一种制备二维共价有机框架超薄纳米片材料复合膜的方法及应用转让专利

申请号 : CN201911287593.3

文献号 : CN112973468B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 杨维慎王鹏远彭媛

申请人 : 中国科学院大连化学物理研究所

摘要 :

一种制备二维共价有机框架超薄纳米片材料复合膜的方法及应用。所述方法包括将(1)二维共价有机框架超薄纳米片的制备:二维层状共价化合物前驱体与有机溶剂混合后,湿法球磨处理;(2)采用热滴加方法在多孔材料表面制备二维共价有机框架纳米片纯相膜;(3)采用热滴加法二次制备二维共价有机框架纳米片与离子液体复合膜;(4)干燥复合膜。使用本发明制备的二维共价有机框架超薄纳米片复合膜的气体分离性能较二维共价有机框架纳米片纯相膜有显著提升。

权利要求 :

1.一种制备二维共价有机框架纳米片材料复合膜的方法,其特征在于,包括如下步骤:(1)二维共价化合物超薄纳米片的制备:将二维层状共价化合物前驱体材料与有机溶剂混合后,球磨,得到纳米片‑有机溶剂混合体系均匀分散液;

其中,所述二维层状共价化合物前驱体材料与有机溶剂的质量比为1:10 1:100;

~

(2)采用热滴加方法在多孔载体表面制备二维共价有机框架纳米片纯相膜:将步骤(1)得到的纳米片‑有机溶剂混合体系均匀分散液在加热条件下滴涂于多孔载体表面,制备二维共价有机框架纳米片纯相膜;

o

其中,加热温度为100   200  C;以单位面积的载体计,纳米片‑有机溶剂混合体系均匀~

2

分散液的滴加量为1.6   16 mL/cm载体;

~

(3)采用热滴加法二次制备二维共价有机框架纳米片与离子液体复合膜:将离子液体与溶剂的混合溶液在加热条件下滴涂于步骤(2)所得的二维共价有机框架纳米片纯相膜表面,制备二维共价有机框架纳米片与离子液体复合膜;

其中,所述的离子液体为1‑丁基‑3‑甲基咪唑四氟硼酸盐和1‑丁基‑3‑甲基咪唑双三氟甲磺酰亚胺盐中的至少一种;所述离子液体与溶剂的混合溶液中离子液体与溶剂的体积比o

1:1 1:10;加热温度为100   200  C;以单位面积的载体计,离子液体与溶剂的混合溶液的~ 2~

滴加量为1.6   16 mL/cm载体;

~

(4)干燥复合膜:

o

将步骤(3)所得的二维共价有机框架纳米片与离子液体复合膜在100 140  C条件下干~

o

燥1 4小时,再在真空100 140  C条件下干燥12小时以上;

~ ~

步骤(1)中,二维层状共价化合物前驱体材料的制备方法为:三醛单体与二胺单体反应生成二维层状共价化合物前驱体材料;

其中,三醛单体与二胺单体的物质的量比为2:3,以1,4‑二氧六环和1,3,5‑三甲基苯为o

溶剂,醋酸为催化剂,反应温度为120   140  C,反应时间为72   96小时。

~ ~

2.根据权利要求1所述的制备二维共价有机框架纳米片材料复合膜的方法,其特征在于,所述三醛单体为1,3,5‑三甲酰基间苯三酚;所述二胺单体选自肼、对苯二胺、2,5‑二甲基‑1,4‑苯二胺和邻硝基对苯二胺中的至少一种。

