中含Ti 20~40at.%,含Si 5~15at.%,含C 30~70at.%,含N10~30at.%。
[0011] 所述的模具表面耐磨防粘纳米复合TiSiCN涂层,纳米压痕测试涂层硬度为5~35GPa,静态水接触角为90~130°。
[0012] 所述的模具表面耐磨防粘纳米复合TiSiCN涂层,优选的,纳米压痕测试涂层硬度为10~30GPa,静态水接触角为100~120°。
[0013] 所述的模具表面耐磨防粘纳米复合TiSiCN涂层,Ti层、TiN层、TiSiN层形成过渡层厚度分别为0.1~1.0微米、0.2~2.0微米、0.8~3.0微米。
[0014] 所述的模具表面耐磨防粘纳米复合TiSiCN涂层的制备方法,具体步骤如下:
[0015] (1)工件预清洗:工件表面经喷砂后在金属清洗液中超声清洗5~20分钟,然后在无水酒精溶液中脱水,后经热风吹干后装入真空室内的工件架上,等待镀膜;
[0016] (2)离子清洗:当真空室内真空度达到2×10‑3Pa~2×10‑2Pa时,对真空室加热至300~530℃并保温0.5~2小时,以去除工件表面及真空室壁挥发出的杂质气体;然后向真空室内通入氩气,气压控制在0.3~3Pa之间,基体加脉冲负偏压在‑20~‑300V范围,开启电弧增强气体辉光放电,对工件表面进行离子清洗20~120分钟;
[0017] (3)镀过渡层:采用纯钛靶和钛硅合金靶,离子清洗后,调整真空室内氩气气压,控制在0.5~2Pa范围内,调脉冲负偏压至‑20V~‑500V,同时开启钛靶弧源,弧电流为60~150A,沉积Ti膜即过渡层Ti层5~60分钟;后向真空室内通入氮气,气压控制在0.5~5Pa范围内,调脉冲负偏压至‑20V~‑500V,调整钛靶弧电流为60~150A,沉积TiN膜即过渡层TiN层5~60分钟;后调整真空室内氮气气压,控制在0.5~5Pa范围内,调脉冲负偏压至‑20V~‑
500V,同时开启钛硅合金靶弧源,弧电流为60~150A,沉积TiSiN膜即过渡层TiSiN层5~60分钟;
[0018] (3)镀TiSiCN层:采用钛硅合金靶,设定真空室内气压为0.5~5Pa范围;对基体施加脉冲负偏压‑20V~‑400V;调节靶电流为60~150A,逐渐通入甲烷或乙炔气体,甲烷或乙炔气体流量逐渐增大,而氮气流量逐渐减少,维持真空室内整体气压控制在0.5~5Pa范围,甲烷或乙炔气体与氮气的流量比控制在10%~90%,当甲烷或乙炔气体与氮气的流量比稳定后,再继续沉积20~240分钟,总的沉积时间控制在40~300分钟;
[0019] (4)沉积结束后,停弧、停基体脉冲负偏压、停止通入气体、关闭轴向磁场装置,继续抽真空,工件随炉冷却至80℃以下,打开真空室,取出工件,镀膜过程结束。
[0020] 所述的模具表面耐磨防粘纳米复合TiSiCN涂层的制备方法,在所使用的钛硅合金靶的靶材中,硅的原子百分比为5~30%。
[0021] 与现有技术相比,本发明的有益效果是:
[0022] 1、本发明借鉴自然界荷花超疏水效应,通过采用电弧离子镀技术特有的“大颗粒”缺陷构筑表面微纳结构,通过采用不与铝反应的TiN涂层为基础,通过在TiN涂层中添加Si、C等元素降低涂层表面能,从而制备出适合铝合金冲压模具的TiSiCN涂层,该涂层可以大幅度地改善和提高模具的表面性能,如:硬度、耐磨性、抗摩擦性、耐腐蚀性等,提高模具型腔表面抗擦伤、抗咬合等特殊性能,尤其是对于提高抗铝合金粘连效果显著,大幅度提高了模具使用寿命。
