宽温高效软磁铁氧体材料及材料的制备方法转让专利

申请号 : CN202110430187.9

文献号 : CN113135749B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李崇华廖继红黄刚

申请人 : 湖北华磁电子科技有限公司

摘要 :

本发明涉及软磁铁氧体技术领域,公开了宽温高效软磁铁氧体材料,包括主体料和辅助料;所述主体料按摩尔份数计,包括有:60‑68mol的Fe2O3;15‑20mol的MnO;8‑12mol的ZnO;相对于所述主体料的质量,所述辅助料按质量添加为:300‑600PPM的B2O3;200‑500PPM的Bi2O3;100‑200PPM的Al2O3;500‑800PPM的Co3O4;300‑400PPM的CaCO3;50‑100PPM的SiO2。本发明能够减小高温环境下的功率损耗。

权利要求 :

1.一种宽温高效软磁铁氧体材料,其特征在于,包括主体料和辅助料;

所述主体料按摩尔份数计,包括有:Fe2O3 60‑68mol;

MnO 15‑20mol;

ZnO 8‑12mol;

相对于所述主体料的质量,所述辅助料按质量添加为:B2O3 300‑600PPM;

Bi2O3 200‑500PPM;

Al2O3 100‑200PPM;

Co3O4 500‑800PPM;

CaCO3 300‑400PPM;

SiO2 50‑100PPM;

相对于所述主体料的质量,所述辅助料按质量还包括有400‑1000PPM的TiO2;

如上所述的宽温高效软磁铁氧体材料的制备方法,包括以下步骤:S1,按摩尔份取主体料的各个组分,并将主体料进行一次球磨;

S2,对一次球磨完成的物料进行预烧;

S3,向预烧完成的物料中按照质量加入各个辅助料;

S4,对S3中的物料进行二次球磨;

S5,对二次球磨完成的物料进行制粒;

S6,将S5中的物料进行压制成型;

S7,对成型的材料进行烧结,冷却得到产品;

所述S7中烧结过程为:

S7‑1,从室温开始以2‑2.5℃/min的速度升至300‑350℃,保持0.5‑1h;

S7‑2,以1.5‑2℃/min的速度升至900‑950℃,保持1‑1.5h;

S7‑3,以2.5‑3.2℃/min的速度升至1300‑1320℃,保持5‑6h。

2.根据权利要求1所述的宽温高效软磁铁氧体材料,其特征在于:所述SiO2呈颗粒状,且所述SiO2的尺寸为50‑100nm。

3.根据权利要求1所述的宽温高效软磁铁氧体材料,其特征在于:所述S7‑1至所述S7‑4中,加工环境压强为0.05‑0.06MPa。

4.根据权利要求1所述的宽温高效软磁铁氧体材料,其特征在于:所述S6中压制成型的3

物料的密度为3.06‑3.12g/cm。

说明书 :

宽温高效软磁铁氧体材料及材料的制备方法

技术领域

[0001] 本发明涉及软磁铁氧体技术领域,特别涉及宽温高效软磁铁氧体材料及材料的制备方法。

背景技术

[0002] 软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物,采用粉末冶金方法生产。有Mn‑Zn、Cu‑Zn、Ni‑Zn等几类,其中Mn‑Zn铁氧体的产量和用量最大,Mn‑Zn铁氧体的电阻率低,为
1~10欧姆/米,一般在100kHZ以下的频率使用。Cu‑Zn、Ni‑Zn铁氧体的电阻率为102~104欧
姆*米,在100kHz~10兆赫的无线电频段的损耗小,多用在无线电用天线线圈、无线电中频
变压器。

