精确预测腔体流声载荷的附面层相似参数模拟方法转让专利

申请号 : CN202110550758.2

文献号 : CN112985755B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 杨党国路波周方奇吴军强王显圣吴继飞刘刚宁荣辉刘嘉诚

申请人 : 中国空气动力研究与发展中心高速空气动力研究所

摘要 :

本发明公开了一种精确预测腔体流声载荷的附面层相似参数模拟方法,包括以下步骤:来流附面层特征参数提取、确定来流附面层相似参数、来流附面层相似参数模拟和来流附面层相似参数模拟范围四个环节;本发明从空气动力学、声学、实验流体力学模拟原理出发,为构建腔体流声载荷精确预测来流附面层参数模拟提供了理论基础,对于腔体流声载荷地面风洞试验测量来流附面层参数模拟具有积极的指导作用,因此能够提高研究效率,给出了适用于腔体流声载荷预测的来流附面层相似参数模拟范围,因此能够为精确获得腔体流声载荷试验数据提供支撑作用,更加接近于真实环境下飞机上腔体实际问题,进而提高了腔体流声载荷预测类问题的模拟能力。

权利要求 :

1.一种精确预测腔体流声载荷的附面层相似参数模拟方法,其特征在于包括以下步骤:

S1:来流附面层特征参数提取,在空气动力学风洞试验模拟相似原理的基础上,使得腔体几何相似、来流条件相似、来流附面层特征参数和形状因子相似,定义当地速度为 ,来流主流速度为 ,来流气流声速为  ,来流马赫数为 ,腔体顺气流方向长度为 ,腔体垂直气流方向深度为 ,来流附面层速度厚度 ,来流附面层位移厚度  ,来流附面层动量损失厚度为  ,则有:

S2:确定来流附面层相似参数,对来流附面层厚度和形状因子进行无量纲化处理,来流附面层厚度参数用无量纲特征参数  表征,  ,描述在地面风洞试验中模拟真实飞行环境中飞机上腔体来流附面层厚度相似条件,附面层形状因子用无量纲特征参数 表征, ,描述在地面风洞试验中模拟真实飞行环境中飞机上腔体来流附面层流动形态相似条件;

S3:来流附面层相似参数模拟,S31:根据近真实飞行环境中飞机表面的来流特征计算出近真实飞行环境中飞机表面腔体前缘来流附面层厚度无量纲特征参数 和附面层形状因子无量纲特征参数 ,

S32:风洞试验模拟时,根据风洞流场参数、试验腔体的几何参数和腔体前缘整流平板的长度,确定试验工况条件下的来流附面层厚度无量纲特征参数 和附面层形状因子无量纲特征参数 ,

S33:通过调整腔体前缘整流平板的长度,使得:;

S4:确定来流附面层相似参数模拟范围,通过风洞试验结果分析,提出当无量纲特征参数  在[0.08,0.095]范围内时,来流附面层厚度特征参数和模拟方法能够满足腔体类流声载荷预测要求,且在一定的可控范围内能有效获得精确的流声载荷数据。

2.根据权利要求1所述的一种精确预测腔体流声载荷的附面层相似参数模拟方法,其特征在于所述腔体来流附面层厚度相似条件通过改变腔体前缘整流平板构型几何参数实现,所述腔体来流附面层流动形态相似条件通过在腔体前缘整流平板构型上进行固定转捩实现。

说明书 :