[0023] 2、本发明采用磁场增强电弧离子镀技术完成,该方法不仅具有较快的沉积速率,而且制备的TiSiCN涂层纳米复合涂层表面大颗粒少,涂层更加致密,涂层除具有硬度高、涂层韧性好及抗磨损等优点,而且该方法易于实现工业化生产。
[0024] 3、本发明通过磁场增强调控涂层中的大颗粒,并与涂层中降低表面能的C、Si元素交互作用,更易于保证模具涂层抗铝合金粘连性能的实现。

附图说明

[0025] 为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将具体实施方式或现有技术描述中所需要使用的附图说明作简单说明介绍。
[0026] 图1为本实施例4制备的TiSiCN涂层的X射线衍射图;图中,横坐标2θ代表衍射角(Degree),纵坐标Intensity代表相对强度(a.u.)。
[0027] 图2为本实施例3制备的TiSiCN涂层的静态水接触角图。具体实施方式:
[0028] 在具体实施过程中,本发明采用磁场增强电弧离子镀技术,在模具表面制备耐磨防粘纳米复合TiSiCN涂层,在基体表面依次是Ti层、TiN层、TiSiN层形成过渡层以及TiSiCN层,TiSiCN层的厚度为2~20微米。
[0029] 下面,通过实施例对本发明进一步详细阐述。
[0030] 实施例1
[0031] 基材采用模具钢(牌号为SKD11),试样尺寸为Φ20mm×10mm,镀膜面尺寸为Φ20mm。镀膜前表面先经过研磨、抛光、超声清洗、干燥后,放入电弧离子镀设备真空室样品台‑3
上,待真空室内真空度达到4.5×10 Pa时,对真空室加热至510℃,向真空室通入氩气,气压控制在1.5Pa;基体加‑200V脉冲负偏压,脉冲偏压占空比为70%,通过电弧增强气体辉光放电,对基材表面进行辉光放电离子清洗40min;后调整Ar气流量,将真空室内气压控制在
1.5Pa;基材加脉冲负偏压在‑200V,脉冲占空比为50%,同时开启Ti靶弧源,Ti靶弧流为
110A,沉积Ti膜即过渡层Ti层15min,Ti层厚度为0.45μm;后向真空室内通入氮气,气压控制在2.5Pa,调脉冲负偏压至‑120V,调整钛靶弧电流为90A,沉积TiN膜即过渡层TiN层20min,TiN层厚度为0.89μm;后调整真空室内氮气气压,控制在3.1Pa,调脉冲负偏压至‑80V,同时开启钛硅合金靶弧源,弧电流为120A,沉积TiSiN膜即过渡层TiSiN层40min,TiSiN层厚度为
0.88μm;设定真空室内气压为3.5Pa;对基体施加脉冲负偏压‑60V;调节TiSi靶电流为100A,逐渐通入乙炔气体,乙炔气体流量按照5sccm/min的标准逐渐增大,而氮气流量逐渐减少,维持真空室内整体气压控制在3.2Pa,乙炔气体与氮气的流量比控制在50%,当乙炔气体与氮气的流量比稳定后,再继续沉积140min,总的沉积时间控制在250min,沉积TiSiCN层的厚度为9.5μm;沉积结束后,停弧、停基体脉冲负偏压、停止通入气体,继续抽真空,工件随炉冷却至80℃以下,打开真空室,取出工件,镀膜过程结束。
[0032] 所得TiSiCN纳米复合涂层中含Ti 30.7at.%、含Si 5.1at.%、含C 48.6at.%、含N15.6at.%,纳米压痕测试涂层硬度为14.2GPa,静态水接触角为98.5°。
[0033] 实施例2
