一种大型水库测深基准场建设方法及用途转让专利

申请号 : CN202110320450.9

文献号 : CN113091852B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 任实王海闫金波聂金华王冕刘世振全小龙陶冶吕超楠

申请人 : 中国长江三峡集团有限公司长江水利委员会水文局长江三峡水文水资源勘测局

摘要 :

本发明提供了一种大型水库测深基准场建设方法及用途,基准场选址:为满足多种测深设备校准技术要求,需要布设多种形式的基准点和基准面;基准点建设;基准面建设。基于测深基准点可以进行测深误差、定位误差、水位改正误差研究,包括测深仪标称精度、测深方式、测深实际深度、动吃水影响;定位精度、GNSS数据更新率、差分方法影响等;水位推算模型等影响。基于测深基准面可以进行测深环境误差研究及GNSS三维水道测深精度研究,包括波浪效应,定位中心偏差效应、单波束测深姿态效应、测深延迟效应、船速效应、波束角效应、耦合效应、水体特性、测深采样频率及平滑方式、声线跟踪以及多波束测深系统测深点云精度分析等影响研究。

权利要求 :

1.一种大型水库测深基准场建设方法,其特征在于,包括以下步骤:

步骤1,基准场选址:为满足多种测深设备校准技术要求,需要布设多种形式的基准点和基准面;

步骤2,基准点建设;

步骤3,基准面建设;

所述步骤3中基准面建设的具体过程为:

步骤3.1,对于平坦基准面,其建设过程为:平坦基准面由三个基准断面组成一个平坦基准面,采用陆上测量方式施测基准断面,获得基准断面成果,具体包括以下步骤:步骤3.1.1,图根控制布设:所述平坦基准面共布设图根控制点六个,分别为GL01‑GL06,作为基准断面G01‑G03的断面断点,平面坐标均采用RTK方式测得,高程采用全站仪正倒镜方式施测;

步骤3.1.2,基准断面测量:基准断面G01‑G03采用全站仪正倒镜方式施测,点距按5m控制;

步骤3.2,对于斜坡基准面,其建设过程为:采用陆上测量方式、1:500比例尺施测斜坡基准面和基准断面,获得斜坡基准面局部地形图和基准断面成果,具体包括以下步骤:步骤3.2.1,图根控制布设:共布设图根控制点3个,分别为SW01、SW02、SW03,其平面坐标均采用RTK方式测得,SW01、SW02的高程通过四等水准往返测的方式自高程引据点HDQX03引测,SW03采用全站仪正倒镜方式测得;

步骤3.2.2,基准断面测量:基准断面采用全站仪正倒镜方式施测,点距按5m控制;

步骤3.2.3,基准面测量:采用全站仪正倒镜方式按1:500施测基准面局部地形;

步骤3.3,对于陡坡基准面,其建设过程为:基准场由1处陡坡基准面和1个基准断面组成,采用陆上测量方式、1:500比例尺施测基准面和基准断面,获得基准面地形图和基准断面成果,具体包括以下步骤:步骤3.3.1,图根控制布设:基准面布设图根控制点3个,平面坐标用RTK方式测得,高程采用全站仪正倒镜方式测得;

步骤3.3.2,基准面和基准断面测量:基准断面以及基准面地形点采用全站仪正倒镜方式测量三维坐标,最后获得断面的断面成果与陡坡基准面地形图。

2.根据权利要求1所述一种大型水库测深基准场建设方法,其特征在于:所述步骤1中基准点包括平坦水泥地面基准点和悬空空腔基准点;

所述基准面包括平坦基准面、斜坡基准面和陡坡基准面。

3.根据权利要求1所述一种大型水库测深基准场建设方法,其特征在于:所述步骤2中基准点建设的具体过程为:步骤2.1,对于平坦水泥地面基准点,其建设过程为:在隔流堤下游方向转折处,并位于基准断面GL01和基准断面GL02之间选择一块正方形区域,使用五个水泥钉固定正方形区域的四个角点和中心点,并将水泥钉位置作为基准点,采用RTK方式测得基准点三维坐标,同时采用全站仪正倒镜方式测量基准点高程;

步骤2.2,对于悬空空腔基准点,其建设过程为:在建设区域的顶部,选取两个基准点分别为基准点SJD1和基准点SJD2,单个基准点所在都位置都分别通过钢支架固定安装悬空横置管状声波反射器。

4.根据权利要求3所述一种大型水库测深基准场建设方法,其特征在于:所述悬空横置管状声波反射器采用直径为D的圆形无缝钢管,壁厚不低于3mm,圆形无缝钢管的两端采用相同厚度的圆形钢板满焊密封,并进行水密封性试验。