3.根据权利要求1所述的制备二维共价有机框架纳米片材料复合膜的方法,其特征在于,步骤(1)中,所述的有机溶剂为醇类、醚类、酯类、芳烃类或其混合。

4.根据权利要求1所述的制备二维共价有机框架纳米片材料复合膜的方法,其特征在于,步骤(3)中,所述的溶剂选自甲醇、乙醇和水中的至少一种。

5.根据权利要求1所述的制备二维共价有机框架纳米片材料复合膜的方法,其特征在于,步骤(1)中,所述的球磨速度为30 300转/分钟,球磨时间为30 200分钟。

~ ~

6.根据权利要求1所述的制备二维共价有机框架纳米片材料复合膜的方法,其特征在于,步骤(2)中,所述的多孔载体的材质为氧化铝、氧化钛、氧化锆、氧化硅或不锈钢。

7.根据权利要求1所述的制备二维共价有机框架纳米片材料复合膜的方法,其特征在于,步骤(1)中,球磨后还包括对混合物进行分离和/或超声,得到纳米片‑有机溶剂混合体系均匀分散液。

8.权利要求1‑7中任意一项所述的方法制备的二维共价有机框架纳米片材料复合膜。

9.权利要求8中所述的二维共价有机框架纳米片材料复合膜在气体分离和吸附方面的应用。

说明书 :

一种制备二维共价有机框架超薄纳米片材料复合膜的方法及

应用

技术领域

[0001] 本发明属于膜分离领域,涉及一种新型二维共价有机框架超薄纳米片材料复合膜的制备和应用。

背景技术

[0002] 化石燃料燃烧所产生尾气CO2过量排放会导致全球气温升高破坏生态系统,是我国亟待解决的问题之一。膜分离方法具有低能耗、环境友好、操作简洁、机械/热/化学稳定
性高等优点,利用膜材料将CO2从混合气体中与N2、H2、CH4和烃类等组份分离,在燃烧尾气处
理、燃料气净化、富氧燃烧、天然气运输和三次采油等生活生产过程中具有巨大实际意义。
[0003] 用于CO2分离和捕获的膜材料可以按照组成的不同分为三大类:多孔无机物膜、致密有机聚合物膜和复合基质膜。其中,多孔无机物膜对CO2气体具有较高的渗透性和选择
性,同时具有较好的化学稳定性,然而制备过程较为复杂、成本较高、重复性差,难以广泛应
用。大部分有机膜在CO2气体的选择性和渗透性上呈现出此消彼长的趋势,其分离效果难以
突破罗宾森上限(Robeson upper bond)的限制,同时CO2增塑现象会大幅降低有机膜的气
体选择性。复合基质膜是将无机/有机材料与聚合物基质相互复合而形成的气体分离膜,这
类膜材料既具备多孔掺杂相的固有孔道筛分特点,又兼顾聚合物易加工、机械强度高等优
点,具有极大商业化潜力。
[0004] 共价有机框架材料一种新型晶态纳米孔材料,具有高比表面、多官能团、结构可设计、稳定性好等特点,是CO2吸附与分离的理想材料,具有可观的放大合成工业化前景。这其
中由平面结构基元相互连接和范德华力相互作用堆积而成的共价有机框架材料为层状二
维共价有机框架聚合物,将层状二维共价有机框架聚合物作为前驱体,将其层与层之间相
互剥离,即得到了一种具有分子级厚度、刚性二维晶态结构和直通孔道的二维共价有机框
架超薄纳米片材料。二维共价有机框架超薄纳米片材料具有可调控的永久孔道结构与丰富
的可修饰基团,极为适合对CO2气体进行吸附与捕获。同时二维共价有机框架材料超薄纳米
片材料可以降低膜的厚度,减少其孔径的有效尺寸,增强其对CO2的分离效果,是极为理想
的气体分离膜材料。仲崇立于2014年和2016年分别通过结构模拟与理论计算相结合,推测
出以CTFs、NPNs和Tp‑COFs为首的多种二维共价有机框架超薄纳米片都具有优异的CO2分离
潜力(CO2/N2理论分离比可达90),但仍需实验结果对理论计算的证实。Tsuru用层状二维共
价有机框架材料(COF‑1)通过剥层、真空抽滤等手段制备出二维共价有机框架超薄纳米片
材料纯相膜,并进行了气体分离测试,然而分离效果并不理想(H2/N2的分离比仅为4)。
Banerjee将两种稳定状二维共价有机框架聚合物(TpPa‑1,TpBD)与苯并咪唑聚合物复合形
成自支撑膜,其CO2常压选择性与渗透量均不理想。赵丹将两种层状二维共价有机框架
(NUS‑1、NUS‑2)进行了剥层处理,得到的二维共价有机框架超薄纳米片与聚醚酰亚胺和聚
苯并咪唑相复合,制备了复合材料膜,其H2/CO2分离比可达31.4。王志将COF‑LZU1与聚乙烯
胺交联后滴涂在聚砜基底上制备了混合基质复合膜,其CO2对H2分离效果比纯聚合物略有提
升。Caro通过变温溶剂热方法,将COF‑LZU1和COF‑1依次生长于多孔载体上合成双层COF结
构复合膜,该复合膜展现出对H2较高的选择性和较高好的化学稳定性,但其对CO2的分离与
捕获没有突出效果。可见二维共价有机框架聚合物前驱体材料因自身的孔道较大、结构刚
性等多种原因,在合成可控性和开层便易性方面限制了高质量二维共价有机框架超薄纳米
片材料的制备,同时粘稠的聚合物和轻质量的二维共价有机框架超薄纳米片材料很难形成
均匀的膜材料,因此无论是纯相还是与聚合物复合均无法得到较高质量的气体分离膜,相
关气体分离膜材料研究一直未取得突破。

