芳胺类化合物及制备方法、有机电致发光器件和显示装置转让专利

申请号 : CN202110395272.6

文献号 : CN113121493B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张雪张鹤马晓宇汪康黄悦王永光徐佳楠

申请人 : 吉林奥来德光电材料股份有限公司

摘要 :

本发明公开了一种芳胺类化合物及制备方法、有机电致发光器件和显示装置,属于化学及有机发光材料技术领域,该芳胺类化合物的结构通式为:式中,X1、X2、X3、X4选自C、N、O、S中的任一种,且不全为C;Ar1、Ar2、Ar3、Ar4独立地表示取代或未取代的芳基、取代或未取代的杂芳基、取代或未取代的稠环基、取代或未取代的螺环基、与相邻取代基连接形成的单环或脂肪族环或芳香族环中的任一种。本发明提供的芳胺类化合物含有芳胺和五元杂环结构,具有较高的玻璃化温度和空间位阻效应,从而具有优越的薄膜稳定性,且在可见光领域折射率高,在应用于OLED器件的盖帽层后,可有效提升OLED器件的光取出效率。

权利要求 :

1.一种芳胺类化合物,其特征在于,所述芳胺类化合物的化学结构式为式1~式60中的任一种:

2.一种有机电致发光器件,包括阳极、阴极以及至少一层设置在所述阳极和所述阴极之间的有机层,其特征在于,所述阴极远离所述有机层的一侧设有盖帽层;所述的有机层和/或所述盖帽层包含如权利要求1所述的芳胺类化合物。

3.一种显示装置,包括基板,其特征在于,还包括设置在所述基板上的如权利要求2所述的有机电致发光器件。

说明书 :

芳胺类化合物及制备方法、有机电致发光器件和显示装置

技术领域

[0001] 本发明涉及化学及有机发光材料技术领域,具体是一种芳胺类化合物及制备方法、有机电致发光器件和显示装置。

背景技术

[0002] 有机电致发光(Organic Light Emission Diodes,OLED)器件,可以用于代替液晶显示和荧光灯照明,以制造显示装置和照明产品。具体的,OLED器件可以广泛地应用于智能
手机、平板电脑以及电视等领域。
[0003] 现有的OLED器件一般包括阳极、阴极、位于阳极与阴极之间的有机层以及位于阴极外侧的盖帽层(Capping Layer,CPL);有机层包括发光层等功能结构。其中,盖帽层可以
起到提高光的取出效率,进而提升器件发光效率的作用。
[0004] 然而,现有用于盖帽层的材料存在折射率不够高,进而导致光取出效果较差以及容易影响发光层材料在蓝光等区域发光的问题。