发明内容

[0003] 本发明的目的是提供宽温高效软磁铁氧体材料及材料的制备方法,旨在达到减小高温环境下功率损耗的目的。
[0004] 本发明的上述技术目的是通过以下技术方案得以实现的:一种宽温高效软磁铁氧体材料,包括主体料和辅助料;
[0005] 所述主体料按摩尔份数计,包括有:
[0006] Fe2O3 60‑68mol;
[0007] MnO 15‑20mol;
[0008] ZnO 8‑12mol;
[0009] 相对于所述主体料的质量,所述辅助料按质量添加为:
[0010]
[0011] 本发明的进一步设置为:所述SiO2呈颗粒状,且所述SiO2的尺寸为50‑100nm。
[0012] 本发明的进一步设置为:相对于所述主体料的质量,所述辅助料按质量还包括有400‑1000PPM的TiO2。
[0013] 本发明还提供了一种制备如上任一项所述的宽温高效软磁铁氧体材料的方法,包括以下步骤:
[0014] S1,按摩尔份取主体料的各个组分,并将主体料进行一次球磨;
[0015] S2,对一次球磨完成的物料进行预烧;
[0016] S3,向预烧完成的物料中按照质量加入各个辅助料;
[0017] S4,对S3中的物料进行二次球磨;
[0018] S5,对二次球磨完成的物料进行制粒;
[0019] S6,将S5中的物料进行压制成型;
[0020] S7,对成型的材料进行烧结,冷却得到产品。
[0021] 本发明的进一步设置为:所述S3中按照质量加入有TiO2。
[0022] 本发明的进一步设置为:所述S7中烧结过程为:
[0023] S7‑1,从室温开始以2‑2.5℃/min的速度升至300‑350℃,保持0.5‑1h;
[0024] S7‑2,以1.5‑2℃/min的速度升至900‑950℃,保持1‑1.5h;
[0025] S7‑3,以2.5‑3.2℃/min的速度升至1300‑1320℃,保持5‑6h。
[0026] 本发明的进一步设置为:所述S7‑1至所述S7‑4中,加工环境压强为0.05‑0.06MPa。
[0027] 本发明的进一步设置为:所述S6中压制成型的物料的密度为3.06‑3.12g/cm3。
[0028] 本发明的有益效果是:软磁铁氧体在实际使用的时候,总的功率损耗主要包括有磁滞损耗、涡流损耗以及剩余损耗,但是由于工作频率低于500kHz时的剩余损耗可以忽略
不计,因此在时间中大多情况下都可以将剩余损耗忽略不计,即将磁滞损耗和涡流损耗考
虑为总的功率损耗;不仅如此,在较高的温度使用的时候,总的功率损耗是以涡流损耗为
主。
[0029] 首先在主体料中加入的各个辅助料在生产的过程中,首先由于B2O3的熔点为450℃,因此在升温的过程中,首先升温到B2O3能够熔化的状态,并保持一定的时间;在该时间段
内液态的B2O3能够充分的作用于各个主体料和辅助料,同时将材料中的气隙进行初步填充,
且为晶粒的生长提供一个预备环境;然后后续继续升温,由于Bi2O3(本实施例中为β型氧化
铋)的熔点是860℃,因此在第二段加热的过程中,Bi2O3液化,并进一步的将物料中的气隙填
满,同时形成了更为优良的液相环境,能够减少材料气孔率的同时,还能够提升烧结密度,
使得晶粒的均匀性也更佳。其中通过两段不同的升温速度和保持时间,能够促进晶粒生长
的同时,由于辅助料中的Al2O3具有较高的熔点,因此在晶粒生长初期Al2O3能够阻止晶粒过
度生长,或不连续生长,保证了晶粒的均匀性和致密性,但在后续继续升温或烧结的过程