发明内容

[0005] 为解决现有技术的问题,本发明提供了一种制备二维共价有机框架超薄纳米片材料复合膜的方法及应用。
[0006] 一种制备二维共价有机框架超薄纳米片材料复合膜的方法,所述方法包括将层状二维共价有机框架前驱体材料与有机溶剂混合后,湿法球磨处理的步骤;采用热滴加方法
在二维共价有机框架超薄纳米片纯相膜的基础上滴加离子液体制备二维共价有机框架超
薄纳米片复合膜材料,具体步骤如下:
[0007] (1)二维共价化合物超薄纳米片的制备:
[0008] 所述的二维层状前驱体材料是二维共价有机聚合物材料,其制备方法为:三醛单体与二胺单体反应生成二维层状共价化合物前驱体材料;其中,
[0009] 一种单体为三醛单体:1,3,5‑三甲酰基间苯三酚(Tp);
[0010] 另一种单体为二胺单体:选自肼(Hz)、对苯二胺(Pa‑1)、2,5‑二甲基‑1,4‑苯二胺(Pa‑2)和邻硝基对苯二胺(Pa‑NO2)任意一种以上的组合。
[0011] 选取三醛单体与任意一种二胺单体组合,其中,三醛单体与二胺单体的物质的量比例为2:3,通过席夫碱反应使用氨泵法,1,4‑二氧六环和1,3,5‑三甲基苯为溶剂,醋酸为
催化剂,反应温度为120~140℃,反应时间为72~96小时;
[0012] 所述三醛单体和二胺单体的“任意一种以上的组合”,是指所形成的聚合物,在满足配位平衡的基本原则前提下,可以包含非单一的二胺单体;
[0013] 所述溶剂(1,4‑二氧六环和1,3,5‑三甲基苯)的总体用量没有严格要求,只要能将原料(三醛单体与二胺单体))分散即可,其中,1,4‑二氧六环和1,3,5‑三甲基苯的体积比为
1:1。
[0014] 优选的,所述催化剂醋酸的浓度为3mol/L,所述1,4‑二氧六环、1,3,5‑三甲基苯与醋酸的体积比为3:3:1。
[0015] 产物经过分别经过洗涤,干燥后得到层状二维共价有机框架前驱体;其中,所述产物的洗涤为分别四氢呋喃、甲醇和丙酮洗涤,乙醇和二氯甲烷索式提取洗涤。
[0016] 上述方法制备的所述的层状二维共价有机框架前驱体材料选自:TpPa‑1(doi:10.1021/ja308278w),TpPa‑2(doi:10.1021/ja308278w),NO2‑TpPa(doi:10.1021/
ja408121p),TpHz(doi:10.1002/chem.201501206)。
[0017] 所述的层状二维共价有机框架前驱体材料最优选TpPa‑2。
[0018] 将上述制备的层状二维共价有机框架前驱体,与有机溶剂混合后,湿法球磨处理,得到纳米片‑有机溶剂混合体系均匀分散液;即得到二维共价有机框架超薄纳米片材料;
[0019] 其中,所述的二维层状共价化合物前驱体材料与有机溶剂的质量比例为1:10~1:100。
[0020] 上述的二维共价化合物超薄纳米片的制备方法中,所述的球磨速度为30~300转/分钟,球磨时间为30~200分钟。
[0021] 上述的二维共价化合物超薄纳米片的制备方法中,所述的湿法球磨使用的有机溶剂选自醇类、醚类、酯类、芳烃类或其混合溶剂;
[0022] 上述二维共价化合物超薄纳米片的制备方法中,所述的湿法球磨使用的有机溶剂优选甲醇、乙醇、正丙醇、异丙醇、正丁醇、异戊醇、乙酸乙酯、丙酮、三氯甲烷、二甲基亚砜和
四氢呋喃或其混合溶剂;最优选二甲基亚砜(TpPa‑2)、正丁醇(NO2‑TpPa)、乙酸乙酯(TpPa‑
2和TpHz);
[0023] 上述的二维共价化合物超薄纳米片的制备方法,所述的二维共价有机框架纳米片材料厚度不超过10nm。
[0024] 上述的二维共价化合物超薄纳米片的制备方法,优选的实施方式中,还包括球磨后的分离步骤,选用静置分离或离心分离,得到纳米片‑有机溶剂混合体系均匀分散液。所
述静置分离是将球磨后的体系静置4小时~1个月,优选为72小时~1个月。所述的离心分离
操作参数包括:离心速度500~900转/分钟,离心时间30~90分钟。
[0025] 上述的二维共价化合物超薄纳米片的制备方法,优选的实施方式中,还包括对分离后的产品进行干燥的步骤。干燥的具体方式之一是在20~200℃条件下,干燥30~120分