5.根据权利要求3所述一种大型水库测深基准场建设方法,其特征在于:所述钢支架采用钢管拼装焊接而成,所述钢支架的平面为正向行区域,在钢支架的四个顶角和中心点的位置固定有支撑脚,支撑脚的底端安装法兰盘,法兰盘通过膨胀螺丝固定在坑洞内部,在固定好支撑脚之后,将坑洞采用水泥填充密实;

每个基准点都制作一个不锈钢铭牌,并固定在钢支架上。

6.根据权利要求3所述一种大型水库测深基准场建设方法,其特征在于:所述步骤2.2中,基准点SJD1和基准点SJD2建设完成之后,采用RTK方式精确测量钢支架标面的四个顶角和中心的平面位置,高程采用全站仪正倒镜方式施测,并采用四等水准的精度观测检核四个顶角间的高差及两个钢支架标面中心点的高差d,以检核测距三角高程观测精度,最后生成基准点SJD1和基准点SJD2的地形点位图。

7.权利要求1‑6任意一项所述大型水库测深基准场建设方法所建设的基准场的使用方法,其特征在于,包括以下用法:第一,基于基准点的静态测深研究;

第二,基于基准面的动态测深研究。

8.根据权利要求7所述的基准场的使用方法,其特征在于:

所述基于基准点的静态测深研究具体包括以下几个方面:

(1)不同型号测深仪测深精度分析:分别采用不同型号、不同厂家生产的回声测深仪进行定点测深,每台仪器至少采集30个有效数据,基于试验采集数据分析不同型号测深仪的标称精度和实际测深精度;

(2)不同测深仪测深抗差分析:分别采用不同测深仪,船速不固定方式采集测深数据,进行四种不同方式的抗差分析;试验时预置计划线、系统加姿态传感器,测深仪Ping Rate选择Auto、固定增益、采用测深仪高频测深,有效数据至少采集60点,有效数据分析前不进行人工水深校正;

(3)定点GNSS三维水道测深精度分析:分别采用常规验潮测量方式和RTK无验潮方式进行定点测深,采集20‑30个有效数据;水位平稳时观测,试验RTK无验潮测量稳定性及观测精度,采用人为制造水面波动方式试验RTK无验潮测量对水面波动敏感程度,基于试验采集数据分析不同测深方式的测量误差;

(4)增益对测深精度影响分析:分别采用不同两测深仪以Auto、低、中、高四种不同增益测量,共采集8组数据,每组至少采集20个有效数据;基于试验采集数据分析不同型号测深仪在不同增益情况下测深精度;

(5)不同声速对测深精度影响分析:采用某一测深仪按照标准声速进行测深,数据后处理采用《水道观测规范》、《海道测量规范》声速计算公式以及声速剖面仪实测分层声速共3种不同分层声速进行水深改正,试验时至少采集20个有效数据;基于试验采集数据分析不同声速公式对测深精度的影响;

(6)调整声速对测深精度影响分析:用某一测深仪实测比侧板深度,当两者深度不一致时调整测深仪声速直至两者水深一致,此后固定此声速在基准点上进行测深精度试验,试验时至少采集20个有效数据;基于试验采集数据分析测深仪调整声速测深试验水深测量精度;(7)不同定位方式定位误差分析:用CORS、自主架设参考站的定位方式分别采用GGA、GGK定位数据分析不同定位方法的定位误差;

自主架设参考站时基准站选择一个平面等级不低于D级、高程不低于五等的已知控制点,采用陆上自制模拟船台、Hypack软件,定位采用Trimble R10、GNSS更新率10Hz,至少测量20组数据。

9.根据权利要求7所述的基准场的使用方法,其特征在于:

所述基于基准面的动态测深研究具体包括以下几个方面:

(1)单波束耦合效应测深精度分析:采用不同测深仪在基准面纵断面处,分单波束测深系统不集成与集成姿态传感器两种情况,分别采用三种不同的船速和不同的GNSS数据更新率进行组合试验,试验测深按1:500比例尺进行基准纵断面往返观测各一次,测点间距设置为5m,声速剖面仪在基准面处取声速剖面,基于试验采集数据进行姿态、定位中心偏差效应、单波束测深姿态效应、船速效应、波束角效应以及耦合效应对测深的影响研究;

(2)延时效应与位置水深同步算法分析:在斜坡基准面纵断面处,分单波束测深系统数据后处理延时改正与采用位置水深同步算法的测深仪分别进行基准纵断面水深测量,基于试验采集数据分析测深延迟效应和改正效果;