中,使用量较少的Al2O3与相对较多的B2O3之间生成了硼酸铝晶须,并提高晶界的电阻率。
[0030] 不仅如此,在升温到600℃左右的时候,B2O3熔融成为粘性极大的液体,其有助于各晶粒在成型的过程中保持较好的整密性,同时由于可以紧密将晶粒粘结,从而防止晶粒之
间距离变大之后形成间隙,因此可以很好的提高或保证材料的起始磁导率。
[0031] 而且,由于B2O3和Bi2O3的润湿角度不同,因此在二者融化之后,能够更好的将其他所有组分润湿,从而提高产品的整体性,并减小产品的气隙;同时由于B2O3是先形成的液相,
而Bi2O3是后形成的液相,所以二者在润湿其他组分的时候,能够分别润湿可以润湿的组份
或成分,从而使得两段加热完成后,可以最大程度上将可以被润湿的组分润湿,整体润湿效
果更好。
[0032] 同时加入的CaCO3和SiO2在烧结的过程中,能够很有效的改善晶界处的电阻,即可以很好的提高晶界处的电阻,从而可以明显的改善材料的涡流损耗,从而在较高温度的使
用环境中,也可以使得材料具有较低的功率损耗。同时B2O3和Bi2O3在烧结前期升温的过程
中,能够与CaCO3和SiO2之间形成相互的作用,并促成CaCO3和SiO2覆盖或包裹在初步生成的
晶粒表面,使得后续晶粒成型后,能够更好的提高晶粒晶界处的电阻,并保证了具有较低的
涡流损耗,使得材料能够在较高的温度中进行使用。
[0033] 不仅如此,由于Al2O3和B2O3在烧结的过程中还会形成部分的硼酸铝晶须,由于生成了的硼酸铝晶须具有良好的介电性能,因此还能够提供额外的电阻,即可以进一步的提
高晶粒的晶界处的电阻,并进一步的降低涡流损耗。同时未反应的Al2O3和B2O3还能够正产
的起到自身的作用和效果。
[0034] 不仅如此,在辅助料中加入的TiO2在烧结过程中还能够形成Ti4+,Ti4+能够进入到晶粒的晶格中,从而提高晶粒内的电阻,同时提升磁导率,可以很好的改善较高使用温度下
的功率损耗,其中尤其是可以改善涡流损耗,因此加入TiO2尤其是对高温环境中的材料具
4+ 2+
有降低功率损耗的效果;同时,当Ti 进入到晶格中之后,其能与主体料中的Fe 形成离子
3+ 2+
键,抑制Fe +e与Fe 之间的跳变,从而也提高了晶粒内的电阻。
[0035] 同时,在第一次升温使B2O3成为液相以及第二次升温使Bi2O3成为液相的过程中,液相的组份能够逐步的将材料内的气隙填满,并使得液相流动于每个间隙中,在该过程中,
TiO2随着液相的流动,而分布更为均匀,使得后续能够更好的进入到晶格中。
[0036] 其中,将SiO2的尺寸选择为50‑100nm,能够保证SiO2具有较好的分散度,并且在晶粒形成时,可以较好的覆盖于晶粒的表面,同时也可以使得其能够与CaCO3之间较好的发生
接触,从而更好的进行反应。
[0037] 同时,在两段加热的过程中,将加工环境设置为负压状态,能够便于材料中空气的析出,同时也能够对液相的成分起到一个牵引作用,使得液相部分能够充盈在材料中每个
间隙内,同时也使得在后续的烧结中,晶粒能够全方位的生成,由于液相的分布更为均衡,
因此便保证了晶粒的质量,既促进晶粒生长,同时也可防止晶粒过度生长。氧化钴在提高宽
温特性中也能够起到较好的作用,为提高材料的宽温性提供了更好的环境和条件。
[0038] 将物料压制的密度为为2.92‑2.98g/cm3时,能够使得成品材料的烧结密度在3
4.869‑4.98g/cm之间,而在该密度下能够较好的保证材料具有较高的饱和磁通密度。

