一种具备多条带模式的深水多波束测深方法及系统转让专利

申请号 : CN202110235846.3

文献号 : CN113108778B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王舒文曹金亮刘晓东赵海肖吴明明

申请人 : 中国科学院声学研究所

摘要 :

本发明公开了一种具备多条带模式的深水多波束测深方法及系统,该方法基于安装在船底的换能器阵、惯性导航单元和GNSS接收机实现,所述换能器阵为T形阵,包括二维平面发射阵和一维平面接收阵;该方法包括:计算发射条带数目;根据设定的覆盖模式,计算每个发射条带的发射角度;根据每个发射条带的发射角度和垂直航行方向的发射角度确定发射波束方向矢量,再基于全姿态发射波束稳定算法,得到各发射基元的发射延时;采用频分复用和时分复用结合的形式,控制发射条带的每个扇区以设定频率循环发射,且每个发射基元根据发射延时按预定时间发射;由接收阵接收定向发射波束;进行接收横摇稳定的波束形成,按条带进行组合,计算得到测深结果。

权利要求 :

1.一种具备多条带模式的深水多波束测深方法,基于安装在船底的换能器阵、惯性导航单元和GNSS接收机实现,所述换能器阵为T形阵,包括二维平面发射阵和一维平面接收阵;所述方法包括:根据待发射的波束角宽、换能器阵的航行速度和测深条带覆盖宽度计算得到发射条带数目;

根据设定的覆盖模式,由发射条带数目计算得到每个发射条带的发射角度;

根据每个发射条带的发射角度和垂直航行方向的发射角度确定发射波束方向矢量,再基于全姿态发射波束稳定算法,得到发射阵各发射基元的发射延时;

根据发射条带数目和每个发射条带设定的扇区数目,采用频分复用和时分复用相结合的形式,发射阵按照发射条带的每个扇区以设定频率循环发射波束,并且每个发射基元根据发射延时按预定时间发射;

由接收阵接收定向发射波束;

通过滤波获得各发射条带各扇区对应的接收信号,进行接收横摇稳定的波束形成,将各波束数据按条带进行组合,按条带循环进行测深、水体和侧扫的计算,得到测深结果;

设船底的龙骨方向为X方向,垂直于龙骨方向为Y方向,所述二维平面发射阵的长轴沿龙骨方向安装于船底,二维平面发射阵X和Y方向上的基元个数分别为M和N,基元间隔分别为dx和dy;

所述一维平面接收阵为均匀线阵,垂直于龙骨方向安装于船底,接收阵的基元个数为K,基元间隔为dk;

所述根据设定的覆盖模式,由发射条带数目计算得到每个发射条带的发射角度;具体为:所述设定的覆盖模式包括固定角度覆盖、等角覆盖和等距覆盖;

当覆盖模式为固定角度覆盖时,各个条带的发射角度p为固定角度值;

当覆盖模式为等角覆盖时,根据水深D,换能器阵的航行速度v,双侧覆盖宽度为n倍水深,发射条带数目N,由下式得到等角覆盖模式下各个条带的发射角度p为:当覆盖模式为等距覆盖时,由下式得到等距覆盖模式下各个条带的发射角度p为:其中,t为一次发射和接收所需时间,

所述根据每个发射条带的发射角度和垂直航行方向的发射角度确定发射波束方向矢量,再基于全姿态发射波束稳定算法,得到发射阵各发射基元的发射延时;具体为:根据本地地理坐标系下各个发射条带的发射角度p,设向前发射为正,垂直航行方向的发射角度为β,设向右舷发射为正,由下式得到本地地理坐标系下发射波束方向矢量 为:发射阵在载体坐标系下X和Y方向单位矢量分别为 和 X和Y方向上的基元个数分别为M和N,发射时刻船艏方向为H,船艏稳定方向为H′,艏摇α=H‑H′,纵倾P,横摇R,则X方向上的相控角θx为:Y方向上的相控角θy为:

其中,Γ′为坐标旋转矩阵:

由下式得到发射基元Pm,n,1≤m≤M,1≤n≤N相对于参考点的延时τm,n为:其中,c为声速。

2.根据权利要求1所述的具备多条带模式的深水多波束测深方法,其特征在于,所述根据待发射的波束角宽、换能器阵的航行速度和测深条带覆盖宽度计算得到发射条带数目;