(3)测深采样频率对测深影响分析:在斜坡基准面纵断面处,采用固定增益、测深仪高频,波特率19200Hz,分别按不同的Ping Rate、1:500比例尺进行基准纵断面往返观测各一次,测点间距设置为5m,测量时采集姿态数据,船速4‑5节,数据分析时进行呯数据统计分析,即定标前后水深数据平均值与定标水深数据比较,基于试验采集数据分析测深采样频率对测深的影响;

(4)动态多波束测深精度分析:采用不同多波束测深系统在基准面纵断面处,采用常规测量的速度往返扫测各一次,基于试验采集数据进行多波束测深系统测深点云精度分析;

(5)GNSS三维水道测深精度分析:使用GNSS+单波束一体化测深系统分别在基准面纵断面处采用常规测量的速度,按1:500比例尺进行基准纵断面往返观测各一次,测点间距设置为5m,基于试验采集数据可分析GNSS三维水道测深精度。

说明书 :

一种大型水库测深基准场建设方法及用途

技术领域

[0001] 本发明属于水库测深技术领域,尤其是涉及一种大型水库测深基准场建设方法及用途。

背景技术

[0002] 当前测深面临的问题:
[0003] (1)水库蓄水后,测深环境对测深精度的影响趋于复杂。
[0004] 我国内陆水体深度测量平均工作水深一般都小于50m,对于大水深测量一般多见于海洋测量。由于作业环境不同(水深、水温、流场、波浪、盐度),精度要求各异,其观测的方式、遵循的指标不太适用于内陆水体。三峡及上游重要水库蓄水后,水深成倍增加,如长江三峡水利枢纽工程、金沙江溪洛渡水利枢纽工程蓄水运用后,坝前库段的水深与蓄水前的水深分别增加了120m、300m。同时,水体的流动性减小,上下层水体因交换不充分致水体出现水温分层现象,尤其是水库常年回水区的水体随季节变化的水温分层更为明显,溪洛渡坝前库段水体夏季表、底层水温相差了近10℃。会导致声速的变化并导致声线的折射,严重影响峡谷水库测深精度。
[0005] (2)水库蓄水后,大水深条件下常规测深仪测深精度受限。
[0006] 随着三峡及上游重要水库建成运用,水深较蓄水运用前大幅增加,大水深条件下常规测深仪精度受测船姿态、延时效应、波束角效应等综合影响显著,目前只有采用调减测船作业船速,三峡库区地形观测船速已经降低至4kn(2m/s),同时为了保证成果稳定性,一个断面要连续观测2次,最后取精度较好的数据,严重限制了作业效率。同时因测船姿态影响无法完全消除、测深与定位信号时间同步难、波束角效应难以改正等一系列问题,尤其是近岸坡度的倾角多在0~30°间,部分库段的倾角还超过了30°,特殊部位的边坡甚至达到了90°,波束角效应被进一步放大,因此目前大水深观测精度一直维持在1%相对水深以内,难以得到突破。
[0007] (3)大水深条件下高精度测深技术研究缺乏基准。
[0008] 水下地形观测精度研究最大的难题是水下地形在水流的作用下,是不断变化的,无法像岸上地形观测那样能有一个稳定的真值,能够作为测深技术研究的基准。所以现行的《水道观测规范》(SL257‑2017)对水下测深精度的评定是采用重复观测,并对重复观测的较差进行分析统计,因缺乏高精度且稳定的水下基准点(本底地形),因此属于相对精度的概念,难以对绝对精度进行观测与统计,进而给进一步分析影响测深精度的因素,为针对性的研究制造了障碍。