发明内容

[0005] 本发明实施例的目的在于提供一种芳胺类化合物,以解决上述背景技术中提出的问题。
[0006] 为实现上述目的,本发明实施例提供如下技术方案:
[0007] 一种芳胺类化合物,其结构通式为式I:
[0008]
[0009] 式中,X1、X2、X3、X4选自C、N、O、S中的任一种,且不全为C;
[0010] Ar1、Ar2、Ar3、Ar4独立地表示取代或未取代的芳基、取代或未取代的杂芳基、取代或未取代的稠环基、取代或未取代的螺环基、与相邻取代基连接形成的单环或脂肪族环或
芳香族环中的任一种;
[0011] L选自取代或未取代的芳基、取代或未取代的杂芳基中的任一种;
[0012] R1、R2、R3、R4独立地选自氢、氘、取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的杂环烷基、取代或未取代的芳基、取代或未取代的杂芳基、取代或未取代的杂
芳基胺基、取代或未取代的芳基胺基、取代或未取代的烷氧基、取代或未取代的芳氧基、与
相邻取代基连接形成的单环或多环脂肪族环或芳香族环中的任一种。
[0013] 优选的,Ar1、Ar2、Ar3、Ar4独立地表示取代或未取代的C6‑C30芳基、取代或未取代的3元到30元杂芳基、取代或未取代的C10‑C30稠环基、取代或未取代的C10‑C30螺环基、与
相邻取代基连接形成的单环或C3‑C30脂肪族环或C6‑C30芳香族环中的任一种;
[0014] L选自取代或未取代的C6‑C30芳基、取代或未取代的3元‑30元杂芳基中的任一种;
[0015] R1、R2、R3、R4独立地选自氢、氘、取代或未取代的C1‑C30烷基、取代或未取代的3元‑30元环烷基、取代或未取代的3元‑30元杂环烷基、取代或未取代的C6‑C30芳基、取代或未取
代的3元‑30元杂芳基、取代或未取代的3到30元杂芳基胺基、取代或未取代的C6~C60芳基
胺基、取代或未取代的C1‑C30烷氧基、取代或未取代的C6‑C60芳氧基、与相邻取代基连接形
成的单环或多环C3‑C30脂肪族环或3元到30元芳香族环中的任一种;且与相邻取代基连接
形成的单环或多环C3‑C30脂肪族环或3元到30元芳香族环中的至少一个碳原子置换为杂原
子。
[0016] 其中,杂原子以及杂芳基、杂环烷基、杂芳基胺基中的杂原子独立地为氮、氧、硫和硅中的至少一种。
[0017] 优选的,Ar1、Ar2、Ar3、Ar4独立地选自萘基、菲基、苯并菲,苯基、咔唑基、叔丁基苯基、甲基苯基、三联苯基、联苯基、芴基、螺基、咔唑基、二甲基芴中的任一种。
[0018] 优选的,L为萘基、联苯基、菲基、苯基、芴基、吡啶、吡咯、喹啉、咪唑中的任一种。
[0019] 优选的,X1、X2、X3、X4、R1、R2、R3、R4之间所形成的基团为如下基团中的任一种:
[0020]
[0021] 在本说明书中,术语“取代或未取代”意指被选自以下的一个、两个或更多个取代基取代:氘;卤素基团;腈基;羟基;羰基;酯基;甲硅烷基;硼基;取代或未取代的烷基;取代
或未取代的环烷基;取代或未取代的烷氧基;取代或未取代的烯基;取代或未取代的烷基胺
基;取代或未取代的杂环基胺基;取代或未取代的芳基胺基;取代或未取代的芳基;和取代
或未取代的杂环基,或者被以上所示的取代基中的两个或更多个取代基相连接的取代基取
代,或者不具有取代基。例如,“两个或更多个取代基相连接的取代基”可以包括联苯基。换
言之,联苯基可以为芳基,或者可以解释为两个苯基相连接的取代基。
[0022] 优选的,所述芳胺类化合物的化学结构式为式1~式60中的任一种:
[0023]
[0024]
[0025]
[0026] 本发明实施例的另一目的在于提供一种上述的芳胺类化合物的制备方法,其包括以下步骤:
[0027] 在保护气氛下,将反应物A‑I、反应物B‑I、钯催化剂、磷配体和t‑BuONa进行反应,得到中间体C‑I;
[0028] 在保护气氛下,将中间体C‑I、反应物D‑I、钯催化剂和碳酸盐进行反应,得到所述芳胺类化合物;