具体为:

设置惯性导航单元所在位置为载体坐标系的坐标原点(0,0,0);

测量GNSS接收机相对于惯性导航单元的三方向垂直距离,得到载体坐标系下GNSS接收机坐标(xb_G‑Ins,yb_G‑Ins,zb_G‑Ins),其中,下标b表示载体坐标系,下标G‑Ins表示GNSS接收机相对于惯性导航单元;

测量换能器阵中心相对于惯性导航单元的三方向垂直距离,得到载体坐标系下换能器阵中心坐标(xb_A‑Ins,yb_A‑Ins,zb_A‑Ins),其中,下标A‑Ins表示换能器阵中心相对于惯性导航单元;

根据航行过程中t时刻GNSS接收机获得的其自身实际位置数据(xG,yG,zG),结合船舶艏向H,纵倾P,横摇R,根据下式得到t时刻换能器阵中心实际位置(xA,yA,zA)为:其中,Γ为坐标旋转矩阵

由此得到t1时刻换能器阵位置(xA(t1),yA(t1),zA),t2时刻换能器阵位置(xA(t2),yA(t2),zA),进而计算换能器阵前行速度v为:根据发射波束角宽θ,声速c,一个测深条带双侧覆盖宽度为n倍水深,得到所需发射条带数目N为:

3.根据权利要求1所述的具备多条带模式的深水多波束测深方法,其特征在于,所述根据发射条带数目和每个发射条带设定的扇区数目,采用频分复用和时分复用相结合的形式,发射阵按照发射条带的每个扇区以设定频率循环发射波束,并且每个发射基元根据发射延时按预定时间发射;具体为:设定每个发射条带的扇区数目大于等于2;

在换能器阵总频率带宽范围内,设置多个频点不同的窄带信号,每个频点的窄带信号对应一个发射扇区;

根据发射条带数目和每个发射条带设定的扇区数目,每个发射基元根据发射延时按预定时间发射对应的窄带信号。

4.根据权利要求1所述的具备多条带模式的深水多波束测深方法,其特征在于,所述按条带循环进行测深、水体和侧扫的计算,得到测深结果;具体为:通过滤波将各条带各扇区信号提取出来,分别进行基于横摇稳定策略的接收波束形成;

将波束形成结果按条带组合,同一条带内各发射扇区信号时间对齐;

按条带循环,以常规幅度法或相位法计算测深结果;

采用常规水体与侧扫计算方法进行水体与侧扫成像。

5.一种具备多条带模式的深水多波束测深系统,其特征在于,所述系统包括:发射条带数目计算模块、发射角度计算模块、发射延时计算模块、发射阵设置模块、测深结果计算模块,以及安装在船底的换能器阵、惯性导航单元和GNSS接收机;其中,所述发射条带数目计算模块,用于根据待发射的波束角宽、换能器阵的航行速度和测深条带覆盖宽度计算得到发射条带数目;

所述发射角度计算模块,用于根据设定的覆盖模式,由发射条带数目计算得到每个发射条带的发射角度;

所述发射延时计算模块,用于根据每个发射条带的发射角度和垂直航行方向的发射角度确定发射波束方向矢量,再基于全姿态发射波束稳定算法,得到发射阵各发射基元的发射延时;

所述发射阵设置模块,用于根据发射条带数目和每个发射条带设定的扇区数目,控制发射阵按照发射条带的每个扇区以设定频率循环发射波束,并且每个发射基元根据发射延时按预定时间发射;

所述测深结果计算模块,用于通过滤波获得各发射条带各扇区对应的接收信号,进行接收横摇稳定的波束形成,将各波束数据按条带进行组合,按条带循环进行测深、水体和侧扫的计算,得到测深结果;

所述换能器阵为T形阵,包括二维平面发射阵和一维平面接收阵;

设船底的龙骨方向为X方向,垂直于龙骨方向为Y方向,所述二维平面发射阵的长轴沿龙骨方向安装于船底,二维平面发射阵X和Y方向上的基元个数分别为M和N,基元间隔分别为dx和dy;

所述一维平面接收阵为均匀线阵,垂直于龙骨方向安装于船底,接收阵的基元个数为K,基元间隔为dk;