发明内容

[0009] 为了达到上述技术效果,本发明的目的是这样实现的:一种大型水库测深基准场建设方法,包括以下步骤:
[0010] 步骤1,基准场选址:为满足多种测深设备校准技术要求,需要布设多种形式的基准点和基准面;
[0011] 步骤2,基准点建设;
[0012] 步骤3,基准面建设。
[0013] 所述步骤1中基准点包括平坦水泥地面基准点和悬空空腔基准点;
[0014] 所述基准面包括平坦基准面、斜坡基准面和陡坡基准面。
[0015] 所述步骤2中基准点建设的具体过程为:
[0016] 步骤2.1,对于平坦水泥地面基准点,其建设过程为:在隔流堤下游方向转折处,并位于基准断面GL01和基准断面GL02之间选择一块正方形区域,使用五个水泥钉固定正方形区域的四个角点和中心点,并将水泥钉位置作为基准点,采用RTK方式测得基准点三维坐标,同时采用全站仪正倒镜方式测量基准点高程;
[0017] 步骤2.2,对于悬空空腔基准点,其建设过程为:在建设区域的顶部,选取两个基准点分别为基准点SJD1和基准点SJD2,单个基准点所在都位置都分别通过钢支架固定安装悬空横置管状声波反射器。
[0018] 所述悬空横置管状声波反射器采用直径为D的圆形无缝钢管,壁厚不低于3mm,圆形无缝钢管的两端采用相同厚度的圆形钢板满焊密封,并进行水密封性试验。
[0019] 所述钢支架采用钢管拼装焊接而成,所述钢支架的平面为正向行区域,在钢支架的四个顶角和中心点的位置固定有支撑脚,支撑脚的底端安装法兰盘,法兰盘通过膨胀螺丝固定在坑洞内部,在固定好支撑脚之后,将坑洞采用水泥填充密实;
[0020] 每个基准点都制作一个不锈钢铭牌,并固定在钢支架上。
[0021] 所述步骤2.2中,基准点SJD1和基准点SJD2建设完成之后,采用RTK方式精确测量钢支架标面的四个顶角和中心的平面位置,高程采用全站仪正倒镜方式施测,并采用四等水准的精度观测检核四个顶角间的高差及两个钢支架标面中心点的高差d,以检核测距三角高程观测精度,最后生成基准点SJD1和基准点SJD2的地形点位图。
[0022] 所述步骤3中基准面建设的具体过程为:
[0023] 步骤3.1,对于平坦基准面,其建设过程为:平坦基准面由三个基准断面组成一个平坦基准面,采用陆上测量方式施测基准断面,获得基准断面成果,具体包括以下步骤:
[0024] 步骤3.1.1,图根控制布设:所述平坦基准面共布设图根控制点六个,分别为GL01‑GL06,作为基准断面G01‑G03的断面断点,平面坐标均采用RTK方式测得,高程采用全站仪正倒镜方式施测;
[0025] 步骤3.1.2,基准断面测量:基准断面G01‑G03采用全站仪正倒镜方式施测,点距按5m控制;
[0026] 步骤3.2,对于斜坡基准面,其建设过程为:采用陆上测量方式、1:500比例尺施测斜坡基准面和基准断面,获得斜坡基准面局部地形图和基准断面成果,具体包括以下步骤:
[0027] 步骤3.2.1,图根控制布设:共布设图根控制点3个,分别为SW01、SW02、SW03,其平面坐标均采用RTK方式测得,SW01、SW02的高程通过四等水准往返测的方式自高程引据点HDQX03引测,SW03采用全站仪正倒镜方式测得;
[0028] 步骤3.2.2,基准断面测量:基准断面采用全站仪正倒镜方式施测,点距按5m控制;
[0029] 步骤3.2.3,基准面测量:采用全站仪正倒镜方式按1:500施测基准面局部地形;
[0030] 步骤3.3,对于陡坡基准面,其建设过程为:基准场由1处陡坡基准面和1个基准断面组成,采用陆上测量方式、1:500比例尺施测基准面和基准断面,获得基准面地形图和基准断面成果,具体包括以下步骤:
[0031] 步骤3.3.1,图根控制布设:基准面布设图根控制点3个,平面坐标用RTK方式测得,高程采用全站仪正倒镜方式测得;
[0032] 步骤3.3.2,基准面和基准断面测量:基准断面以及基准面地形点采用全站仪正倒镜方式测量三维坐标,最后获得断面的断面成果与陡坡基准面地形图。
[0033] 所述大型水库测深基准场建设方法所建设的基准场的使用方法,包括以下用法:
[0034] 第一,基于基准点的静态测深研究;
[0035] 第二,基于基准面的动态测深研究。
[0036] 所述基于基准点的静态测深研究具体包括以下几个方面:
[0037] (1)不同型号测深仪测深精度分析:分别采用不同型号、不同厂家生产的回声测深仪进行定点测深,每台仪器至少采集30个有效数据,基于试验采集数据分析不同型号测深仪的标称精度和实际测深精度;
[0038] (2)不同测深仪测深抗差分析:分别采用不同测深仪,船速不固定方式采集测深数据,进行四种不同方式的抗差分析;试验时预置计划线、系统加姿态传感器,测深仪Ping Rate选择Auto、固定增益、采用测深仪高频测深,有效数据至少采集60点,有效数据分析前不进行人工水深校正;