具体实施方式

[0039] 下面将结合具体实施例对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领
域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保
护的范围。
[0040] 实施例1
[0041] 一种宽温高效软磁铁氧体材料,包括主体料和辅助料;
[0042] 所述主体料按摩尔份数计,包括有:
[0043] Fe2O3 60mol;
[0044] MnO 20mol;
[0045] ZnO 8mol;
[0046] 相对于所述主体料的质量,所述辅助料按质量添加为:
[0047]
[0048] 所述SiO2呈颗粒状,且所述SiO2的尺寸为50‑100nm。
[0049] 一种制备如上所述的宽温高效软磁铁氧体材料的方法,包括以下步骤:
[0050] S1,按摩尔份取主体料的各个组分,并将主体料进行一次球磨,时间为3h;
[0051] S2,对一次球磨完成的物料进行预烧,温度为900℃,时间为2h;
[0052] S3,向预烧完成的物料中按照质量加入各个辅助料;
[0053] S4,对S3中的物料进行二次球磨,时间为6h;
[0054] S5,对二次球磨完成的物料进行制粒,其中制粒时加入主体料质量5%的PVA溶液;
[0055] S6,将S5中的物料进行压制成型;
[0056] S7,对成型的材料进行烧结,冷却得到产品。
[0057] 所述S7均在常压下进行,且其烧结过程为:
[0058] S7‑1,从室温开始以2℃/min的速度升至350℃,保持0.5h;
[0059] S7‑2,以2℃/min的速度升至900℃,保持1.5h;
[0060] S7‑3,以3.2℃/min的速度升至1300℃,保持6h,其中最高温度下氧含量为9%。
[0061] 所述S6中压制成型的物料的密度为3.12g/cm3,材料的烧制密度为4.937g/cm3。
[0062] 经检测,最终产品晶粒尺寸为3‑5μm,起始磁导率ui为2600(±25%),120℃、3
100kHz、200mT Bs值下功率损耗为290kW/m,100℃Bs值为460mT。
[0063] 实施例2
[0064] 一种宽温高效软磁铁氧体材料,包括主体料和辅助料;
[0065] 所述主体料按摩尔份数计,包括有:
[0066] Fe2O3 68mol;
[0067] MnO 15mol;
[0068] ZnO 12mol;
[0069] 相对于所述主体料的质量,所述辅助料按质量添加为:
[0070]
[0071] 所述SiO2呈颗粒状,且所述SiO2的尺寸为50‑100nm。
[0072] 一种制备如上所述的宽温高效软磁铁氧体材料的方法,包括以下步骤:
[0073] S1,按摩尔份取主体料的各个组分,并将主体料进行一次球磨,时间为4h;
[0074] S2,对一次球磨完成的物料进行预烧,温度为950℃,时间为3.5h;
[0075] S3,向预烧完成的物料中按照质量加入各个辅助料;
[0076] S4,对S3中的物料进行二次球磨,时间为7h;
[0077] S5,对二次球磨完成的物料进行制粒,其中制粒时加入主体料质量4.5%的PVA溶液;
[0078] S6,将S5中的物料进行压制成型;
[0079] S7,对成型的材料进行烧结,冷却得到产品。
[0080] 所述S7均在常压下进行,且其烧结过程为:
[0081] S7‑1,从室温开始以2.5℃/min的速度升至300℃,保持1h;
[0082] S7‑2,以1.5℃/min的速度升至950℃,保持1h;
[0083] S7‑3,以2.5℃/min的速度升至1320℃,保持5h,其中最高温度下氧含量为8%。
[0084] 所述S6中压制成型的物料的密度为3.06g/cm3,材料的烧制密度为4.872g/cm3。
[0085] 经检测,最终产品晶粒尺寸为3‑5μm,起始磁导率ui为2500(±25%),140℃、3
100kHz、200mT Bs值下功率损耗为300kW/m,100℃Bs值为475mT。
[0086] 实施例3
[0087] 一种宽温高效软磁铁氧体材料,包括主体料和辅助料;
[0088] 所述主体料按摩尔份数计,包括有:
[0089] Fe2O3 63mol;
[0090] MnO 18mol;
[0091] ZnO 10mol;
[0092] 相对于所述主体料的质量,所述辅助料按质量添加为:
[0093]
[0094] 所述SiO2呈颗粒状,且所述SiO2的尺寸为50‑100nm。
[0095] 一种制备如上所述的宽温高效软磁铁氧体材料的方法,包括以下步骤:
[0096] S1,按摩尔份取主体料的各个组分,并将主体料进行一次球磨,时间为3h;
[0097] S2,对一次球磨完成的物料进行预烧,温度为950℃,时间为2.5h;
[0098] S3,向预烧完成的物料中按照质量加入各个辅助料;
[0099] S4,对S3中的物料进行二次球磨,时间为6.5h;
[0100] S5,对二次球磨完成的物料进行制粒,其中制粒时加入主体料质量6.5%的PVA溶液;