精确预测腔体流声载荷的附面层相似参数模拟方法

技术领域

[0001] 本发明涉及空气动力学、声学等交叉研究领域,具体为一种精确预测腔体流声载荷的附面层相似参数模拟方法。

背景技术

[0002] 腔体结构广泛存在于航空航天航海领域,是航空航天航海装备必不可少且普遍采用的一种典型结构形式,其主要用于作战武器装载、动力燃油存储和起落架存放等(如武器
弹舱、起落架舱、运输机舱、机体缝隙/小尺度空腔、燃烧室等),通常具有几何参数多、结构
复杂、非常规构型、工作环境苛刻等特点。高速条件下腔体绕流易诱发高强流体动力学脉
动,激励腔体薄壁结构易产生严重振动与噪声等动载荷,不仅影响飞行器的正常运行和工
作效能,降低飞行器的气动性能,而且还会加剧飞行器的结构疲劳,缩短其使用寿命,进而
危及飞行器的结构安全。可见,精确预测腔体流声载荷是进行腔体结构优化设计和安全性
考核的重要依据、数据来源。
[0003] 然而,腔体结构本身具有一定的特殊性,是空气动力学领域的一种典型结构,非定常、非线性流动特征非常明显。高速腔体绕流,来流附面层在腔前缘流入腔体,在腔体内部
和上方形成剪切层,剪切层发展的涡脱落会引起腔内流动不稳定、不对称,易诱发腔内的流
激振荡和声波模态产生,进而在腔体壁面上形成高强流声载荷,腔体流动特征和载荷特性
对腔体前缘来流附面层形态和厚度等参数非常敏感。因此,在地面设备中进行物理仿真试
验模拟过程中,准确提出腔体前缘附面层模拟相似准则,准确模拟腔体前缘来流附面层参
数是精确预测腔体流声载荷的关键所在。其中,来流附面层对空腔流动的影响又涉及到来
流附面层状态(层流/湍流),来流附面层厚度等因素。
[0004] Heller等人对比分析了来流马赫3的层流/湍流入口的空腔流动,发现层流条件下腔内噪声水平明显高于湍流混合流动条件;在来流附面层厚度对空腔复杂流动和噪声载荷
特性影响研究方面,杨党国等人通过将模型安装在风洞侧壁和核心流两种方式获得空腔流
声载荷试验结果,并对比分析了两种不同情况下附面层厚度变化对亚跨超声速空腔流声载
荷的影响,研究结果表明来流附面层厚度影响敏感。Thangamani等人通过改变模型尺寸来
改变附面层厚度d,Plentovich等人通过在平板上粘贴约占平板面积2/3的金刚砂,实现空
腔入口湍流附面层厚度的增加,Illy等人则选择用附面层吸除的方法来降低空腔入口附面
层厚度,研究结果均表明来流附面层形态和厚度均有很大影响;刘俊等人通过DDES模拟发
现附面层厚度对自由剪切层的发展、空腔流动类型、空腔底面静压/动压均有重要影响。
[0005] 为了满足来流附面层厚度对腔体流声载荷的影响研究需求,杨党国、Plentovich、Illy、刘俊等人均提出了不同的方法实现了来流附面层厚度的改变,包括杨党国等利用两
套不同模型进行试验模拟;Plentovich等人提出的粘贴约占平板面积2/3的金刚砂实现附
面层厚度从15.4mm增加到22.4mm的改变;Illy等人采用的附面层吸除对比前后两种状态进
行改变;还有通过改变腔体前缘平板长度来改变附面层厚度的方案;刘俊等人通过改变腔
体前缘平板头部垫块高度来有效实现来流附面层厚度的改变。综合上述研究结果和现状,
腔体前缘来流附面层形态和厚度参数对腔体流声载荷影响敏感,在实现来流附面层形态和
厚度改变方面有较好的解决方案,且取得了一定的效果,但在当前地面设备中进行物理仿
真试验模拟过程中,一般进行高速流动条件的腔体流声载荷测量时,都必须采用缩比腔体
模型进行预测,如何准确提出腔体前缘附面层模拟相似准则,使得在地面设备中获得腔体
流态和流声载荷能够近似模拟真实飞行条件下的数据,目前尚没有相关理论和模拟方法依
据。主要表现在以下几个方面:
[0006] 一是缺乏近真实飞行条件和环境的腔体前缘来流附面层模拟相似理论,导致缩比腔体试验难以得到理论依据;二是缺乏合理有效的腔体前缘来流附面层模拟相似参数,导
致在腔体流声载荷预测试验中难以建立模拟方法;三是缺乏附面层相似参数模拟范围和要
求,导致腔体流声载荷数据误差大、精度低、数据不准,严重制约了腔体结构优化设计和安
全考核。因此,探究近真实飞行条件和环境的腔体前缘来流附面层模拟相似理论,提出精确
预测腔体流声载荷的附面层相似参数,建立地面设备上的模拟方法,能够有效解决腔体类
模型试验模拟相似问题,并进一步增强传统腔体类问题研究手段对于真实情况的模拟能
力。