[0039] (3)定点GNSS三维水道测深精度分析:分别采用常规验潮测量方式和RTK无验潮方式进行定点测深,采集20‑30个有效数据;水位平稳时观测,试验RTK无验潮测量稳定性及观测精度,采用人为制造水面波动方式试验RTK无验潮测量对水面波动敏感程度,基于试验采集数据分析不同测深方式的测量误差;
[0040] (4)增益对测深精度影响分析:分别采用不同两测深仪以Auto、低、中、高四种不同增益测量,共采集8组数据,每组至少采集20个有效数据;基于试验采集数据分析不同型号测深仪在不同增益情况下测深精度;
[0041] (5)不同声速对测深精度影响分析:采用某一测深仪按照标准声速进行测深,数据后处理采用《水道观测规范》、《海道测量规范》声速计算公式以及声速剖面仪实测分层声速共3中不同分层声速进行水深改正,试验时至少采集20个有效数据;基于试验采集数据分析不同声速公式对测深精度的影响;
[0042] (6)调整声速对测深精度影响分析:用某一测深仪实测比侧板深度,当两者深度不一致时调整测深仪声速直至两者水深一致,此后固定此声速在基准点上进行测深精度试验,试验时至少采集20个有效数据;基于试验采集数据分析测深仪调整声速测深试验水深测量精度;
[0043] (7)不同定位方式定位误差分析:用CORS、自主架设参考站的定位方式分别采用GGA、GGK定位数据分析不同定位方法的定位误差;
[0044] 自主架设参考站时基准站选择一个平面等级不低于D级、高程不低于五等的已知控制点,采用陆上自制模拟船台、Hypack软件,定位采用Trimble R10、GNSS更新率10Hz,至少测量20组数据。
[0045] 所述基于基准面的动态测深研究具体包括以下几个方面:
[0046] (1)单波束耦合效应测深精度分析:采用不同测深仪在基准面纵断面处,分单波束测深系统不集成与集成姿态传感器两种情况,分别采用三种不同的船速和不同的GNSS数据更新率进行组合试验,试验测深按1:500比例尺进行基准纵断面往返观测各一次,测点间距设置为5m,声速剖面仪在基准面处取声速剖面,基于试验采集数据进行姿态、定位中心偏差效应、单波束测深姿态效应、船速效应、波束角效应以及耦合效应对测深的影响研究;
[0047] (2)延时效应与位置水深同步算法分析:在斜坡基准面纵断面处,分单波束测深系统数据后处理延时改正与采用位置水深同步算法的测深仪分别进行基准纵断面水深测量,基于试验采集数据分析测深延迟效应和改正效果;
[0048] (3)测深采样频率对测深影响分析:在斜坡基准面纵断面处,采用固定增益、测深仪高频,波特率19200Hz,分别按不同的Ping Rate、1:500比例尺进行基准纵断面往返观测各一次,测点间距设置为5m,测量时采集姿态数据,船速4‑5节,数据分析时进行呯数据统计分析,即定标前后水深数据平均值与定标水深数据比较,基于试验采集数据分析测深采样频率对测深的影响;
[0049] (4)动态多波束测深精度分析:采用不同多波束测深系统在基准面纵断面处,采用常规测量的速度往返扫测各一次,基于试验采集数据进行多波束测深系统测深点云精度分析。
[0050] (5)GNSS三维水道测深精度分析:使用GNSS+单波束一体化测深系统分别在基准面纵断面处采用常规测量的速度,按1:500比例尺进行基准纵断面往返观测各一次,测点间距设置为5m,基于试验采集数据可分析GNSS三维水道测深精度。
[0051] 本发明有如下有益效果:
[0052] 1、提供精密测深基准。
[0053] 大水深的高精度测深一直是国内外的技术难题,随着三峡及上游大型水库蓄水运用,其最大水深超过200m,大水深导致的水温分层现象、测船的姿态、动吃水变化、测深仪波束角效应、测深延时及涌浪效应等对大水深测深的精度均有不同程度影响,非常复杂,更为重要的是由于水下地形受水流的影响不断处于变化之中,难以找到稳定的“真值”作为基准来评定精度。
[0054] 基准场的建设在水库消落期进行,包括选址、基建、平面位置及高程测量,最为关键的是基准场的测量采用的是高精度的陆上地形测量方式,彻底避开了复杂的水流环境、地形影响因素、回声测深仪测深精度影响因素、动态条件下定位精度影响因素等一系列测深影响因素,基准点、基准面真真切切看得见,摸得着,采用的观测仪器无论是平面定位还是高程测量都比水下测量方式精度高,观测结果可靠,可以作为水下地形测量的“真值”。
[0055] 2、为三峡及上游大型水库泥沙冲淤观测控制指标研究提供基础。
[0056] 随着三峡及上游大型水库蓄水运用,水深大幅增加,泥沙大幅减少,水沙关系、冲淤特性也随之改变。以往由于测次间泥沙冲淤量较大,采用现行的冲淤观测控制指标即可有效揭示其冲淤变化的情况。现在由于观测条件、观测要求的不断提升,如何进一步优化水库泥沙冲淤观测的观测布局、观测技术、精度控制等指标,从而更好地为水库泥沙冲淤积观测服务也是目前面临的一个重大问题,解决这一问题的关键在于利用已经完成建设的基准场研究清楚精密测深影响因素,并对影响因素进行改正或者削弱,在这一过程中逐步总结出峡谷水库冲淤观测的最佳时机、选用的最佳测深技术和方法,优化出适用于三峡库区的精度控制指标。