所述发射角度计算模块的处理过程具体包括:

所述设定的覆盖模式包括固定角度覆盖、等角覆盖和等距覆盖;

当覆盖模式为固定角度覆盖时,各个条带的发射角度p为固定角度值;

当覆盖模式为等角覆盖时,根据水深D,换能器阵的航行速度v,双侧覆盖宽度为n倍水深,发射条带数目N,由下式得到等角覆盖模式下各个条带的发射角度p为:当覆盖模式为等距覆盖时,由下式得到等距覆盖模式下各个条带的发射角度p为:其中,t为一次发射和接收所需时间,

所述发射延时计算模块的处理过程具体包括:

根据本地地理坐标系下各个发射条带的发射角度p,设向前发射为正,垂直航行方向的发射角度为β,设向右舷发射为正,由下式得到本地地理坐标系下发射波束方向矢量 为:发射阵在载体坐标系下X和Y方向单位矢量分别为 和 X和Y方向上的基元个数分别为M和N,发射时刻船艏方向为H,船艏稳定方向为H′,艏摇α=H‑H′,纵倾P,横摇R,则X方向上的相控角θx为:Y方向上的相控角θy为:

其中,Γ′为坐标旋转矩阵:

由下式得到发射基元Pm,n,1≤m≤M,1≤n≤N相对于参考点的延时τm,n为:其中,c为声速。

说明书 :

一种具备多条带模式的深水多波束测深方法及系统

技术领域

[0001] 本发明涉及海洋声学装备技术,特别涉及一种具备多条带模式的深水多波束测深方法及系统。

背景技术

[0002] 水深探测是开展海洋研究、海洋调查、海洋测绘和海洋工程的最基础工作。基于多波束测深技术的船载深水多波束测深系统最大探测水深可达11000米,是目前既高效又准确的水深探测设备。深水多波束测深系统通常采用T形水下声纳阵,其中发射阵沿船龙骨方向布放,接收阵垂直于龙骨方向布放。系统工作时基于波束形成技术形成一个沿龙骨方向波束开角较窄、垂直于龙骨方向波束开角较宽的发射波束条带,与若干个沿龙骨方向较宽、垂直于龙骨方向较窄的接收波束条带。通过幅值法或分裂孔径相位过零法估计发射条带与各个接收条带重合区域(即波束脚印) 的回波到达时间,再结合声速、姿态、定位等传感器信息可以计算得到各个区域中心的深度值与位置。一次发射与接收过程获得的多个测深值形成一个垂直于航迹方向的测深条带,沿航迹方向连续发射条带则实现了全覆盖的海底测深目的。
[0003] 随着技术水平进步,多波束产品经历了波束数目由少至多、覆盖宽度由窄至广、波束角宽由宽至窄、集成度由低至高、数据由后处理到实时处理、算法由基本方法到实时姿态稳定、近场自动聚焦、宽带技术等多种技术相结合的一系列发展历程,而如何进一步提升多波束测深系统探测效率、探测精度等问题则始终是多波束测深系统发展的主要方向。

