一种高强度石英光纤的制备方法转让专利

申请号 : CN202110467839.6

文献号 : CN113213748B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 侯超奇高菘薛耀辉张卓王晓章郭海涛折胜飞张岩李艺昭

申请人 : 中国科学院西安光学精密机械研究所

摘要 :

本发明涉及石英光纤的制备方法,具体涉及一种高强度石英光纤的制备方法,用于解决现有石英光纤强度无法满足特殊应用场合需求的不足之处。该高强度石英光纤的制备方法包括以下步骤:首先对直径尺寸为20~35mm的石英预制棒进行机械抛光,抛光后粗糙度在6~8μm,再进行火焰抛光,抛光后粗糙度在4~6μm,再以逐渐降低氢氧焰中氢气流量的方式逐渐降低加热温度,停止加热后将石英预制棒静置至室温,对石英预制棒进行酸洗处理后进行拉丝,拉丝速度为3~10m/min,同时对拉丝炉出口输出的裸光纤进行退火,退火段长度为600mm,退火温度为300~500℃,最后对裸光纤进行涂覆。

权利要求 :

1.一种高强度石英光纤的制备方法,其特征在于,包括以下步骤:步骤1)、选取直径尺寸为20~35mm的石英预制棒,对石英预制棒进行机械抛光,抛光后石英预制棒的粗糙度在6~8μm;

步骤2)、对石英预制棒进行火焰抛光,抛光后石英预制棒的粗糙度在4~6μm;

步骤3)、对火焰抛光后的石英预制棒以逐渐降低氢氧焰中氢气流量的方式逐渐降低加热温度,停止加热后将石英预制棒静置至室温;

步骤4)、对石英预制棒进行酸洗;

步骤5)、将处理完成的石英预制棒进行拉丝,拉丝速度为3~7m/min;同时对拉丝炉出口输出的裸光纤进行退火,退火段长度为600mm,退火温度为300~500℃;

步骤6)、对裸光纤进行涂覆。

2.根据权利要求1所述的一种高强度石英光纤的制备方法,其特征在于:步骤3)中,所述以逐渐降低氢氧焰中氢气流量的方式逐渐降低加热温度的具体过程是:保持火焰移动速度为50mm/min;

氢氧焰中氢气流量降低的过程为:50L/min、40L/min、30L/min、20L/min、10L/min,在上述每种氢气流量下对预制棒从头到尾加热一次。

3.根据权利要求1所述的一种高强度石英光纤的制备方法,其特征在于:步骤2)中,所述火焰抛光时,H2流量为50~80L/min,火焰移动速度为50mm/min,次数为2~3次。

4.根据权利要求2所述的一种高强度石英光纤的制备方法,其特征在于:步骤4)中,所述对石英预制棒进行酸洗是采用HF酸和HNO3酸混合液进行酸洗,比例为HF:HNO3:H2O=8:

1:10,时间为10~15分钟。

5.根据权利要求4所述的一种高强度石英光纤的制备方法,其特征在于:步骤5)中,拉丝时的温度范围为2150~2180℃。

6.根据权利要求1所述的一种高强度石英光纤的制备方法一种高强度石英光纤的制备方法,其特征在于:步骤5)中,拉丝和退火在千级洁净间进行。

7.根据权利要求1所述的一种高强度石英光纤的制备方法,其特征在于:步骤5)中,所述拉丝过程在密闭腔体内进行,所述密闭腔体采用99.999%的氩气进行吹扫,所述吹扫在步骤5)进行前一小时开始。

8.根据权利要求1所述的一种高强度石英光纤的制备方法,其特征在于:步骤5)中,拉制的光纤为标准125m光纤;步骤6)中,采用丙烯酸树脂对裸光纤进行涂覆。

9.根据权利要求5所述的一种高强度石英光纤的制备方法,其特征在于:步骤1)中,抛光后石英预制棒的粗糙度为6.5μm;步骤2)中,抛光后石英预制棒的粗糙度为4.4μm;步骤5)中,拉丝速度为4m/min,拉丝时的温度为2160℃,退火温度为350℃。

10.根据权利要求1所述的一种高强度石英光纤的制备方法,其特征在于:步骤1)中,石英预制棒为单模石英光纤预制棒或多模石英光纤预制棒。

说明书 :