钟。干燥的另一具体方式是冷冻干燥。
[0026] (2)采用热滴加方法在多孔材料(载体)表面制备二维共价有机框架纳米片纯相膜:
[0027] 将步骤(1)中球磨后所得纳米片‑有机溶剂混合体系均匀分散液在加热条件下上滴涂于多孔材料(载体)表面,制备二维共价有机框架纳米片纯相膜;
[0028] 其中,加热温度为100~200℃;以单位面积的载体计,纳米片‑有机溶剂混合体系2
均匀分散液的滴加量为1.6~16mL/cm载体。
[0029] 上述本发明的二维共价有机框架纳米片纯相膜的制备方法中,以TpPa‑2乙酸乙酯2
纳米片分散液为代表,最优加热温度为120℃,最佳滴加量为4.5~5mL/cm载体。
[0030] 上述本发明的二维共价有机框架纳米片纯相膜的制备方法中,还包括:将步骤(2)所得的二维共价有机框架纳米片纯相膜在100~140℃条件下干燥1~4小时,再真空100~
140℃条件下干燥12小时以上。
[0031] 另一具体的实施方式中,上述的二维共价化合物超薄纳米片的制备方法,还包括对球磨后的混合物超声处理的步骤,得到纳米片‑有机溶剂混合体系均匀分散液。超声的功
率可选择100~800瓦,优选150~600瓦;超声溶剂优选与球磨溶剂相同。
[0032] (3)采用热滴加法二次制备二维共价有机框架纳米片与离子液体复合膜:
[0033] 将所得离子液体与溶剂的混合溶液在加热条件下滴涂于步骤(2)所得的二维共价有机框架纯相膜表面,制备二维共价有机框架纳米片与离子液体复合膜;
[0034] 其中,所述的离子液体选自1‑丁基‑3‑甲基咪唑四氟硼酸盐([BMIM][BF4])和1‑丁基‑3‑甲基咪唑双三氟甲磺酰亚胺盐([BMIM][TF2N])两种中的至少一种;加热温度为100~
2
200℃;以单位面积的载体计,离子液体与溶剂的混合溶液液的滴加量为1.6~16mL/cm 载
体;所述离子液体与溶剂的混合溶液的离子液体与溶剂的体积比为1:1~1:10。
[0035] 上述本发明的二维共价有机框架纳米片与离子液体复合膜的制备方法中,所述的溶剂选自甲醇、乙醇和水。
[0036] 上述本发明的二维共价有机框架纳米片与离子液体复合膜的制备方法中,离子液体与溶剂的混合溶液的制备方法为:将离子液体与溶剂以体积比1:1~1:10的比例混合,超
声,混合均匀,得到离子液体与溶剂的混合溶液。
[0037] 实施方式中,上述本发明的二维共价有机框架纳米片与离子液体复合膜的制备方法中,以TpPa‑2纯相膜为代表,离子液体与溶剂最优比例为(1:4),最优加热温度为120℃,
2
最佳滴加体积为0.3~0.35mL/cm载体。
[0038] (4)干燥复合膜:
[0039] 将步骤(3)所得的二维共价有机框架纳米片与离子液体复合膜在100~140℃条件下干燥1~4小时,再真空100~140℃条件下干燥12小时以上。
[0040] 本发明提供的二维共价有机框架超薄纳米片材料复合膜的制备方法,所述多孔载体为多孔氧化物基膜或多孔金属膜,多孔氧化物基膜的材质为氧化铝、氧化钛、氧化锆、氧
化硅,多孔金属膜的材质为不锈钢;所述多孔载体的形状为片状、网状载体。
[0041] 本发明还涉及保护上文所述的方法制备的二维共价有机框架超薄纳米片材料复合膜。
[0042] 本发明的再一目的在于提供上述的二维共价有机框架超薄纳米片材料复合膜在气体分离和吸附方面的应用,尤其可用于二氧化碳的吸附和分离。
[0043] 有益效果:本发明提供了一种制备二维共价有机框架超薄纳米片复合膜材料的方法,这种方法使用开层方法得到高质量的二维共价有机框架超薄纳米片,通过热滴加方法
得到二维共价有机框架超薄纳米片纯相膜,在其基础上通过二次热滴加在纳米片间浸润入
离子液体,合成了新型二维共价有机框架超薄纳米片材料复合膜,其中二维共价有机框架
超薄纳米片有序堆垛可以降低膜的厚度,减少其孔径的有效尺寸,增强其对CO2的分离效
果,少量聚合物的引入可以增加复合膜的机械强度和稳定性,增强其对CO2的分离效果。用
本发明制备的二维共价纳化合物超薄纳米片复合膜的气体分离性能较二维共价有机框架
纳米片纯相膜有显著提升,适用面广,在分离领域具有很好的应用前景。