[0029] 其中,反应物A‑I、反应物B‑I、中间体C‑I、反应物D‑I的结构式如下:
[0030]
[0031] 优选的,所述钯催化剂为四(三苯基膦)钯和/或Pd2(dba)3;所述磷配体为P(t‑Bu)3。碳酸盐可以为碳酸钾或碳酸钠等。
[0032] 具体的,上述制备方法的合成路线如下:
[0033]
[0034] 其具体可以包括以下步骤:
[0035] 步骤1:
[0036] 在反应容器中加入化学式反应物A‑I(1.0eq)和反应物B‑I(0.8eq)溶于甲苯之后,在氮气氛围下加入Pd2(dba)3(0.01eq)、P(t‑Bu)3(0.05eq)、t‑BuONa(2‑2.4eq)。添加后,使
反应温度缓慢升温到100‑115℃,并且搅拌混合物;使用硅藻土趁热抽滤,除去盐和催化剂,
滤液冷却至室温后,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用乙酸乙酯
萃取水相。接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂;以二氯
甲烷:石油醚体积比为1:(1‑9)作为洗脱剂,用管柱色谱法纯化剩余物质,获得中间体C‑I。
[0037] 步骤2:
[0038] N2保护下,将中间体C‑I(1.0eq)、反应物D‑I(1.1eq)、四(三苯基膦)钯(0.01eq)和碳酸钾(2.2eq)分别加入到甲苯、乙醇、水的混合溶剂中,升温至100‑120℃回流反应,反应
结束后,冷却至室温,待固体析出完毕后,抽滤后用水洗涤除去盐,再用少量乙醇淋洗,干燥
滤饼;置于1,4‑二氧六环中重结晶,得到通式I所示的芳胺类化合物。
[0039] 本发明实施例的另一目的在于提供一种有机电致发光器件,包括阳极、阴极以及至少一层设置在所述阳极和所述阴极之间的有机层,所述阴极远离所述有机层的一侧设有
盖帽层;所述的有机层和/或所述盖帽层包含上述的芳胺类化合物。
[0040] 本发明实施例的另一目的在于提供一种显示装置,包括基板,其还包括设置在所述基板上的上述的有机电致发光器件。
[0041] 本发明实施例的另一目的在于提供一种上述芳胺类化合物在制备有机电致发光器件中的应用。
[0042] 具体的,本公开内容的有机发光器件的有机层可以形成为单层结构,但也可以形成为其中层和有两个或更多个有机层的多层结构。例如,本公开内容的有机发光器件可以
具有包括空穴注入层、空穴传输层、空穴注入和传输层、电子阻挡层、发光层、发光辅助层、
电子传输层、电子注入层、空穴阻挡层、电子注入和传输层等作为有机层的结构。然而,有机
发光器件的结构不限于此,并且可以包括更少数量的有机层或更多数量的有机层。
[0043] 在本发明的实施例中,有机发光器件可以这样制作:在透明或不透明的光滑的基板上形成阳极,在阳极上形成有机层,在有机层上形成阴极。有机层的形成可以采用如蒸
镀、溅射、旋涂、浸渍、离子镀等已知的成膜方法。最后在阴极上制备一层盖帽层。盖帽层的
材料为本发明所述的芳胺类化合物。盖帽层可以通过蒸镀或溶液法加工制备。溶液加工法
包括喷墨打印法、旋转涂布、刮刀涂布、丝网印刷等方法。在本发明实施例中优选蒸镀的方
法制作有机电致发光器件。
[0044] 另外,阳极优选包含具有高逸出功的材料。例如氧化锡铟(ITO)或氧化铟锌(IZO)。由于在水和/或空气存在下本发明器件的寿命会缩短,所以所述器件被适当地(取决于应
用)结构化、提供接点并最后密封。
[0045] 空穴传输材料是能够接收来自阳极或空穴注入层的空穴并将空穴传输至发光层的材料,并且具有高空穴迁移率的材料。其具体实例包括基于芳基胺的有机材料、导电聚合
物、同时具有共轭部分和非共轭部分的嵌段共聚物等,但不限于此。此外,通式I所示的芳胺
类化合物也可以作为空穴传输材料。
[0046] 电子阻挡层可以设置在空穴传输层与发光层之间。作为电子阻挡层,可以使用本领域中已知的材料,例如基于芳基胺的有机材料。