附图说明

[0057] 下面结合附图和实施例对本发明作进一步说明。
[0058] 图1是本发明实施例中三峡水库高精度基准点和基准面布设位置图。
[0059] 图2是本发明实施例中隔流堤基准点点位图。
[0060] 图3是本发明实施例中悬空空腔基准点结构图。
[0061] 图4是本发明实施例中基准点铭牌样式。
[0062] 图5是本发明实施例中靖江溪口基准点布设图。
[0063] 图6本发明实施例中隔流堤顶基准面点位图。
[0064] 图7本发明实施例中沙湾基准面剖面图。
[0065] 图8本发明实施例中伍相庙基准场局部地形图。
[0066] 图9本发明实施例中伍相庙基准面剖面图。

具体实施方式

[0067] 下面结合附图对本发明的实施方式做进一步的说明。
[0068] 实施例1:
[0069] 本实施例以三峡水库基准场的建设为例,对本发明的具体实施过程进行说明。
[0070] 一种大型水库测深基准场建设方法,包括以下步骤:
[0071] 三峡水库高精度水下基准场由基准点和基准面组成,分别位于三峡上游隔流堤顶、沙湾(三峡海事处)、伍相庙(航道水尺)和靖江溪口,见图1。在汛限水位(145m)时进行建设,并采用陆上测量方式开展145‑175m区段高精度库岸地形、断面测量和基准点观测,从而形成高精度、高分辨率的本底地形及成体系的水下基准值。蓄水后,开展相关测深误差研究。
[0072] 步骤1,基准场选址:为满足多种测深设备校准技术需要,三峡库区基准场布设了多种形式的基准点和基准面;基准点包括平坦水泥地面基准点和悬空空腔基准点,基准面包括平坦基准面、斜坡基准面和陡坡基准面。
[0073] (1)基准点
[0074] ①平坦水泥地面基准点布设在三峡大坝上游隔流堤顶,在隔流堤顶平坦水泥地面布设一个5*5m正方形基准点。
[0075] ②悬空空腔基准点布设在靖江溪口口门小岛顶部,通过埋设钢制管状声波增强型反射器方式布设3*3m基准点两个。
[0076] (2)基准面
[0077] ①平坦基准面选在三峡大坝上游隔流堤顶,隔流堤顶平坦水泥地面布设3个基准断面。
[0078] ②斜坡基准面选在沙湾(三峡海事处),沿下河路布设1个基准断面,地面材质为水泥地,总体坡度约5.69°。
[0079] ③陡坡基准面选在伍相庙(航行水尺),沿护坡面布设1个基准断面,地面材质主要为水泥地,总体坡度约40°。
[0080] 步骤2,基准点建设:
[0081] 步骤2.1,平坦水泥地面基准点建设
[0082] 隔流堤基准点位于隔流堤下游方向转折处,在基准断面GL01与GL02之间选择5*5m的正方形区域,使用5个水泥钉固定基准点四角点和中心点位置,采用RTK方式测得其三维坐标,同时采用全站仪正倒镜方式测量特征点高程。具体见隔流堤基准点点位图2。
[0083] 步骤2.2,对于靖江溪口悬空空腔基准点建设
[0084] (1)靖江溪口基准点建在靖江溪口外江中小岛顶部,由2个基准点(SJD1与SJD2)构成。单个基准点由多组悬空横置管状声波反射器(以下简称“反射器”)与钢支架组成,样式见图3。
[0085] (2)反射器采用直径为10cm的圆形无缝钢管,壁厚不低于3mm,用相同厚度的截面形状钢板满焊密封反射器两端,并进行水密封性试验。并组装成长宽为3*3m的标面。
[0086] (3)钢支架使用壁厚为5mm,直径10cm的钢管制作,两端不用密封。在钢管一端焊接法兰盘。在岩石上开挖出深度大于30cm的坑洞,在坑洞底部钻孔并打入膨胀螺丝,连接法兰盘后将螺帽焊死。最后用水泥将坑洞填充密实。
[0087] (4)每个基准点制作一个不锈钢铭牌,写上点名,样式见图4。并设置“测量标志、严禁损坏”的警示牌,焊接于醒目处。
[0088] (5)采用RTK方式精确测量标面四个角点及标志中心的平面位置,高程采用全站仪正倒镜方式施测。并采用四等水准的精度观测检核四个角点间的高差及两个标面中心点的高差,以检核测距三角高程观测精度,最后生成三峡基1、三峡基2地形点位图。参见图5靖江溪口基准点布设图。
[0089] 步骤3,基准面建设:
[0090] 步骤3.1,对于平坦基准面,即隔流堤顶基准面建设
[0091] 隔流堤基准面由3个基准断面组成1个平坦基准面。采用陆上测量方式施测基准断面,获得基准断面成果。参见图6隔流堤顶基准面点位图。
[0092] (1)图根控制布设:隔流堤基准面共布设图根控制点6个,分别为GL01‑GL06,作为基准断面G01‑G03的断面断点。平面坐标均采用RTK方式测得,高程采用全站仪正倒镜方式施测。
[0093] (2)基准断面测量:基准断面G01‑G03采用全站仪正倒镜方式施测,点距按5m控制。
[0094] 步骤3.2,对于斜坡基准面,即沙湾基准面建设
[0095] 沙湾基准面由1处斜坡基准面和1个基准断面组成。采用陆上测量方式、1:500比例尺施测基准面和基准断面,获得基准面局部地形图和基准断面成果。
[0096] (1)图根控制布设:沙湾基准面共布设图根控制点3个,分别为SW01、SW02、SW03,其平面坐标均采用RTK方式测得,SW01、SW02的高程通过四等水准往返测的方式自高程引据点HDQX03引测。SW03采用全站仪正倒镜方式测得。
[0097] (2)基准断面测量:基准断面SW01(断面端点SW01、SW03),采用全站仪正倒镜方式施测,点距按5m控制。
[0098] (3)基准面测量:采用全站仪正倒镜方式按1:500施测基准面局部地形。
[0099] 沙湾斜坡基准面高程观测范围涵盖146‑177m区间,总体坡度5.69°,见图7,观测大比例中线纵断面(1:500)及5m×5m格网地形。
[0100] 步骤3.3,对于陡坡基准面,即伍相庙基准面建设
[0101] 伍相庙(航道水尺)基准场由1处陡坡基准面和1个基准断面组成。采用陆上测量方式、1:500比例尺施测基准面和基准断面,获得基准面地形图和基准断面成果。
[0102] (1)图根控制布设:伍相庙基准面布设图根控制点3个,分别为伍相庙水位站校20、伍相庙水位站校21、WS01,平面坐标用RTK方式测得,伍相庙水位站校20、伍相庙水位站校21高程已知,等级为三等,WS01高程采用全站仪正倒镜方式测得。
[0103] (2)基准面和基准断面测量:基准断面WX01(断面端点WX01L1与WX01L2)以及基准面地形点采用全站仪正倒镜方式测量三维坐标,最后获得WX01断面的断面成果与伍相庙陡坡基准面地形图,见图8。
[0104] 伍相庙(航道水尺)陡坡基准面高程观测范围涵盖146‑177m区间,坡度约40°,见图7,观测大比例基准断面(1:500)及5m×5m基准面地形。
[0105] 实施例2:
[0106] 基准场的用途:
[0107] 汛后库区水位蓄水至175m后,利用已建设完成的基准点、基准面可进行测深试验及分析。基于测深基准点可以进行测深误差、定位误差、水位改正误差研究,包括测深仪标称精度、测深方式、测深实际深度、动吃水影响;定位精度、GNSS数据更新率、差分方法影响等;水位推算模型等影响。基于测深基准面可以进行测深环境误差研究及GNSS三维水道测深精度研究,包括波浪效应,定位中心偏差效应、单波束测深姿态效应、测深延迟效应、船速效应、波束角效应、耦合效应、水体特性、测深采样频率及平滑方式、声线跟踪以及多波束测深系统测深点云精度分析等影响研究。
[0108] 基于试验场的测深试验研究及分析,总结大水深测深技术,提升大水深条件下的库区水深观测精度及可靠性,并提出适用于三峡及上游大型水库大水深测量的成套观测技术与精度控制指标。
[0109] 第一:基于基准点的静态测深研究
[0110] (1)不同型号测深仪测深精度分析:分别采用不同型号、不同厂家生产的回声测深仪进行定点测深,每台仪器至少采集30个有效数据,基于试验采集数据可分析不同型号测深仪的标称精度和实际测深精度。
[0111] (2)不同测深仪测深抗差分析:分别采用不同测深仪,船速不固定方式采集测深数据可进行不同方式(四种模型)抗差分析。
[0112] 试验时预置计划线、系统加姿态传感器,测深仪Ping Rate选择Auto、固定增益、采用测深仪高频测深。有效数据至少采集60点,有效数据分析前不进行人工水深校正。