附图说明

[0044] 本发明附图14幅,分别是:
[0045] 图1为实施例1合成的TpPa‑1材料X‑射线衍射图;
[0046] 图2为实施例1合成的TpPa‑1材料扫描电子显微镜照片;
[0047] 图3为实施例2合成的TpPa‑2材料X‑射线衍射图;
[0048] 图4为实施例2合成的TpPa‑2材料扫描电子显微镜照片;
[0049] 图5为实施例3合成的NO2‑TpPa材料X‑射线衍射图;
[0050] 图6为实施例3合成的NO2‑TpPa材料扫描电子显微镜照片;
[0051] 图7为实施例4合成的TpHz材料X‑射线衍射图;
[0052] 图8为实施例4合成的TpHz材料扫描电子显微镜照片;
[0053] 图9是实施例5所制备的超薄二维层状TpPa‑1、TpPa‑2、NO2‑TpPa、TpHz纳米片的扫描电子显微镜测试结果照片;
[0054] 图10是实施例5所制备的超薄二维层状TpPa‑1、TpPa‑2、NO2‑TpPa、TpHz纳米片分散液的透射电子显微镜测试结果照片;
[0055] 图11是实施例5所制备的超薄二维层状TpPa‑1、TpPa‑2、NO2‑TpPa、TpHz纳米片分散液的原子力显微镜图片;
[0056] 图12是实施例6中制备的TpPa‑1、TpPa‑2、NO2‑TpPa、TpHz纳米片担载膜在氧化铝载体上的扫描电子显微镜图片;
[0057] 图13是实施例8中制备的TpPa‑2纳米片‑离子液体复合膜在氧化铝载体上的扫描电子显微镜图片;
[0058] 图14是实施例8制备的超薄共价有机聚合物纳米片复合膜气体分离性能图示。