一种高强度石英光纤的制备方法

技术领域

[0001] 本发明涉及石英光纤的制备方法,具体涉及一种高强度石英光纤的制备方法。

背景技术

[0002] 光纤材料因具有重量轻、体积小、抗电磁干扰、传输信息容量大等优点,因此得到了很多研究者的青睐,并被广泛应用于电子、医疗、生物工程、材料加工、传感技术等各个领
域,但对于一些特殊的应用场合,现有石英光纤的脆性特征导致其机械强度欠佳,容易拉
断,因此开发高强度的石英光纤是进一步开拓石英光纤应用领域的关键。

发明内容

[0003] 本发明的目的是解决现有石英光纤强度无法满足高强度应用需求的不足之处,而提供一种高强度石英光纤的制备方法。
[0004] 为了解决上述现有技术所存在的不足之处,本发明提供了如下技术解决方案:
[0005] 一种高强度石英光纤的制备方法,其特殊之处在于,包括以下步骤:
[0006] 步骤1)、选取直径尺寸为20~35mm的石英预制棒,对石英预制棒进行机械抛光,抛光后石英预制棒的粗糙度在6~8μm;
[0007] 步骤2)、对石英预制棒进行火焰抛光,将火焰抛光后石英预制棒的粗糙度控制在4~6μm;
[0008] 步骤3)、对火焰抛光后的石英预制棒以逐渐降低氢氧焰中氢气流量的方式逐渐降低加热温度,停止加热后将石英预制棒静置至室温;
[0009] 步骤4)、对石英预制棒进行酸洗;
[0010] 步骤5)、将处理完成的石英预制棒进行拉丝,拉丝速度为3~10m/min;同时对拉丝炉出口输出的裸光纤进行退火,退火段长度为600mm,退火温度为300~500℃;
[0011] 步骤6)、对裸光纤进行涂覆。
[0012] 进一步地,步骤3)中,所述以逐渐降低氢氧焰中氢气流量的方式逐渐降低加热温度的具体过程是:保持火焰移动速度为50mm/min;氢氧焰中氢气流量降低的过程为:50L/
min、40L/min、30L/min、20L/min、10L/min,在上述每种氢气流量下对预制棒从头到尾加热
一次。
[0013] 进一步地,步骤2)中,所述火焰抛光时,H2流量为50~80L/min,火焰移动速度为50mm/min,次数为2~3次。
[0014] 进一步地,步骤4)中,所述对石英预制棒进行酸洗是采用HF酸和HNO3酸混合液进行酸洗,比例为HF:HNO3:H2O=8:1:10,浸泡时间为10~15分钟。
[0015] 进一步地,步骤5)中,拉丝时的温度范围为2150~2180℃。
[0016] 进一步地,步骤5)中,拉丝和退火在千级洁净间进行。
[0017] 进一步地,步骤5)中,所述拉丝过程在密闭腔体内进行,所述密闭腔体采用99.999%的氩气进行吹扫,所述吹扫在步骤5)进行前一小时开始。
[0018] 进一步地,步骤5)中,拉制的光纤为标准125m光纤;步骤6)中,采用丙烯酸树脂对裸光纤进行涂覆。
[0019] 进一步地,步骤1)中,抛光后石英预制棒的粗糙度为6.5μm;步骤2)中,抛光后石英预制棒的粗糙度为4.4μm;步骤5)中,拉丝速度为4m/min,拉丝时的温度为2160℃,退火温度
为350℃。
[0020] 进一步地,步骤1)中,石英预制棒为单模石英预制棒或多模石英预制棒。
[0021] 与现有技术相比,本发明的有益效果是:
[0022] (1)本发明中对石英预制棒先进行机械抛光,抛光后粗糙度控制在6~8μm,再对石英预制棒进行火焰抛光,抛光后粗糙度控制在4~6μm,因为抛光后粗糙度过低的石英预制
棒在拉丝工艺的二次高温加热中会使拉制的光纤表面变脆,从而产生较多裂纹,而具有一
定粗糙度的预制棒在拉丝工艺的二次高温加热中会使裂纹弥合,从而拉制的光纤能表现出
更高的强度。
[0023] (2)本发明对火焰抛光后的石英预制棒以逐渐降低氢氧焰中氢气流量的方式逐渐降低加热温度,停止加热后将石英预制棒静置至室温,消除了石英预制棒横截面上的温度
梯度,减少了因温度差产生的内部应力,并防止了表面应力分布不均造成微裂纹扩大增多
的问题,从而增强了光纤的强度。
[0024] (3)本发明采用了超低速拉丝,并结合光纤在线退火工艺,使光纤从拉丝炉出来后不会猝冷,能够在退火炉内得到较为充分的保温及退火,减少光纤中的内应力,使光纤表面
因内应力而产生的裂纹变少,增加光纤的强度。