发明内容

[0004] 本发明的目的在于克服现有技术缺陷,提升现有多波束技术,提出了一种具备多条带模式的深水多波束测深方法及系统。
[0005] 为了实现上述目的,本发明提出了一种具备多条带模式的深水多波束测深方法,基于安装在船底的换能器阵、惯性导航单元和GNSS接收机实现,所述换能器阵为T 形阵,包括二维平面发射阵和一维平面接收阵;所述方法包括:
[0006] 根据待发射的波束角宽、换能器阵的航行速度和测深条带覆盖宽度计算得到发射条带数目;
[0007] 根据设定的覆盖模式,由发射条带数目计算得到每个发射条带的发射角度;
[0008] 根据每个发射条带的发射角度和垂直航行方向的发射角度确定发射波束方向矢量,再基于全姿态发射波束稳定算法,得到发射阵各发射基元的发射延时;
[0009] 根据发射条带数目和每个发射条带设定的扇区数目,采用频分复用和时分复用相结合的形式,发射阵按照发射条带的每个扇区以设定频率循环发射波束,并且每个发射基元根据发射延时按预定时间发射;
[0010] 由接收阵接收定向发射波束;
[0011] 通过滤波获得各发射条带各扇区对应的接收信号,进行接收横摇稳定的波束形成,将各波束数据按条带进行组合,按条带循环进行测深、水体和侧扫的计算,得到测深结果。
[0012] 作为上述方法的一种改进,设船底的龙骨方向为X方向,垂直于龙骨方向为Y 方向,所述二维平面发射阵的长轴沿龙骨方向安装于船底,二维平面发射阵X和Y 方向上的基元个数分别为M和N,基元间隔分别为dx和dy;
[0013] 所述一维平面接收阵为均匀线阵,垂直于龙骨方向安装于船底,接收阵的基元个数为K,基元间隔为dk。
[0014] 作为上述方法的一种改进,所述待发射的波束角宽、换能器阵的航行速度和测深条带覆盖宽度计算得到发射条带数目;具体为:
[0015] 设置惯性导航单元所在位置为载体坐标系的坐标原点(0,0,0);
[0016] 测量GNSS接收机相对于惯性导航单元的三方向垂直距离,得到载体坐标系下 GNSS接收机坐标(xb_G‑Ins,yb_G‑Ins,zb_G‑Ins),其中,下标b表示载体坐标系,下标G‑Ins表示GNSS接收机相对于惯性导航单元;
[0017] 测量换能器阵中心相对于惯性导航单元的三方向垂直距离,得到载体坐标系下换能器阵中心坐标(xb_A‑Ins,yb_A‑Ins,zb_A‑Ins),其中,下标A‑Ins表示换能器阵中心相对于惯性导航单元;
[0018] 根据航行过程中t时刻GNSS接收机获得的其自身实际位置数据(xG,yG,zG),结合船舶艏向H,纵倾P,横摇R,根据下式得到t时刻换能器阵中心实际位置(xA,yA,zA)为:
[0019]
[0020] 其中,Γ为坐标旋转矩阵
[0021]
[0022] 由此得到t1时刻换能器阵位置(xA(t1),yA(t1),zA),t2时刻换能器阵位置 (xA(t2),yA(t2),zA),进而计算换能器阵前行速度v为:
[0023]
[0024] 根据发射波束角宽θ,声速c,一个测深条带双侧覆盖宽度为n倍水深,得到所需发射条带数目N为:
[0025]
[0026] 作为上述方法的一种改进,所述根据设定的覆盖模式,由发射条带数目计算得到每个条带的发射角度;具体为:
[0027] 所述设定的覆盖模式包括固定角度覆盖、等角覆盖和等距覆盖;
[0028] 当覆盖模式为固定角度覆盖时,各个条带的发射角度p为固定角度值;
[0029] 当覆盖模式为等角覆盖时,根据水深D,换能器阵的航行速度v,双侧覆盖宽度为n倍水深,发射条带数目N,由下式得到等角覆盖模式下各个条带的发射角度p为:
[0030]
[0031] 当覆盖模式为等距覆盖时,由下式得到等距覆盖模式下各个条带的发射角度p 为:
[0032]
[0033] 其中,t为一次发射和接收所需时间,
[0034] 作为上述方法的一种改进,所述根据每个发射条带的发射角度和垂直航行方向的发射角度确定发射波束方向矢量,再基于全姿态发射波束稳定算法,得到发射阵各发射基元的发射延时;具体为:
[0035] 根据本地地理坐标系下各个发射条带的发射角度p,设向前发射为正,垂直航行方向的发射角度为β,设向右舷发射为正,由下式得到本地地理坐标系下发射波束方向矢量为:
[0036]
[0037] 发射阵在载体坐标系下X和Y方向单位矢量分别为 和 X和Y方向上的基元个数分别为M和N,发射时刻船艏方向为H,船艏稳定方向为H′,艏摇α=H‑H′,纵倾P,横摇R,则X方向上的相控角θx为:
[0038]
[0039] Y方向上的相控角θy为:
[0040]
[0041] 其中,Γ′为坐标旋转矩阵:
[0042]
[0043] 由下式得到发射基元Pm,n,1≤m≤M,1≤n≤N相对于参考点的延时τm,n为:
[0044]
[0045] 其中,c为声速。
[0046] 作为上述方法的一种改进,所述根据发射条带数目和每个发射条带设定的扇区数目,采用频分复用和时分复用相结合的形式,发射阵按照发射条带的每个扇区以设定频率循环发射波束,并且每个发射基元根据发射延时按预定时间发射;具体为:
[0047] 设定每个发射条带的扇区数目大于等于2;
[0048] 在换能器阵总频率带宽范围内,设置多个频点不同的窄带信号,每个频点的窄带信号对应一个发射扇区;
[0049] 根据发射条带数目和每个发射条带设定的扇区数目,每个发射基元根据发射延时按预定时间发射对应的窄带信号。
[0050] 作为上述方法的一种改进,所述按条带循环进行测深、水体和侧扫的计算,得到测深结果;具体为:
[0051] 通过滤波将各条带各扇区信号提取出来,分别进行基于横摇稳定策略的接收波束形成;
[0052] 将波束形成结果按条带组合,同一条带内各发射扇区信号时间对齐;
[0053] 按条带循环,以常规幅度法或相位法计算测深结果;
[0054] 采用常规水体与侧扫计算方法进行水体与侧扫成像。
[0055] 一种具备多条带模式的深水多波束测深系统,所述系统包括:发射条带数目计算模块、发射角度计算模块、发射延时计算模块、发射阵设置模块、测深结果计算模块,以及安装在船底的换能器阵、惯性导航单元和GNSS接收机;其中,
[0056] 所述发射条带数目计算模块,用于根据待发射的波束角宽、换能器阵的航行速度和测深条带覆盖宽度计算得到发射条带数目;
[0057] 所述发射角度计算模块,用于根据设定的覆盖模式,由发射条带数目计算得到每个发射条带的发射角度;
[0058] 所述发射延时计算模块,用于根据每个发射条带的发射角度和垂直航行方向的发射角度确定发射波束方向矢量,再基于全姿态发射波束稳定算法,得到发射阵各发射基元的发射延时;
[0059] 所述发射阵设置模块,用于根据发射条带数目和每个发射条带设定的扇区数目,控制发射阵按照发射条带的每个扇区以设定频率循环发射波束,并且每个发射基元根据发射延时按预定时间发射;
[0060] 所述测深结果计算模块,用于通过滤波获得各发射条带各扇区对应的接收信号,进行接收横摇稳定的波束形成,将各波束数据按条带进行组合,按条带循环进行测深、水体和侧扫的计算,得到测深结果;
[0061] 所述换能器阵为T形阵,包括二维平面发射阵和一维平面接收阵。
[0062] 与现有技术相比,本发明的优势在于:
[0063] 本发明是在国内深水多波束测深系统基础上,设计并实现多条带测深方法,最终形成具备多条带模式的国产深水多波束测深系统,从而提升系统的工作效率和成图分辨率。多条带技术是国产深水多波束测深系统的核心技术之一。