具体实施方式

[0059] 下面的实施例将对本发明予以进一步的说明,但并不因此而限制本发明。
[0060] 实施例1 TpPa‑1的制备
[0061] 在派热克斯玻璃(Pyrex)管中加入31毫克1,3,5‑三醛基间苯三酚(Tp)和24毫克对苯二胺(Pa‑1)粉末。分别加入1.5毫升的1,4‑二氧六环和1,3,5‑三甲基苯为溶剂。加入0.5
毫升3摩尔每升的醋酸为催化剂。混合物在超声10分钟后混合均匀。随后将派热克斯玻璃管
放入液氮浴中冷冻,待管内液体凝固后,接通真空油泵进行抽气,随后将样品管从液氮浴中
取出等待液体融化,这种冻‑抽‑融循环需要进行三次。将真空密闭的样品管放入120摄氏度
油浴中加热72小时,得到深红色粉末。粉末经过分别经过四氢呋喃、甲醇和丙酮洗涤,乙醇
和二氯甲烷索式提取洗涤,真空120℃条件下干燥12h后得到TpPa‑1。
[0062] X射线衍射证实产物与模拟结构相一致,具有层状结构(如图1),在5°附近出现其(100)特征峰。扫描电子显微镜图片显示产物颗粒大小为微米级,具有明显的花状团簇形状
及层状形貌(如图2)。
[0063] 实施例2 TpPa‑2的制备
[0064] 在派热克斯玻璃(Pyrex)管中加入31毫克1,3,5‑三醛基间苯三酚(Tp)和30毫克2,5‑二甲基‑1,4‑苯二胺(Pa‑2)粉末。分别加入1.5毫升的1,4‑二氧六环和1,3,5‑三甲基苯为
溶剂。加入0.5毫升3摩尔每升的醋酸为催化剂。混合物在超声10分钟后混合均匀。随后将派
热克斯玻璃管放入液氮浴中冷冻,待管内液体凝固后,接通真空油泵进行抽气,随后将样品
管从液氮浴中取出等待液体融化,这种冻‑抽‑融循环需要进行三次。将真空密闭的样品管
放入120摄氏度油浴中加热72小时,得到深红色粉末。粉末经过分别经过四氢呋喃、甲醇和
丙酮洗涤,乙醇和二氯甲烷索式提取洗涤,真空120℃干燥12h后得到TpPa‑2。
[0065] X射线衍射证实产物与模拟结构相一致,具有层状结构(如图3),在5°附近出现其(100)特征峰。扫描电子显微镜图片显示产物颗粒大小为微米级,具有明显的花状团簇形状
及层状形貌(如图4)。
[0066] 实施例3 NO2‑TpPa的制备
[0067] 在派热克斯玻璃(Pyrex)管中加入31毫克1,3,5‑三醛基间苯三酚(Tp)和34.5毫克邻硝基对苯二胺(NO2‑Pa)粉末。分别加入1.5毫升的1,4‑二氧六环和1,3,5‑三甲基苯为溶
剂。加入0.5毫升3摩尔每升的醋酸为催化剂。混合物在超声10分钟后混合均匀。随后将派热
克斯玻璃管放入液氮浴中冷冻,待管内液体凝固后,接通真空油泵进行抽气,随后将样品管
从液氮浴中取出等待液体融化,这种冻‑抽‑融循环需要进行三次。将真空密闭的样品管放
入120摄氏度油浴中加热72小时,得到深红色粉末。粉末经过分别经过四氢呋喃、甲醇和丙
酮洗涤,乙醇和二氯甲烷索式提取洗涤,真空120℃干燥12h后得到NO2‑TpPa。
[0068] X射线衍射证实产物与模拟结构相一致,具有层状结构(如图5),在5°附近出现其(100)特征峰。扫描电子显微镜图片显示产物颗粒大小为微米级,具有明显的花状团簇形状
及层状形貌(如图6)。
[0069] 实施例4 TpHz的制备