发明内容

[0007] 本发明的目的是通过提取影响腔体流声载荷的关键附面层特征参数,结合近真实飞行条件下腔体前缘来流附面层特征,获取满足风洞试验模拟相似性原理的附面层相似参
数,构建适用于腔体流声载荷预测的附面层模拟方法,并给出附面层相似参数选取范围,能
够准确模拟被测腔体前缘来流附面层参数和形态,实现腔体壁面流声载荷的精确预测。
[0008] 一种精确预测腔体流声载荷的附面层相似参数模拟方法,包括以下步骤:
[0009] S1:来流附面层特征参数提取,在空气动力学风洞试验模拟相似原理的基础上,使得腔体几何相似、来流条件相似、来流附面层特征参数和形状因子相似,定义当地速度为 ,
来流主流速度为  ,来流气流声速为  ,来流马赫数为  ,腔体顺气流方向长度为  ,
腔体垂直气流方向深度为 ,来流附面层速度厚度  ,来流附面层位移厚度 ,来流附面层
动量损失厚度为  ,则有:
[0010] ;
[0011] S2:确定来流附面层相似参数,对附面层厚度和形状因子进行无量纲化处理;
[0012] S3: 来流附面层相似参数模拟,
[0013] S31:根据近真实飞行环境中飞机表面的来流特征计算出近真实飞行环境中飞机表面腔体前缘来流附面层厚度无量纲特征参数 和附面层形状因子无量纲特征参
数  ,
[0014] S32:风洞试验模拟时,根据风洞流场参数、试验腔体的几何参数和腔体前缘整流平板的长度,可以确定试验工况条件下的来流附面层厚度无量纲特征参数  和附
面层形状因子无量纲特征参数 ,
[0015] S33:通过调整腔体前缘整流平板的长度,使得:
[0016] ;
[0017] S4: 来流附面层相似参数模拟范围,
[0018] 通过风洞试验结果分析,提出当无量纲特征参数 在[0.08,0.095]范围内时,来流附面层厚度特征参数和模拟方法能够满足腔体类流声载荷预测要求,且在一定的可控范
围内能有效获得精确的流声载荷数据。
[0019] 在上述技术方案中,在S2中:
[0020] 附面层厚度参数用无量纲特征参数 表征,  ,描述在地面风洞试验中模拟真实飞行环境中飞机上腔体来流附面层厚度相似条件,
[0021] 附面层形状因子用无量纲特征参数 表征,  ,描述在地面风洞试验中模拟真实飞行环境中飞机上腔体来流附面层流动形态相似条件。
[0022] 在上述技术方案中,所述腔体来流附面层厚度相似条件通过改变腔体前缘平板构型几何参数实现,所述腔体来流附面层流动形态相似条件通过在腔体前缘平板构型上进行
固定转捩实现。
[0023] 综上所述,由于采用了上述技术方案,本发明的有益效果是:
[0024] (1)本发明从空气动力学、声学、实验流体力学模拟原理出发,针对腔体流声载荷风洞试验精确测量需求,厘清了在地面风洞试验设备中模拟近真实飞行环境下腔体流声载
荷的要求,为构建腔体流声载荷精确预测来流附面层参数模拟提供了理论基础;
[0025] (2)本发明根据腔体流声载荷预测过程中来流附面层参数模拟原理,提出了附面层相似参数模拟方法,并给出了模拟无量纲特征参数和形状因子的实现方法,对于腔体流
声载荷地面风洞试验测量来流附面层参数模拟具有积极的指导作用,因此能够提高研究效
率;
[0026] (3)本发明给出了适用于腔体流声载荷预测的来流附面层相似参数模拟范围,因此能够为精确获得腔体流声载荷试验数据提供支撑作用,更加接近于真实环境下飞机上腔
体实际问题,进而提高了腔体流声载荷预测类问题的模拟能力。

附图说明

[0027] 本发明将通过例子并参照附图的方式说明,其中:
[0028] 图1是来流附面层参数与腔体几何参数示意图;
[0029] 图2是附面层厚度对腔体测点静态压力系数的影响(Ma=0.9);
[0030] 图3是附面层厚度对腔体测点噪声声压级的影响(Ma=0.9);
[0031] 图4是Ma=0.9条件下腔内声压级和静压系数;
[0032] 图5是Ma=1.5条件下腔内声压级和静压系数。