具体实施方式

[0025] 下面结合示例性实施例对本发明作进一步地说明。
[0026] 实施例1:
[0027] 本实施例为对比例,对步骤2)抛光后的石英预制棒直接静置降温,未采用步骤3)中以逐渐降低氢氧焰中氢气流量的方式逐渐降低加热温度。
[0028] 采用表1中1#参数对石英预制棒进行预处理和拉丝。
[0029] 步骤1)、选取直径尺寸为30mm的石英预制棒,首先对石英预制棒进行机械抛光,抛光后石英预制棒的表面粗糙度为6.5μm;
[0030] 步骤2)、再对石英预制棒进行火焰抛光,其中H2流量为80L/min,火焰移动速度为50mm/min,次数为2次,抛光后石英预制棒的粗糙度为4.4μm;
[0031] 步骤3)、将石英预制棒直接静置室温;
[0032] 步骤4)、采用HF酸和HNO3酸混合液对石英预制棒进行10分钟酸洗,再采用去离子水清洗石英预制棒;
[0033] 步骤5)、对石英预制棒进行拉丝,拉丝温度为2000℃,拉丝速度为4m/min,同时对拉丝炉出口输出的裸光纤进行退火,即从炉口出来的裸光纤经过一段600mm长的温度为350
℃的加热段;
[0034] 步骤6)、采用丙烯酸树脂对裸光纤进行涂覆。
[0035] 完成后任选十个光纤样品对光纤的抗拉强度进行测试,结果见表1,光纤的平均拉断强度为51.9N。
[0036] 实施例2:
[0037] 本实施例为对比例,对步骤2)抛光后的石英预制棒直接静置降温,未采用步骤3)中以逐渐降低氢氧焰中氢气流量的方式逐渐降低加热温度。
[0038] 采用表1中2#参数对石英预制棒进行预处理和拉丝。
[0039] 本实施例中步骤5)的拉丝温度为2080℃,其余方法与实施例1相同。
[0040] 完成后任选十个光纤样品对光纤的抗拉强度进行测试,结果见表1,光纤的平均拉断强度为52.3N。
[0041] 实施例3:
[0042] 本实施例为对比例,对步骤2)抛光后的石英预制棒直接静置降温,未采用步骤3)中以逐渐降低氢氧焰中氢气流量的方式逐渐降低加热温度。
[0043] 采用表1中3#参数对石英预制棒进行预处理和拉丝。
[0044] 本实施例中步骤5)的拉丝温度为2160℃,其余方法与实施例1相同。
[0045] 完成后任选十个光纤样品对光纤的抗拉强度进行测试,结果见表1,光纤的平均拉断强度为57.0N。
[0046] 实施例4:
[0047] 采用表1中4#参数对石英预制棒进行预处理和拉丝。
[0048] 步骤1)、选取直径尺寸为30mm的石英预制棒,首先对石英预制棒进行机械抛光,抛光后石英预制棒的表面粗糙度为6.5μm;
[0049] 步骤2)、再对石英预制棒进行火焰抛光,其中H2流量为80L/min,火焰移动速度为50mm/min,次数为2次,抛光后石英预制棒的粗糙度为4.4μm;
[0050] 步骤3)、对火焰抛光后的石英预制棒分别采用H2流量为50L/min、40L/min、30L/min、20L/min、10L/min的氢氧焰进行5次加热,火焰移动速度为50mm/min,停止加热后将石
英预制棒静置至室温;
[0051] 步骤4)、采用HF酸和HNO3酸混合液对石英预制棒进行10分钟酸洗,再采用去离子水清洗石英预制棒;
[0052] 步骤5)、对石英预制棒进行拉丝,拉丝温度为2000℃,拉丝速度为4m/min,同时对拉丝炉出口输出的裸光纤进行退火,即从炉口出来的裸光纤经过一段600mm长的温度为350
℃的加热段;
[0053] 步骤6)、采用丙烯酸树脂对裸光纤进行涂覆。
[0054] 完成后任选十个光纤样品对光纤的抗拉强度进行测试,结果见表1,光纤的平均拉断强度为63.4N。
[0055] 实施例5:
[0056] 采用表1中5#参数对石英预制棒进行预处理和拉丝。
[0057] 本实施例中步骤5)的拉丝温度为2080℃,其余方法与实施例4相同。