[0070] 在派热克斯玻璃(Pyrex)管中加入21毫克1,3,5‑三醛基间苯三酚(Tp)粉末和7.5微升邻硝基肼(Hz)。分别加入1.5毫升的1,4‑二氧六环和1,3,5‑三甲基苯为溶剂。加入0.5
毫升3摩尔每升的醋酸为催化剂。混合物在超声10分钟后混合均匀。随后将派热克斯玻璃管
放入液氮浴中冷冻,待管内液体凝固后,接通真空油泵进行抽气,随后将样品管从液氮浴中
取出等待液体融化,这种冻‑抽‑融循环需要进行三次。将真空密闭的样品管放入120摄氏度
油浴中加热72小时,得到棕红色粉末。粉末经过分别经过四氢呋喃、甲醇和丙酮洗涤,乙醇
和二氯甲烷索式提取洗涤,干燥后得到TpHz。
[0071] X射线衍射证实产物与模拟结构相一致,具有层状结构(如图7),在5°附近出现其(002)特征峰。扫描电子显微镜图片显示产物颗粒大小为微米级,具有明显的花状团簇形状
及层状形貌(如图8)。
[0072] 实施例5 超薄二维共价有机聚合物纳米片的制备
[0073] (1)分别将实施例1、实施例2、实施例4所制备的TpPa‑1、TpPa‑2、NO2‑TpPa和TpHz粉末取10毫克分散在100毫升乙酸乙酯溶液中,密封在500毫升体积的球磨罐中,以60转/分
钟的转速球磨1小时。分别得到TpPa‑1纳米片分散液、TpPa‑2纳米片分散液、TpHz纳米片分
散液。随后取出纳米片的乙酸乙酯分散液静置15天,以除去未开层的大颗粒。静置后得到的
分散液具有明显的丁达尔现象,即使放置一个月后,丁达尔现象仍清晰可见。扫描电子显微
镜图片显示,纳米片与前驱体呈现差异极大的形貌,花簇状态驱体剥层后呈现片状纳米片
(如图9)。透射电子显微镜图片显示纳米片平均大小约为500~1000纳米左右,极易折叠(如
图10)。原子力显微镜图片显示纳米片厚度最薄可为1~3纳米(如图11)。
[0074] (2)按照上述同样的方法,将实施例3所制备的NO2‑TpPa颗粒分散在正丁醇进行球磨,得到NO2‑TpPa纳米片分散液。静置15天以上,以除去未开层的大颗粒。所得产品的透射
电子显微镜图片显示纳米片如附图11,可见体系中存在大量极薄的纳米片,纳米片与前驱
体呈现差异极大的形貌,平均大小约为500~1000纳米左右,极易折叠(如图10),厚度为1~
3纳米。
[0075] 实施例6 超薄二维共价有机聚合物纳米片纯相担载膜的制备
[0076] 将孔径为70nm的α‑Al2O3多孔载体(半径1cm的圆形)在水平加热平台上预热至120℃,分别取15毫升实施例5中得到的四种纳米片分散液,使用一次性滴管逐滴将分散液滴加
在氧化铝载体表面,即“热滴加涂膜”方法。随后制备完成的四种担载膜在120℃条件下干燥
2小时,真空120℃条件下干燥12小时。室温下存储于干燥器中。四种担载膜分别为TpPa‑1纳
米片纯相担载膜、TpPa‑2纳米片纯相担载膜、NO2‑TpPa纳米片纯相担载膜和TpHz纳米片纯
相担载膜。扫描电子显微镜图片显示氧化铝载体上担载的膜极薄(如图12)。
[0077] 实施例7 超薄二维共价有机聚合物纳米片纯相担载膜的二氧化碳/氢气气体分离测试