[0047] 发光层的材料是一种通过分别接收来自空穴传输层和电子传输层的空穴和电子,并将所接收的空穴和电子结合而能发出可见光的材料。
[0048] 优选的,所述发光层包括主体材料和掺杂材料;所述主体材料部分或全部包含所述的芳胺类化合物;掺杂材料可以包括荧光掺杂和磷光掺杂。主体材料和掺杂材料的质量
比为(90‑99.5):(0.5‑10)。
[0049] 空穴阻挡层材料,可以使用现有技术中公知的具有空穴阻挡作用的化合物,例如,浴铜灵(BCP)等菲咯啉衍生物、噁唑衍生物、三唑衍生物、三嗪衍生物等,但不限于此。此外,
通式I所示的芳胺类化合物也可以作为空穴传输材料。
[0050] 电子传输层可以起到促进电子传输的作用。电子传输材料是有利地接收来自阴极的电子并将电子传输至发光层的材料,具有高电子迁移率的材料是合适的。作为本发明有
机电致发光器件的电子传输层材料,可以使用现有技术中公知的具有电子传输作用的化合
物,例如,8‑羟基喹啉的Al配合物;包含Alq3的配合物;有机自由基化合物;羟基黄酮‑金属
配合物等等,但不限于此。
[0051] 电子注入层可以起到促进电子注入的作用。具有传输电子的能力,防止发光层中产生的激子迁移至空穴注入层。本发明中使用的电子注入材料包括芴酮、蒽醌二甲烷、联苯
醌、噻喃二氧化物、唑、二唑、三唑、咪唑、苝四羧酸、亚芴基甲烷、蒽酮等及其衍生物,金属配
合物,含氮五元环衍生物等,但不限于此。
[0052] 阴极,通常优选具有小功函数的材料使得电子顺利注入有机层。例如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅,或其合金,该层的层厚度优选在0.5和5nm之间。
[0053] 盖帽层在阴极上,用于调节光学干涉距离,抑制外光反射,抑制表面等离子体能移动引起的消光,从而提高光的取出效率,提升发光效率。现有的盖帽层材料多采用芳香胺衍
生物、磷氧基衍生物和喹啉酮衍生物等,其兼具空穴传输和电子传输功能,一定程度上提高
了光的取出效率。盖帽层的厚度为10nm~200nm,优选为70nm~150nm。
[0054] 本发明实施例中,在透射前述盖帽层的光的波长为450nm~750nm之范围,该盖帽层的折射率n为2.0以上较佳,消光系数k值接近于0为最佳。
[0055] 前述盖帽层可以使用1种材料也可利用将2种以上不同的构成材料予以叠层而制作。
[0056] 在本发明实施例中,可通过溶液涂覆法和真空沉积法的方式形成上述各种功能层。溶液涂覆法意指旋涂、浸涂、喷墨印刷、丝网印刷、喷洒法等,但不限于此。
[0057] 另外,上述的有机电致发光器件可以同样原理应用在有机发光器件(OLED)、有机太阳电池(OSC)、电子纸(e‑paper)、有机感光体(OPC)或有机薄膜晶体管(OTFT)等上,但不
限于此。
[0058] 与现有技术相比,本发明实施例的有益效果是:
[0059] 本发明实施例提供的一种芳胺类化合物,是一种基于芳胺和五元杂环为核心的枝状结构的有机化合物,其含有芳胺和五元杂环结构,具有较高的玻璃化温度和空间位阻效
应,从而具有优越的薄膜稳定性,且在可见光领域折射率高,在应用于OLED器件的盖帽层
后,可有效提升OLED器件的光取出效率;并且可作为OLED器件的空穴阻挡材料,阻挡空穴从
发光层传递至电子层一侧,提高空穴和电子在发光层中的复合度,从而提升OLED器件的发
光效率和使用寿命。
[0060] 具体的,本发明实施例提供的芳胺类化合物具有五元杂环结构,还可以提高吸光系数以及得到更高的衰减系数,从而薄膜在紫外可见光范围内能得到更高的折射率。进一
步杂芳基具有提高极化率的性能,从而进一步能提高折射率。
[0061] 另外,本发明实施例提供的芳胺类化合物含有二芳胺结构,具有较高的玻璃化温度,其可作为OLED器件的空穴阻挡材料,阻挡空穴从发光层传递至电子层一侧,提高空穴和
电子在发光层中的复合度,从而提升OLED器件的发光效率和使用寿命。