[0058] 完成后任选十个光纤样品对光纤的抗拉强度进行测试,结果见表1,光纤的平均拉断强度为65.8N。
[0059] 实施例6:
[0060] 采用表1中6#参数对石英预制棒进行预处理和拉丝。
[0061] 本实施例中步骤5)的拉丝温度为2160℃,其余方法与实施例4相同。
[0062] 完成后任选十个光纤样品对光纤的抗拉强度进行测试,结果见表1,光纤的平均拉断强度为68.5N。
[0063] 实施例7:
[0064] 采用表1中7#参数对石英预制棒进行预处理和拉丝。
[0065] 步骤1)、选取直径尺寸为30mm的石英预制棒,首先对石英预制棒进行机械抛光,抛光后石英预制棒的表面粗糙度为6.4μm;
[0066] 步骤2)、再对石英预制棒进行火焰抛光,其中H2流量为80L/min,火焰移动速度为50mm/min,次数为2次,抛光后石英预制棒的粗糙度为4.1μm;
[0067] 步骤3)、对火焰抛光后的石英预制棒分别采用H2流量为50L/min、40L/min、30L/min、20L/min、10L/min的氢氧焰进行5次加热,火焰移动速度为50mm/min,停止加热后将石
英预制棒静置至室温;
[0068] 步骤4)、采用HF酸和HNO3酸混合液对石英预制棒进行10分钟酸洗,再采用去离子水清洗石英预制棒;
[0069] 步骤5)、对石英预制棒进行拉丝,拉丝温度为2160℃,拉丝速度为3m/min,同时对拉丝炉出口输出的裸光纤进行退火,即从炉口出来的裸光纤经过一段600mm长的温度为350
℃的加热段;
[0070] 步骤6)、采用丙烯酸树脂对裸光纤进行涂覆。
[0071] 完成后任选十个光纤样品对光纤的抗拉强度进行测试,结果见表1,光纤的平均拉断强度为65.3N。
[0072] 实施例8:
[0073] 采用表1中8#参数对石英预制棒进行预处理和拉丝。
[0074] 步骤1)、选取直径尺寸为30mm的石英预制棒,首先对石英预制棒进行机械抛光,抛光后石英预制棒的表面粗糙度为7.9μm;
[0075] 步骤2)、再对石英预制棒进行火焰抛光,其中H2流量为80L/min,火焰移动速度为50mm/min,次数为3次,抛光后石英预制棒的粗糙度为4.1μm;
[0076] 步骤3)、对火焰抛光后的石英预制棒分别采用H2流量为50L/min、40L/min、30L/min、20L/min、10L/min的氢氧焰进行5次加热,火焰移动速度为50mm/min,停止加热后将石
英预制棒静置至室温;
[0077] 步骤4)、采用HF酸和HNO3酸混合液对石英预制棒进行10分钟酸洗,再采用去离子水清洗石英预制棒;
[0078] 步骤5)、对石英预制棒进行拉丝,拉丝温度为2160℃,拉丝速度为10m/min,同时对拉丝炉出口输出的裸光纤进行退火,即从炉口出来的裸光纤经过一段600mm长的温度为350
℃的加热段;
[0079] 步骤6)、采用丙烯酸树脂对裸光纤进行涂覆。
[0080] 完成后任选十个光纤样品对光纤的抗拉强度进行测试,结果见表1,光纤的平均拉断强度为60.8N。
[0081] 实施例9:
[0082] 采用表1中9#参数对石英预制棒进行预处理和拉丝。
[0083] 步骤1)、选取直径尺寸为30mm的石英预制棒,首先对石英预制棒进行机械抛光,抛光后石英预制棒的表面粗糙度为6.4μm;
[0084] 步骤2)、再对石英预制棒进行火焰抛光,其中H2流量为70L/min,火焰移动速度为50mm/min,次数为2次,抛光后石英预制棒的粗糙度为5.3μm;
[0085] 步骤3)、对火焰抛光后的石英预制棒分别采用H2流量为50L/min、40L/min、30L/min、20L/min、10L/min的氢氧焰进行5次加热,火焰移动速度为50mm/min,停止加热后将石
英预制棒静置至室温;
[0086] 步骤4)、采用HF酸和HNO3酸混合液对石英预制棒进行10分钟酸洗,再采用去离子水清洗石英预制棒;