[0034] 基材采用模具钢(牌号为QHZ),试样尺寸为20mm×10mm×10mm,镀膜面尺寸为20mm×10mm。镀膜前表面先经过研磨、抛光、超声清洗、干燥后,放入真空室样品台上,待真空室‑3内真空度达到5.5×10 Pa时,对真空室加热至480℃,向真空室通入氩气,气压控制在
1.1Pa;基体加‑180V脉冲负偏压,脉冲偏压占空比为75%,通过电弧增强气体辉光放电,对基材表面进行辉光放电离子清洗35min;后调整Ar气流量,将真空室内气压控制在1.6Pa;基材加脉冲负偏压在‑220V,脉冲占空比为45%,同时开启Ti靶弧源,Ti靶弧流为105A,沉积Ti膜即过渡层Ti层10min,Ti层厚度为0.43μm;后向真空室内通入氮气,气压控制在2.1Pa,调脉冲负偏压至‑110V,调整钛靶弧电流为95A,沉积TiN膜即过渡层TiN层18min,TiN层厚度为
0.9μm;后调整真空室内氮气气压,控制在3.8Pa,调脉冲负偏压至‑100V,同时开启钛硅合金靶弧源,弧电流为105A,沉积TiSiN膜即过渡层TiSiN层30min,TiSiN层厚度为1.32μm;设定真空室内气压为2.8Pa;对基体施加脉冲负偏压‑70V;调节TiSi靶电流为120A,逐渐通入乙炔气体,乙炔气体流量按照4sccm/min的标准逐渐增大,而氮气流量逐渐减少,维持真空室内整体气压控制在3.4Pa,乙炔气体与氮气的流量比控制在70%,当乙炔气体与氮气的流量比稳定后,再继续沉积150min,总的沉积时间控制在240min,沉积TiSiCN层的厚度为8.6μm;
沉积结束后,停弧、停基体脉冲负偏压、停止通入气体,继续抽真空,工件随炉冷却至80℃以下,打开真空室,取出工件,镀膜过程结束。
[0035] 所得TiSiCN纳米复合涂层中含Ti 23.2at.%、含Si 3.9at.%、含C 63.2at.%、含N 9.7at.%,纳米压痕测试涂层硬度为8.2GPa,静态水接触角为105°。
[0036] 实施例3
[0037] 基材采用模具钢(牌号为H13),试样尺寸为24mm×18mm×10mm,镀膜面尺寸为24mm×18mm。镀膜前表面先经过研磨、抛光、喷砂、超声清洗、干燥后,放入真空室样品台上,待真‑3空室内真空度达到6.5×10 Pa时,对真空室加热至490℃,向真空室通入氩气,气压控制在
0.9Pa;基体加‑200V脉冲负偏压,脉冲偏压占空比为73%,通过电弧增强气体辉光放电,对基材表面进行辉光放电离子清洗45min;后调整Ar气流量,将真空室内气压控制在1.3Pa;基材加脉冲负偏压在‑150V,脉冲占空比为40%,同时开启Ti靶弧源,Ti靶弧流为100A,沉积Ti膜即过渡层Ti层8min,Ti层厚度为0.23μm;后向真空室内通入氮气,气压控制在2.3Pa,调脉冲负偏压至‑100V,调整钛靶弧电流为95A,沉积TiN膜即过渡层TiN层15min,TiN层厚度为
0.71μm;后调整真空室内氮气气压,控制在2.8Pa,调脉冲负偏压至‑60V,同时开启钛硅合金靶弧源,弧电流为105A,沉积TiSiN膜即过渡层TiSiN层30min,TiSiN层厚度为1.37μm;设定真空室内气压为2.8Pa;对基体施加脉冲负偏压‑50V;调节TiSi靶电流为95A,逐渐通入乙炔气体,乙炔气体流量按照5sccm/min的标准逐渐增大,而氮气流量逐渐减少,维持真空室内整体气压控制在2.9Pa,乙炔气体与氮气的流量比控制在80%,当乙炔气体与氮气的流量比稳定后,再继续沉积140min,总的沉积时间控制在300min,沉积TiSiCN层的厚度为11.8μm;