具体实施方式

[0062] 下面实施例是为了帮助本发明理解而提供的,并不是将本发明的内容限定在这个范围。并且本发明的各实施例中具体没有列举化合物的制备方法是有关行业通常应用的方
法,实施例中记载的方法,在制备其他化合物时,也可以参考。
[0063] 实施例1
[0064] 该实施例提供了一种芳胺类化合物,其制备方法如下:
[0065]
[0066] 步骤1:
[0067] 在反应容器中加入化学式反应物A‑1(50mmol)和反应物B‑1(40mmol)溶于甲苯之后,在氮气氛围下加入Pd2(dba)3(0.5mmol)、P(t‑Bu)3(2.5mmol)、t‑BuONa110mmol)。添加
后,使反应温度缓慢升温到110℃,并且搅拌混合物10h。使用硅藻土趁热抽滤,除去盐和催
化剂,滤液冷却至室温后,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用乙
酸乙酯萃取水相。接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂。
然后以二氯甲烷:石油醚体积比为1:5作为洗脱剂,用管柱色谱法纯化剩余物质,获得中间
体C‑1(14.1g,产率:79%,Ms:446.98)。
[0068] 步骤2:
[0069] N2保护下,将中间体C‑1(30mmol)、反应物D‑1(33mmol)、四(三苯基膦)钯(0.03mmol)和碳酸钾(66mmol)分别加入到甲苯、乙醇、水的混合溶剂中,升温至110℃回流
反应8h,反应结束后,冷却至室温,待固体析出完毕后,抽滤后用水洗涤除去盐,再用少量乙
醇淋洗,干燥滤饼。然后置于1,4‑二氧六环中重结晶,得到芳胺类化合物1(15.6g,产率:
83%,Ms:624.80)。
[0070] 实施例2
[0071] 该实施例提供了一种芳胺类化合物,其制备方法如下:
[0072]
[0073] 步骤1:
[0074] 在反应容器中加入化学式反应物A‑20(50mmol)和反应物B‑20(40mmol)溶于甲苯之后,在氮气氛围下加入Pd2(dba)3(0.5mmol)、P(t‑Bu)3(2.5mmol)、t‑BuONa110mmol)。添加
后,使反应温度缓慢升温到110℃,并且搅拌混合物10h。使用硅藻土趁热抽滤,除去盐和催
化剂,滤液冷却至室温后,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用乙
酸乙酯萃取水相。接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂。
然后以二氯甲烷:石油醚体积比为1:5作为洗脱剂,用管柱色谱法纯化剩余物质,获得中间
体C‑20(18.6g,产率:81%,Ms:573.14)。
[0075] 步骤2:
[0076] N2保护下,将中间体C‑20(30mmol)、反应物D‑20(33mmol)、四(三苯基膦)钯(0.03mmol)和碳酸钾(66mmol)分别加入到甲苯、乙醇、水的混合溶剂中,升温至110℃回流
反应8h,反应结束后,冷却至室温,待固体析出完毕后,抽滤后用水洗涤除去盐,再用少量乙
醇淋洗,干燥滤饼。然后置于1,4‑二氧六环中重结晶,得到芳胺类化合物20(17.8g,产率:
78%,Ms:758.93)。
[0077] 实施例3
[0078] 该实施例提供了一种芳胺类化合物,其制备方法如下:
[0079]
[0080] 步骤1:
[0081] 在反应容器中加入化学式反应物A‑40(50mmol)和反应物B‑40(40mmol)溶于甲苯之后,在氮气氛围下加入Pd2(dba)3(0.5mmol)、P(t‑Bu)3(2.5mmol)、t‑BuONa110mmol)。添加
后,使反应温度缓慢升温到110℃,并且搅拌混合物10h。使用硅藻土趁热抽滤,除去盐和催
化剂,滤液冷却至室温后,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用乙
酸乙酯萃取水相。接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂。
然后以二氯甲烷:石油醚体积比为1:5作为洗脱剂,用管柱色谱法纯化剩余物质,获得中间