附图说明

[0064] 图1是本发明具备多条带模式的深水多波束测深系统框图;
[0065] 图2(a)是本发明的多波束多条带模式正交方向示意图;
[0066] 图2(b)是本发明的多波束多条带模式沿航迹方向示意图;
[0067] 图3是本发明的分频分时发射信号示意图;
[0068] 图4是一个发射条带中一个扇区的发射波束示意图;
[0069] 图5是以双条带发射模式为例的发射时序示意图;
[0070] 图6是多条带接收信号处理框图。

具体实施方式

[0071] 本发明是在国内深水多波束测深系统基础上,设计并实现多条带测深方法,最终形成具备多条带模式的国产深水多波束测深系统,从而提升系统的工作效率和成图分辨率。
[0072] 本发明提供了一种具有多条带模式的深水多波束测深方法与系统,主要包括发射条带数目计算、发射条带角度计算、发射信号设计、多条带发射信号处理与多条带接收信号处理等模块。其特点在于:
[0073] 1.可根据波束角宽、载体(准确指换能器阵)航行速度和覆盖宽度选取合适的发射条带数;
[0074] 2.可根据设定的覆盖模式确定各个发射条带的发射方向;
[0075] 3.采用频分复用和时分复用相结合的发射信号形式降低信号间串扰;
[0076] 4.基于发射波束稳定技术实现多条带发射;
[0077] 5.基于数据结构设计和接收信号处理核心算法实现多条带接收信号处理。
[0078] 本发明将GNSS定位数据接入系统实时处理模块,可根据实时GNSS天线位置信息推算固定安装于船底的换能器阵的航行速度;考虑速度、覆盖宽度、波束角宽等因素对海底覆盖情况的影响,计算可满足全覆盖需求的发射条带数。
[0079] 基于所计算的发射条带数目、水深、速度、覆盖宽度等条件,可根据界面设定的覆盖模式(如固定角度覆盖、等角覆盖、等距覆盖等),计算满足覆盖需求的各条带前后方向的发射角度。
[0080] 对于每个发射条带,均采用多扇区(每条带扇区数目大于等于2)发射模式。在系统总带宽要求内,每个发射扇区的信号采用不同的发射频率,并以一定时间顺序依次发射至不同空间位置,同时从频域、时域、空间域分隔信号,以尽可能降低各扇区信号间串扰。
[0081] 根据各条带前后方向发射角度和每条带各扇区左右方向发射角度确定发射波束方向矢量,再基于艏摇、纵倾、横摇全姿态稳定的发射波束形成算法,将发射方向的等效成平面发射阵上各个基元的发射延时。通过循环控制各基元按预定时间发射,可实现一次发射过程形成多个发射条带。
[0082] 在接收信号处理模块,通过数据结构设计,使其可适应发射条带数目可变、每条带发射扇区数目可变、每条带接收波束数目可变的信号处理。接收信号处理模块利用发射信息区分各发射条带信号,按条带循环完成基于横摇稳定的接收波束形成,以条带为单位组合接收波束数据,完成各条带测深归位解算和水体与侧扫成像等信号处理。
[0083] 下面结合附图和实施例对本发明的技术方案进行详细的说明。
[0084] 实施例1
[0085] 本发明的实施例1提出了一种具备多条带模式的深水多波束测深方法,
[0086] 图1为具备多条带模式的深水多波束测深系统框图,系统主要由发射换能器阵、接收换能器阵、多条带发射信号处理单元、发射单元、接收采集单元、接收信号处理单元、导航显控与后处理单元、以及传感器单元组成。
[0087] 本发明各模块实现涉及船舶运动姿态,以及由姿态引起的载体坐标系与本地地理坐标系的转换,两个坐标系定义如表1所示,船舶姿态定义如表2所示。
[0088] 表1坐标系定义
[0089]
[0090] 表2航向与姿态角度定义
[0091]
[0092] 1、发射条带数目计算
[0093] 在船坞中船舶坐底静止条件下测量惯性导航单元、换能器阵与GNSS接收机之间的相对位置关系。设置惯性导航单元所在位置为载体坐标系坐标原点(0,0,0),通过专业测量GNSS接收机相对于惯性导航单元的三方向垂直距离,记做载体坐标系下 GNSS接收机坐标(xb_G‑Ins,yb_G‑Ins,zb_G‑Ins),测量换能器阵中心相对于惯性导航单元的三方向垂直距离,记做载体坐标系下换能器阵中心坐标 (xb_A‑In,syb_A‑In,szb_A‑In)s。已知在t时刻,GNSS接收单元获得位置数据 (xG,yG,zG),船舶艏向H,纵倾P,横摇R,则此时换能器实际位置(xA,yA,zA)为[0094]
[0095] 其中,Γ为坐标旋转矩阵
[0096]
[0097] 由此可获得各时刻换能器阵位置,进而计算换能器阵航行速度
[0098]
[0099] 设系统波束角宽为θ,设声速为c,一个测深条带双侧覆盖宽度为n倍水深,则所需发射条带数为