[0101] S6,将S5中的物料进行压制成型;
[0102] S7,对成型的材料进行烧结,冷却得到产品。
[0103] 所述S7均在常压下进行,且其烧结过程为:
[0104] S7‑1,从室温开始以2.5℃/min的速度升至350℃,保持0.8h;
[0105] S7‑2,以2℃/min的速度升至920℃,保持1.2h;
[0106] S7‑3,以3℃/min的速度升至1315℃,保持5.5h,其中最高温度下氧含量为9%。
[0107] 所述S6中压制成型的物料的密度为3.10g/cm3,材料的烧制密度为4.914g/cm3。
[0108] 经检测,最终产品晶粒尺寸为3‑5μm,起始磁导率ui为2700(±25%),130℃、3
100kHz、200mT Bs值下功率损耗为295kW/m,100℃Bs值为455mT。
[0109] 实施例4
[0110] 一种宽温高效软磁铁氧体材料,包括主体料和辅助料;
[0111] 所述主体料按摩尔份数计,包括有:
[0112] Fe2O3 68mol;
[0113] MnO 15mol;
[0114] ZnO 9mol;
[0115] 相对于所述主体料的质量,所述辅助料按质量添加为:
[0116]
[0117] 所述SiO2呈颗粒状,且所述SiO2的尺寸为50‑100nm。
[0118] 一种制备如上所述的宽温高效软磁铁氧体材料的方法,包括以下步骤:
[0119] S1,按摩尔份取主体料的各个组分,并将主体料进行一次球磨,时间为5h;
[0120] S2,对一次球磨完成的物料进行预烧,温度为850℃,时间为4h;
[0121] S3,向预烧完成的物料中按照质量加入各个辅助料;
[0122] S4,对S3中的物料进行二次球磨,时间为7h;
[0123] S5,对二次球磨完成的物料进行制粒,其中制粒时加入主体料质量5%的PVA溶液;
[0124] S6,将S5中的物料进行压制成型;
[0125] S7,对成型的材料进行烧结,冷却得到产品。
[0126] 所述S3中按照质量加入有TiO2。
[0127] 所述S7均在常压下进行,且其烧结过程为:
[0128] S7‑1,从室温开始以2℃/min的速度升至320℃,保持1h;
[0129] S7‑2,以1.8℃/min的速度升至910℃,保持1h;
[0130] S7‑3,以2.6℃/min的速度升至1305℃,保持5.2h,其中最高温度下氧含量为7%。
[0131] 所述S6中压制成型的物料的密度为3.08g/cm3,材料的烧制密度为4.886g/cm3。
[0132] 经检测,最终产品晶粒尺寸为3‑5μm,起始磁导率ui为2900(±25%),150℃、3
100kHz、200mT Bs值下功率损耗为305kW/m,100℃Bs值为440mT。
[0133] 实施例5
[0134] 一种宽温高效软磁铁氧体材料,包括主体料和辅助料;
[0135] 所述主体料按摩尔份数计,包括有:
[0136] Fe2O3 60mol;
[0137] MnO 19mol;
[0138] ZnO 11mol;
[0139] 相对于所述主体料的质量,所述辅助料按质量添加为:
[0140]
[0141] 所述SiO2呈颗粒状,且所述SiO2的尺寸为50‑100nm。
[0142] 一种制备如上所述的宽温高效软磁铁氧体材料的方法,包括以下步骤:
[0143] S1,按摩尔份取主体料的各个组分,并将主体料进行一次球磨,时间为4.2h;
[0144] S2,对一次球磨完成的物料进行预烧,温度为920℃,时间为3.8h;
[0145] S3,向预烧完成的物料中按照质量加入各个辅助料;
[0146] S4,对S3中的物料进行二次球磨,时间为6.8h;
[0147] S5,对二次球磨完成的物料进行制粒,其中制粒时加入主体料质量6.2%的PVA溶液;
[0148] S6,将S5中的物料进行压制成型;
[0149] S7,对成型的材料进行烧结,冷却得到产品。
[0150] 所述S3中按照质量加入有TiO2。
[0151] 所述S7均在0.055MPa的压强下进行,且其烧结过程为:
[0152] S7‑1,从室温开始以2.2℃/min的速度升至310℃,保持0.7h;
[0153] S7‑2,以2℃/min的速度升至945℃,保持1.4h;
[0154] S7‑3,以3.1℃/min的速度升至1320℃,保持5.8h,其中最高温度下氧含量为8.5%。
[0155] 所述S6中压制成型的物料的密度为3.11g/cm3,材料的烧制密度为4.935g/cm3。
[0156] 经检测,最终产品晶粒尺寸为3‑5μm,起始磁导率ui为3100(±25%),140℃、3
100kHz、200mT Bs值下功率损耗为300kW/m,100℃Bs值为460mT。
[0157] 需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
[0158] 上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护
范围。