具体实施方式

[0033] 本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
[0034] 本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只
是一系列等效或类似特征中的一个例子而已。
[0035] 本实施例中图2‑图5中,其中横坐标X/L表示在空腔内的相对位置,CP为静压系数,SPL为声压级(单位为dB)。
[0036] 本实施例通过如下过程实施:
[0037] 1. 来流附面层特征参数提取
[0038] 由于来流附面层厚度和速度形状因子对腔体剪切层失稳、旋涡生成与发展有重要的影响如图1所示,且依据前期研究结果和相关文献如图2和图3所示,要在地面风洞试验中
获得近真实飞行环境中飞机上腔体精确的流声载荷,除了依据空气动力学风洞试验模拟相
似原理,保证腔体几何相似和来流条件相似外,还需重要保证来流附面层特征参数和形状
因子相似。
[0039] 附面层厚度外边界离物面的法向距离就是附面层厚度,附面层外边界是附面层区与无黏流去的分界线,为了能够在物理上给出附面层厚度的可预测结果,普朗特构建了附
面层模型,把当地速度 正好等于当地势流速度 的0.99的位置定义为附面层外边界,如
果外边界坐标记为  ,那么当地有  ,附面层外边界与物面的垂直
距离(最近距离)就是附面层厚度 。
[0040] 其中,  当地速度,  为来流主流速度,  为来流气流声速,  为来流马赫数;  为腔体顺气流方向长度,  腔体垂直气流方向深度,x为从腔体前缘平板起点沿来流
方向的横坐标长度,y为垂直于腔体前缘平板沿来流法线方向的纵坐标长度,  为来流附面
层速度厚度,  为来流附面层位移厚度(反映了附面层对势流区等效边界的排挤作用),
为来流附面层动量损失厚度,相关参数的计算公式如下:
[0041] 。
[0042] 2. 确定来流附面层相似参数
[0043] 腔体流声载荷数据是腔体结构参数优化设计和安全性评估的基本输入条件,来流附面层参数是影响腔体复杂流场结构和流声载荷的直接关键因素。从流动机理上分析,附
面层厚度和形状因子是表征附面层特征的两个关键参数,根据空气动力学相似原理,对上
述两个参数进行无量纲化处理如表1所示,提出了腔体流声载荷预测来流附面层参数模拟
方法:
[0044] 附面层厚度参数用无量纲特征参数Rbdr表征,用来描述在地面风洞试验中模拟真实飞行环境中飞机上腔体来流附面层厚度相似条件(可通过优化设计腔体前缘平板构型几
何参数实现);
[0045] 附面层形状因子用无量纲特征参数Hbdr表征,用来描述在在地面风洞试验中模拟真实飞行环境中飞机上腔体来流附面层流动形态相似条件(可通过在腔体前缘平板构型上
进行固定转捩实现)。
[0046] 表1空腔流声耦合试验的来流条件相似准则
[0047]
[0048] 3. 来流附面层相似参数模拟方法
[0049] 根据近真实飞行环境中飞机表面的来流特征可以获取上腔体前缘附面层速度厚度  ,附面层位移厚度 ,和附面层动量损失厚度 ,结合飞机腔体的几何特征,可以计算出
近真实飞行环境中飞机表面腔体前缘来流附面层厚度无量纲特征参数  和附面层
形状因子无量纲特征参数  。
[0050] 风洞试验模拟时,根据风洞流场参数、试验腔体的几何参数和腔体前缘整流平板的长度,可以确定试验工况条件下的来流附面层厚度无量纲特征参数 和附面层形
状因子无量纲特征参数  。通过调整腔体前缘整流平板的长度,改变 和
,令:
[0051]
[0052] 确保风洞试验工况条件下与近真实飞行环境下来流附面层厚度无量纲特征参数和附面层形状因子无量纲特征参数的一致性,从而实现对附面层相似参数的准确模拟。
[0053] 4.确定来流附面层相似参数模拟范围
[0054] 通过测压耙获得了亚声速(Ma=0.9)和超声速(Ma=1.5)时不同附面层厚度  (见表2),采用反映附面层厚度特征的无量纲参数  表征附面层厚度模拟参数的影响
(可变的附面层模拟无量纲参数取值范围根据地面风洞试验模拟Re数与飞机实际飞行中的
Re数间的相似关系给定的)。
[0055] 表2不同来流附面层参数模拟取值情况
[0056]
[0057] 图4和图5给出了不同附面层厚度模拟参数下腔内流声载荷(噪声声压级和静压系数),结果显示,无论亚声速还是超声速来流条件下,腔内底面的噪声声压级曲线基本保持
不变,无量纲静压系数分布也基本不变,表明在试验中来流附面层厚度模拟参数变化范围
内,即0.08≤Rbdr≤0.095时,腔内流动和噪声特性基本保持一致。因而,本实施例提出当Rbdr
在[0.08,0.095]范围内时,来流附面层厚度特征参数和模拟方法能够满足腔体类流声载荷
预测要求,且在一定的可控范围内能有效获得精确的流声载荷数据。
[0058] 本实施例不仅能够大幅提升腔体流声载荷预测精度,而且能够为飞行器地面试验模拟方法构建和参数选取提供借鉴。
[0059] 本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。