[0100]
[0101] 2、发射条带角度计算
[0102] 在确定发射条带数目基础上,确定每条带发射角度。用户可选择覆盖模式,固定角度覆盖模式可直接为发射条带角度赋值,等角发射模式与等距发射模式各条带发射角度可通过计算获得。如图2(a)、(b)所示,为多波束多条带模式示意图,设水深为D,船速为v,双侧覆盖宽度为n倍水深,发射条带数目为N,则等角和等距模式下各个条带向前发射角度p分别可用式(5)和式(6)计算
[0103]
[0104]
[0105] 其中 为一次发射和接收所需时间。
[0106] 3、发射信号设计
[0107] 为实现发射波束稳定,每条带发射信号采用多扇区(每条带扇区数目大于等于2) 发射模式。为尽可能降低信号间串扰,多条带模式发射信号采用频分复用和时分复用相结合的形式,即在系统总频率带宽范围内,设计多个频点不同的窄带信号(如 CW信号或LFM信号),每个频点信号对应一个发射扇区,各信号按时间顺序依次发射,示意图如图3所示。在接收端,通过滤波器将各频点信号滤出进行处理。
[0108] 4、多条带发射信号处理
[0109] 发射波束稳定的基本思想是将载体姿态变化引起的基元位置改变转换为发射延时,从而在每个发射基元发射时引入修正延时。多条带发射波束稳定过程主要分为确定发射波束矢量、计算沿龙骨方向和垂直龙骨方向相控角以及计算发射延时。对于多条带发射波束稳定,确定发射波束矢量为其中的关键步骤。
[0110] 设发射波束沿着航行方向(定义为X轴)发射角度为p(定义为发射波束矢量在OXZ平面的投影与Z轴负半轴夹角),垂直航行方向(定位为Y轴)发射角度为β (定义为发射波束矢量在OYZ平面的投影与Z轴负半轴夹角),示意图如图4所示。则可确定发射波束方向矢量为:
[0111]
[0112] 根据全姿态发射波束稳定算法,计算存在姿态条件下发射阵X、Y方向上实际的相控角。设发射阵X和Y方向单位矢量分别为 和 X和Y方向上的基元个数分别为M和N。设发射时刻船艏方向为H,船艏稳定方向为H′,艏摇α=H‑H′,纵倾P,横摇R,则X与Y方向上的相控角θx和θy分别为
[0113]
[0114]
[0115] 其中,Γ′为坐标旋转矩阵:
[0116]
[0117] 则基元(m,n)相对于参考点的延时为
[0118]
[0119] 其中,c为声速。
[0120] 获得各基元发射延时之后,便可根据发射条带数和每条带发射扇区数循环操作,控制各基元发射,形成多条带发射条带,附图5给出以双条带发射模式为例的发射时序示意图。
[0121] 5、多条带接收信号处理
[0122] 在接收端,通过对数据结构进行设计,使接收程序可适应发射条带数目可变、每条带发射扇区数目可变、每条带接收波束数目可变的信号处理。
[0123] 接收信号处理方面,首先通过滤波获得各条带各发射扇区对应的接收信号,进行接收横摇稳定的波束形成。之后将各波束数据按条带进行组合,按条带循环进行测深、水体和侧扫的计算,通过滤波将各条带各扇区信号提取出来,分别进行基于横摇稳定策略的接收波束形成;常规水体与侧扫计算方法进行水体与侧扫成像。流程如图6所示。
[0124] 实施例2
[0125] 本发明的实施例2提出了一种具备多条带模式的深水多波束测深系统。该系统包括:发射条带数目计算模块、发射角度计算模块、发射延时计算模块、发射阵设置模块、测深结果计算模块,以及安装在船底的换能器阵、惯性导航单元和GNSS 接收机;其中,[0126] 所述发射条带数目计算模块,用于根据待发射的波束角宽、换能器阵的航行速度和测深条带覆盖宽度计算得到发射条带数目;
[0127] 所述发射角度计算模块,用于根据设定的覆盖模式,由发射条带数目计算得到每个发射条带的发射角度;
[0128] 所述发射延时计算模块,用于根据每个发射条带的发射角度和垂直航行方向的发射角度确定发射波束方向矢量,再基于全姿态发射波束稳定算法,得到发射阵各发射基元的发射延时;
[0129] 所述发射阵设置模块,用于根据发射条带数目和每个发射条带设定的扇区数目,控制发射阵按照发射条带的每个扇区以设定频率循环发射波束,并且每个发射基元根据发射延时按预定时间发射;
[0130] 所述测深结果计算模块,用于通过滤波获得各发射条带各扇区对应的接收信号,进行接收横摇稳定的波束形成,将各波束数据按条带进行组合,按条带循环进行测深、水体和侧扫的计算,得到测深结果;
[0131] 所述换能器阵为T形阵,包括二维平面发射阵和一维平面接收阵。
[0132] 模块的具体处理过程同实施例1。
[0133] 最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。