[0113] (3)定点GNSS三维水道测深精度分析:分别采用常规验潮测量方式和RTK无验潮方式(利用七参数转换模型)进行定点测深,采集20‑30个有效数据。水位平稳时观测,试验RTK无验潮测量稳定性及观测精度,采用人为制造水面波动方式试验RTK无验潮测量对水面波动敏感程度,基于试验采集数据可分析不同测深方式(常规验潮、RTK无验潮)的测量误差。
[0114] (4)增益对测深精度影响分析:分别采用不同2测深仪以Auto、低、中、高四种不同增益测量,共采集8组数据,每组至少采集20个有效数据。基于试验采集数据可分析不同型号测深仪在不同增益情况下测深精度。
[0115] (5)不同声速对测深精度影响分析:采用某一测深仪按照标准声速(1460m/s)进行测深,数据后处理采用《水道观测规范》、《海道测量规范》声速计算公式以及声速剖面仪实测分层声速共3中不同分层声速进行水深改正,试验时至少采集20个有效数据。基于试验采集数据可分析不同声速公式对测深精度的影响。
[0116] (6)调整声速对测深精度影响分析:用某一测深仪实测比侧板深度,当两者深度不一致时调整测深仪声速直至两者水深一致,此后固定此声速在基准点上进行测深精度试验,试验时至少采集20个有效数据。基于试验采集数据可分析测深仪调整声速测深试验水深测量精度。
[0117] (7)不同定位方式定位误差分析:用CORS、自主架设参考站的定位方式分别采用GGA、GGK定位数据分析不同定位方法的定位误差。
[0118] 自主架设参考站时基准站选择一个平面等级不低于D级、高程不低于五等的已知控制点。采用陆上自制模拟船台、Hypack软件,定位采用Trimble R10、GNSS更新率10Hz,至少测量20组数据。
[0119] 第二:基于基准面的动态测深研究
[0120] (1)单波束耦合效应测深精度分析:采用不同测深仪在基准面纵断面处,分单波束测深系统不集成与集成姿态传感器两种情况(外部集成姿态传感器或内部集成姿态传感器),分别采用三种不同的船速(低(2节)、中(4节)、高(6节))和不同的GNSS数据更新率(5Hz、10Hz和20Hz)进行组合试验,测量组合方式见表1,试验测深按1:500比例尺进行基准纵断面往返观测各一次,测点间距设置为5m,声速剖面仪在基准面处取声速剖面。基于试验采集数据可进行姿态、定位中心偏差效应、单波束测深姿态效应、船速效应、波束角效应以及耦合效应对测深的影响研究。
[0121] 表1单波束基准面动态测量组合方式
[0122]
[0123]
[0124] 注:外业测量时测深系统全部内部或者外部姿态传感器均同步采集数据,内业数据处理时采用有姿态传感器数据、无姿态传感器数据分别分析。
[0125] (2)延时效应与位置水深同步算法分析:在斜坡基准面纵断面处,分单波束测深系统数据后处理延时改正与采用位置水深同步算法的测深仪分别进行基准纵断面水深测量,基于试验采集数据分析测深延迟效应和改正效果。
[0126] (3)测深采样频率对测深影响分析:在斜坡基准面纵断面处,采用固定增益、测深仪高频,波特率19200Hz,分别按不同的Ping Rate(Auto、1呯、10呯和20呯)、1:500比例尺进行基准纵断面往返观测各一次,测点间距设置为5m,测量时采集姿态数据,船速4‑5节,数据分析时进行呯数据统计分析,即定标前后水深数据平均值与定标水深数据比较。基于试验采集数据可分析测深采样频率对测深的影响。
[0127] (4)动态多波束测深精度分析:采用不同多波束测深系统在基准面纵断面处,采用常规测量的速度(5节左右)往返扫测各一次,基于试验采集数据可进行多波束测深系统测深点云精度分析。
[0128] (5)GNSS三维水道测深精度分析:使用GNSS+单波束一体化测深系统分别在基准面纵断面处采用常规测量的速度(不超过4节),按1:500比例尺进行基准纵断面往返观测各一次,测点间距设置为5m。基于试验采集数据可分析GNSS三维水道测深精度。