体C‑40(17.9g,产率:78%,Ms:460.17)。
[0082] 步骤2:
[0083] N2保护下,将中间体C‑40(30mmol)、反应物D‑40(33mmol)、四(三苯基膦)钯(0.03mmol)和碳酸钾(66mmol)分别加入到甲苯、乙醇、水的混合溶剂中,升温至110℃回流
反应8h,反应结束后,冷却至室温,待固体析出完毕后,抽滤后用水洗涤除去盐,再用少量乙
醇淋洗,干燥滤饼。然后置于1,4‑二氧六环中重结晶,得到芳胺类化合物40(18.7g,产率:
79%,Ms:789.01)。
[0084] 实施例4
[0085] 该实施例提供了一种芳胺类化合物,其制备方法如下:
[0086]
[0087] 步骤1:
[0088] 在反应容器中加入化学式反应物A‑60(50mmol)和反应物B‑60(40mmol)溶于甲苯之后,在氮气氛围下加入Pd2(dba)3(0.5mmol)、P(t‑Bu)3(2.5mmol)、t‑BuONa110mmol)。添加
后,使反应温度缓慢升温到110℃,并且搅拌混合物10h。使用硅藻土趁热抽滤,除去盐和催
化剂,滤液冷却至室温后,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用乙
酸乙酯萃取水相。接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂。
然后以二氯甲烷:石油醚体积比为1:5作为洗脱剂,用管柱色谱法纯化剩余物质,获得中间
体C‑60(18.8g,产率:82%,Ms:573.14)。
[0089] 步骤2:
[0090] N2保护下,将中间体C‑60(30mmol)、反应物D‑60(33mmol)、四(三苯基膦)钯(0.03mmol)和碳酸钾(66mmol)分别加入到甲苯、乙醇、水的混合溶剂中,升温至110℃回流
反应8h,反应结束后,冷却至室温,待固体析出完毕后,抽滤后用水洗涤除去盐,再用少量乙
醇淋洗,干燥滤饼。然后置于1,4‑二氧六环中重结晶,得到芳胺类化合物60(18.2g,产率:
80%,Ms:758.30)。
[0091] 实施例5~实施例15
[0092] 因结构通式为发明内容中的化学式I的其他芳胺类化合物的制备方法的合成路线和原理均与上述所列举的实施例1~4相同,只需要将反应物分别替换为目标产物对应的反
应物,反应物用量按照相应化学计量比相应调整即可得到相对应的芳胺类化合物,所以在
此不再穷举,本发明实施例参照实施例1~4的制备方法完成对结构式如发明内容中的式8,
13,23,28,32,37,42,44,50,55,58所示芳胺类化合物的合成,其质谱、分子式、产率如表1所
示。
[0093] 表1
[0094]
[0095]
[0096] 需要说明,本申请要求保护的其他芳胺类化合物参照上述所列举的实施例的制备方法即可获得,所以在此不再一一例举。
[0097] 另外,使用本发明实施例提供的芳胺类化合物4,8,15,20,25,28,34,40,45,35,41,53,在基板之上制作膜厚100nm的蒸镀膜,并使用分光测定装置测定于450nm、530nm、
635nm的折射率n和消光系数k值,为了做比较,针对Alq3也进行测定,其测试结果如表2所
示。
[0098] 表2
[0099]
[0100]
[0101] 由表2可知,对波长为450‑635nm的可见光,本发明实施例提供的芳胺类化合物的折射率均大于2.0,符合发光器件对盖帽层的折射率要求,消光系数k值在蓝光波长430nm以
后几乎为0,不会影响发光层材料在蓝光区域的发光。因此,本发明实施例提供的芳胺类化
合物能够带来更高的发光效率。
[0102] 在本发明的另一个实施例中,还提供了一种有机电致发光器件,包括阳极、阴极以及至少一层设置在所述阳极和所述阴极之间的有机层,所述阴极远离所述有机层的一侧设
有盖帽层;所述的有机层和/或所述盖帽层包含上述的芳胺类化合物。有机电致发光器件的
具体制备方法如下器件实施例。
[0103] 器件实施例1
[0104] 该器件实施例提供了一种有机电致发光器件,其结构为:ITO/NPB:F4‑TCNQ/NPB/TCTA/mCP:FIrpic/TPBi/Alq3/Mg:Ag/CPL,其具体的制备方法包括以下步骤:
[0105] S1、将用于OLED装置玻璃基板(150nm)放在蒸馏水中清洗2次,超声波洗涤30分钟,用蒸馏水反复清洗2次,超声波洗涤10分钟,蒸馏水清洗结束后,异丙醇、丙酮、甲醇等溶剂
按顺序超声波洗涤以后干燥,转移到等离子体清洗机里,洗涤5分钟,送到蒸镀机里。
[0106] S2、将化合物NPB与F4‑TCNQ(掺杂比为97:3)引入真空气相沉积设备的小室中,然‑6
后将所述设备的腔室中的压力控制到10 托。此后,向小室施加电流以使以上引入的材料蒸
发,从而在ITO基板上形成具有15nm厚度的空穴注入层。接下来,将化合物NPB引入真空气相
沉积设备的另一个小室中,并通过向小室施加电流使所述化合物蒸发,从而在空穴注入层
上形成具有120nm厚度的空穴传输层。然后将化合物TCTA引入真空气相沉积设备的小室中,
并通过向小室施加电流使所述化合物蒸发,从而在空穴传输层上形成具有10nm厚度的电子
阻挡层。将化合物mCP引入真空气相沉积设备的一个小室中作为主体材料,并将化合物
FIrpic引入另一个小室中作为掺杂材料,主体材料和掺杂材料的掺杂比为95:5,形成具有
40nm厚度的发光层。在上述发光层上真空蒸镀TPBi作为空穴阻挡层,TPBi蒸镀厚度为10nm;
在上述空穴阻挡层上蒸镀厚度在35nm的Alq3作为电子传输层;在上述电子传输层上真空蒸
镀厚度为1.0nm氟化锂(LiF),作为电子注入层。在电子注入层上真空蒸镀镁和银作为阴极,
镁和银的重量比为1:9,蒸镀厚度为15nm;在阴极上真空蒸镀本发明的芳胺类化合物1,厚度
为100nm,作为盖帽层(CPL)使用。
[0107] 其中,上述相关材料的结构式如下:
[0108]
[0109] 器件实施例2~器件实施例60
[0110] 参照上述器件实施例1提供的制备方法,将器件实施例1中使用的芳胺类化合物1分别替换为本发明发明内容中的芳胺类化合物2~60作为盖帽层的材料,其他方法和原料
均相同,以制备得到相应的有机电致发光器件。
[0111] 器件对比例1
[0112] 该器件对比例制造了一种有机电致发光器件,其与器件实施例1的唯一区别在于,不蒸镀盖帽层。
[0113] 器件对比例2
[0114] 该器件对比例制造了一种有机电致发光器件,其按照器件实施例1的方法,将盖帽层的化合物置换为比较化合物1(Alq3),其他方法相同,以制得含有比较化合物1的有机电
致发光器件;其中,比较化合物1的结构式如下:
[0115]
[0116] 器件对比例3
[0117] 该器件对比例制造了一种有机电致发光器件,其按照器件实施例1的方法,将盖帽层的化合物置换为比较化合物2,其他方法相同,以制得含有比较化合物2的有机电致发光
器件;其中,比较化合物2的结构式如下:
[0118]
[0119] 对上述制备的有机电致发光器件加以正向直流偏置电压,利用Photo Research公2
司的PR‑650光度测量设备测定有机电致发光特性,亮度为1000cd/m下利用McScience公司
的寿命测定装置测定了T95的寿命。结果见表3所示:
[0120] 表3
[0121]
[0122]
[0123]
[0124]
[0125] 从上表3结果中可以看出,不含有盖帽层制备而成的器件(器件对比例1)在寿命,效率,驱动电压以及玻璃化转变温度上的性能均低于含有盖帽层的器件。
[0126] 另外,本发明实施例提供的芳胺类化合物与比较化合物1‑2相比,驱动电压降低0.9‑2.2V,效率降低提高2.7‑7.2%,寿命提高16‑48h,玻璃态转变温度提高7‑24℃。由上述
表3的结果能确认使用本发明提供的芳胺类化合物作为盖帽层材料制备的有机电致发光器
件表现出较高的发光效率、较长的寿命、较低的驱动电压以及较高的玻璃化转变温度等特
点,其在薄膜状态下有较高的稳定性。
[0127] 此外,在本发明的另一个实施例中,还提供了一种显示装置,其包括基板以及设置在所述基板上的上述的有机电致发光器件。该显示装置具体可以为智能手机、平板电脑、电
视机等。
[0128] 以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术
性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。