[0087] 步骤5)、对石英预制棒进行拉丝,拉丝温度为2160℃,拉丝速度为7m/min,同时对拉丝炉出口输出的裸光纤进行退火,即从炉口出来的裸光纤经过一段600mm长的温度为350
℃的加热段;
[0088] 步骤6)、采用丙烯酸树脂对裸光纤进行涂覆。
[0089] 完成后任选十个光纤样品对光纤的抗拉强度进行测试,结果见表1,光纤的平均拉断强度为63.3N。
[0090] 实施例10:
[0091] 采用表1中10#参数对石英预制棒进行预处理和拉丝。
[0092] 步骤1)、选取直径尺寸为30mm的石英预制棒,首先对石英预制棒进行机械抛光,抛光后石英预制棒的表面粗糙度为7.9μm;
[0093] 步骤2)、再对石英预制棒进行火焰抛光,其中H2流量为50L/min,火焰移动速度为50mm/min,次数为3次,抛光后石英预制棒的粗糙度为6.0μm;
[0094] 步骤3)、对火焰抛光后的石英预制棒分别采用H2流量为50L/min、40L/min、30L/min、20L/min、10L/min的氢氧焰进行5次加热,火焰移动速度为50mm/min,停止加热后将石
英预制棒静置至室温;
[0095] 步骤4)、采用HF酸和HNO3酸混合液对石英预制棒进行10分钟酸洗,再采用去离子水清洗石英预制棒;
[0096] 步骤5)、对石英预制棒进行拉丝,拉丝温度为2160℃,拉丝速度为3m/min,同时对拉丝炉出口输出的裸光纤进行退火,即从炉口出来的裸光纤经过一段600mm长的温度为350
℃的加热段;
[0097] 步骤6)、采用丙烯酸树脂对裸光纤进行涂覆。
[0098] 完成后任选十个光纤样品对光纤的抗拉强度进行测试,结果见表1,光纤的平均拉断强度为64.4N。
[0099] 实施例11:
[0100] 采用表1中11#参数对石英预制棒进行预处理和拉丝。
[0101] 步骤1)、选取直径尺寸为30mm的石英预制棒,首先对石英预制棒进行机械抛光,抛光后石英预制棒的表面粗糙度为7.9μm;
[0102] 步骤2)、再对石英预制棒进行火焰抛光,其中H2流量为80L/min,火焰移动速度为50mm/min,次数为2次,抛光后石英预制棒的粗糙度为6.0μm;
[0103] 步骤3)、对火焰抛光后的石英预制棒分别采用H2流量为50L/min、40L/min、30L/min、20L/min、10L/min的氢氧焰进行5次加热,火焰移动速度为50mm/min,停止加热后将石
英预制棒静置至室温;
[0104] 步骤4)、采用HF酸和HNO3酸混合液对石英预制棒进行10分钟酸洗,再采用去离子水清洗石英预制棒;
[0105] 步骤5)、对石英预制棒进行拉丝,拉丝温度为2160℃,拉丝速度为10m/min,同时对拉丝炉出口输出的裸光纤进行退火,即从炉口出来的裸光纤经过一段600mm长的温度为350
℃的加热段;
[0106] 步骤6)、采用丙烯酸树脂对裸光纤进行涂覆。
[0107] 完成后任选十个光纤样品对光纤的抗拉强度进行测试,结果见表1,光纤的平均拉断强度为58.5N。
[0108] 表1实施例工艺参数
[0109]
[0110] 表1中1#、2#、3#光纤火焰抛光后直接静置降温,而4#、5#、6#光纤火焰抛光后以逐渐降低氢氧焰中氢气流量的方式逐渐降低加热温度,在其余工艺参数相同的条件下,4#、
5#、6#光纤的拉断强度相较于1#、2#、3#光纤均有明显提高,证明火焰抛光后逐渐降低预制
棒温度利于增强光纤拉断强度。
[0111] 表1中4~11#光纤机械抛光后石英预制棒粗糙度在4~6μm,火焰抛光后石英预制棒粗糙度在4~6μm,再以逐渐降低氢氧焰中氢气流量的方式逐渐降低石英预制棒加热温
度,并且采用3~10m/min的超低速进行拉丝,结果显示4~11#光纤的平均拉断强度明显高
于抗拉强度为40N的常规通信光纤,其中6#光纤具有最优的拉断强度,结合上述结论,本发
明所制备的石英光纤可以满足高强度应用需求的场合。