[0078] 将带有5毫米直径小孔的硅胶垫和不锈钢圆片小心覆盖在实施例6中制备的四种担载膜表面,将膜封装在威克‑卡伦巴赫(Wicke‑Kallenbach)膜组件中,在常温和△P=0巴
的条件下,进行二氧化碳/氢气混合气体分离测试,氦气作为吹扫气。分离系数和二氧化碳
的透过量如下表所示:
[0079]编号 分离系数 透量(GPU)
TpPa‑1纳米片纯相担载膜 9 453
TpPa‑2纳米片纯相担载膜 20 313
NO2‑TpPa纳米片纯相担载膜 1.4 373
TpHz纳米片纯相担载膜 11 77
[0080] 实施例8 超薄二维共价有机聚合物纳米片‑离子液体复合膜的制备
[0081] 选取1‑丁基‑3‑甲基咪唑四氟硼酸盐([BMIM][BF4])和1‑丁基‑3‑甲基咪唑双三氟甲磺酰亚胺盐([BMIM][TF2N])两种;
[0082] 将离子液体0.2毫升与乙醇0.8毫升超声混合5分钟,得到离子液体与乙醇混合溶液。
[0083] 按照实施例6中相同的方法,使用“热滴加涂膜”方法在α‑Al2O3上制备超薄二维共价有机聚合物纳米片纯相担载膜,随后所得将离子液体与乙醇混合溶液在120摄氏度加热
平台上滴涂于超薄二维共价有机聚合物纳米片纯相担载膜上制备纳米片与离子液体复合
膜;
[0084] 随后制备完成的纳米片与离子液体复合膜在120℃条件下干燥2小时,真空120℃条件下干燥12小时。室温下存储于干燥器中。纳米片与离子液体复合膜分别为TpPa‑1纳米
片与离子液体复合膜(包括TpPa‑1纳米片‑[BMIM][BF4]复合膜和TpPa‑1纳米片‑[BMIM]
[TF2N]复合膜)、TpPa‑2纳米片‑离子液体复合膜(包括TpPa‑2纳米片‑[BMIM][BF4]复合膜和
TpPa‑2纳米片‑[BMIM][TF2N]复合膜)、NO2‑TpPa纳米片‑离子液体复合膜(包括NO2‑TpPa纳
米片‑[BMIM][BF4]复合膜和NO2‑TpPa纳米片‑[BMIM][TF2N]复合膜)和TpHz纳米片‑离子液
体复合膜(包括TpHz纳米片‑[BMIM][BF4]复合膜和TpHz纳米片‑[BMIM][TF2N]复合膜)。扫描
电子显微镜图片显示氧化铝载体上担载的复合膜(如图13)。
[0085] 实施例9 超薄二维共价有机聚合物纳米片‑离子液体复合膜的氢气/二氧化碳气体分离测试
[0086] 以TpPa‑2纳米片与[BMIM][BF4]和[BMIM][TF2N]复合膜为代表按照实施例7中的方法将膜封装在膜组件中,在常温和△P=0巴的条件下,进行二氧化碳/氢气混合气体、二氧
化碳/甲烷混合气体和二氧化碳/氮气混合气体分离测试,氦气作为吹扫气。
[0087] 对比超薄共价有机聚合物纳米片纯相膜与复合膜的气体分离性能如图14和下表所示:
[0088] 编号 CO2/H2分离系数 CO2/CH4分离系数 CO2/N2分离系数TpPa‑2复合膜 19.8 1.8 3.9
TpPa‑2‑[BMIM][BF4]复合膜 36.6 11.4 6.6
TpPa‑2‑[BMIM][TF2N]复合膜 26.2 6.7 3.3
[0089] 由此表可见,采用本发明制备的超薄共价有机聚合物纳米片复合膜较同超薄有机共价聚合物纳米片纯相膜在二氧化碳/氢气和二氧化碳/甲烷混合气体分离方面,分离性能
具有显著提高。