沉积结束后,停弧、停基体脉冲负偏压、停止通入气体,继续抽真空,工件随炉冷却至80℃以下,打开真空室,取出工件,镀膜过程结束。
[0038] 所得TiSiCN纳米复合涂层中含Ti 19.4at.%、含Si 3.5at.%、含C 73.5at.%、含N 3.6at.%,纳米压痕测试涂层硬度为5.5GPa,静态水接触角为110°。
[0039] 如图2所示,从本实施例3制备的TiSiCN涂层的静态水接触角图可以看出,在涂层中加入较高含量的C元素,使得涂层表面能有所降低,与不含C的TiSiN涂层(一般静态水接触角为90°)相比,其静态水接触角明显增大,从而有效保障了模具涂层炕铝合金粘连性能的实现。
[0040] 实施例4
[0041] 基材采用Cr12MoV钢,试样尺寸为20mm×20mm×5mm,镀膜面尺寸为20mm×20mm。镀膜前表面先经过研磨、抛光、超声清洗、干燥后,放入真空室样品台上,待真空室内真空度达‑3到4.5×10 Pa时,对真空室加热至505℃,向真空室通入氩气,气压控制在1.2Pa;基体加‑
190V脉冲负偏压,脉冲偏压占空比为75%,通过电弧增强气体辉光放电,对基材表面进行辉光放电离子清洗40min;后调整Ar气流量,将真空室内气压控制在1.5Pa;基材加脉冲负偏压在‑200V,脉冲占空比为50%,同时开启Ti靶弧源,Ti靶弧流为95A,沉积Ti膜即过渡层Ti层
10min,Ti层厚度为0.3μm;后向真空室内通入氮气,气压控制在2.2Pa,调脉冲负偏压至‑
120V,调整钛靶弧电流为90A,沉积TiN膜即过渡层TiN层15min,TiN层厚度为0.68μm;后调整真空室内氮气气压,控制在2.6Pa,调脉冲负偏压至‑80V,同时开启钛硅合金靶弧源,弧电流为120A,沉积TiSiN膜即过渡层TiSiN层35min,TiSiN层厚度为1.5μm;设定真空室内气压为
3.2Pa;对基体施加脉冲负偏压‑60V;调节TiSi靶电流为100A,逐渐通入乙炔气体,乙炔气体流量按照5sccm/min的标准逐渐增大,而氮气流量逐渐减少,维持真空室内整体气压控制在
2.8Pa,乙炔气体与氮气的流量比控制在30%,当乙炔气体与氮气的流量比稳定后,再继续沉积240min,总的沉积时间控制在330min,沉积TiSiCN层的厚度为12.1μm;沉积结束后,停弧、停基体脉冲负偏压、停止通入气体,继续抽真空,工件随炉冷却至80℃以下,打开真空室,取出工件,镀膜过程结束。
[0042] 所得TiSiCN纳米复合涂层中含Ti 38.3at.%、含Si 6.1at.%、含C 30.5at.%、含N 25.1at.%,纳米压痕测试涂层硬度为26.9GPa,静态水接触角为95°。
[0043] 如图1所示,从本实施例4制备的TiSiCN涂层的X射线衍射图可以看出,涂层主要以TiN相为主,其中的C元素主要形成了TiCN相,而并未检测到含硅的物相,推测主要形成非晶a‑Si3N4,由于加入C和Si一般可降低材料表面能,而且形成的TiCN与非晶a‑Si3N4相一般不与铝反应,从而有效保障了TiSiCN涂层抗铝合金粘连性能。
[0044] 实施例结果表明,本发明采用磁场增强电弧离子镀技术完成,该方法制备的纳米复合耐磨防粘涂层除具有较好的耐磨性能外,还具有硬度高、涂层韧性好、抗铝粘连、抗高温氧化等优点,可显著提高模具的耐磨性能,延长模具的使用寿命,尤其适用于铝合金成型模具,具有优异的防铝合金粘连的效果。