一种钢包低碳铝镁碳砖转让专利

申请号 : CN202110698307.3

文献号 : CN113213897B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 侯会峰黄奥侯振东王俊超

申请人 : 郑州振东科技有限公司武汉科技大学

摘要 :

本发明公开了一种钢包低碳铝镁碳砖,是由原料50~70wt%的刚玉颗粒,2~10wt%的镁砂颗粒,15~22wt%的刚玉细粉,2~6wt%的氧化镁微粉,1~5wt%的活性氧化铝微粉,0.5~3wt%的石墨粉,0.2~0.5wt%的氧化锶粉,1~3wt%的氧化镧粉,0.4~0.7wt%的铝硅合金粉,0.2~0.5wt%的金属钛粉,5~10wt%的铝钙渣粉制备而成:首先将除氧化锶粉与铝钙渣粉外的所有原料混合后干压成砖坯放入内腔长、宽、高尺寸均比砖坯的尺寸大5%的石墨坩埚内,并在其外包裹隔热纤维棉;将氧化锶粉与铝钙渣粉的熔液浇注到石墨坩埚内,并迅速盖上纤维板盖,自然冷却至室温后脱除石墨坩埚,即得到成品钢包低碳铝镁碳砖。本发明制备的钢包低碳工作衬砖无需使用树脂结合剂,环境友好,不会对环境造成污染。

权利要求 :

1.一种钢包低碳铝镁碳砖,其特征在于:是由原料刚玉颗粒、镁砂颗粒、刚玉细粉、氧化镁微粉、活性氧化铝微粉、石墨粉、氧化锶粉、氧化镧粉、硅铝合金粉、金属钛粉和铝钙渣粉按照下述质量百分比配方和方法制备而成:原料配方:

50~70wt%的刚玉颗粒,2~10wt%的镁砂颗粒,15~22wt%的刚玉细粉,2~6wt%的氧化镁微粉,1~5wt%的活性氧化铝微粉,0.5~3wt%的石墨粉,0.2~0.5wt%的氧化锶粉,1~

3wt%的氧化镧粉,0.4~0.7wt%的铝硅合金粉,0.2~0.5wt%的金属钛粉,5~10wt%的铝钙渣粉;

制备方法:

第一步,将原料中的氧化镁微粉、活性氧化铝微粉、石墨粉、氧化镧粉、铝硅合金粉和金属钛粉预混均匀,再与刚玉颗粒、镁砂颗粒及刚玉细粉混合均匀,得到混合料;

第二步,将混合料在50MPa压力下干压成砖坯后放入石墨坩埚内,其中石墨坩埚的内腔长、宽、高尺寸均比砖坯的尺寸大5%;并在石墨坩埚外包裹隔热纤维棉;

第三步,将氧化锶粉与铝钙渣粉的混合物熔融成液态后浇注到石墨坩埚内,并迅速盖上纤维板盖,自然冷却至室温后脱除石墨坩埚,得到成品钢包低碳铝镁碳砖。

2.根据权利要求1所述的钢包低碳铝镁碳砖,其特征在于:熔融所述氧化锶粉与铝钙渣粉混合物的温度为1500 1600℃。

~

3.根据权利要求1所述的钢包低碳铝镁碳砖,其特征在于:包裹在石墨坩埚外隔热纤维棉的厚度为12 15mm,所述纤维板盖的厚度为12 15mm。

~ ~

4.根据权利要求1所述的钢包低碳铝镁碳砖,其特征在于:所述刚玉颗粒和刚玉细粉为烧结刚玉或电熔刚玉,其中Al2O3含量>99wt%;所述刚玉颗粒的粒径为5~0.15mm,所述刚玉细粉的粒径<0.088mm。

5.根据权利要求1所述的钢包低碳铝镁碳砖,其特征在于:所述镁砂颗粒为烧结镁砂或电熔镁砂,其中MgO含量>97wt%,所述镁砂颗粒的粒径为5~0.15mm。

6.根据权利要求1所述的钢包低碳铝镁碳砖,其特征在于:所述氧化镁微粉中MgO含量>99wt%,其粒径<0.007mm。

7.根据权利要求1所述的钢包低碳铝镁碳砖,其特征在于:所述活性氧化铝微粉中Al2O3含量>99wt%,其粒径<0.008mm。

8.根据权利要求1所述的钢包低碳铝镁碳砖,其特征在于:所述石墨粉、氧化锶粉、氧化镧粉、铝硅合金粉和金属钛粉的纯度均大于98wt%,其粒径<0.15mm。

9.根据权利要求1所述的钢包低碳铝镁碳砖,其特征在于:所述铝钙渣粉中Al2O3含量在

23~45 wt%之间,SiO2含量<5wt%,Fe2O3含量<2.5wt%,TiO2含量<3wt%,MgO含量<2wt%。

10.根据权利要求1所述的钢包低碳铝镁碳砖,其特征在于:所述隔热纤维棉和纤维板盖的导热系数在0.05 0.1W/m·K之间。

~

说明书 :

一种钢包低碳铝镁碳砖

技术领域

[0001] 本发明涉及耐火材料,尤其是涉及一种钢包低碳铝镁碳砖。

背景技术

[0002] 随着炉外精炼和连铸技术的发展,钢包由原来功能单一的盛装钢水容器逐渐转变为功能复杂的炉外钢水精炼设备。钢水在钢包内停留时间的延长和出钢温度的提高使得钢包的工作环境变得更加苛刻。为适应钢包工作环境的改变,国内钢包普遍采用了铝镁碳砖等碳复合耐火材料。使用时发现采用铝镁碳砖等作内衬的钢包一方面热传导率高,钢水温度下降快,不利于连铸生产顺利进行,另一方面,含碳制品对钢水增碳作用明显,不适应冶炼低碳钢和洁净钢。因此,近年来,钢包碳复合内衬材料逐渐向低碳化方向发展,而低碳碳复合耐火材料由于自身热导率和总碳含量下降、能有效降低对钢水的增碳等优越性而受到各界的高度关注,成为钢包用碳复合耐火材料新的发展焦点。
[0003] 目前冶炼硅钢、桥梁钢、汽车板钢等超低碳钢时,必须经过VD炉在真空条件下精炼,同时对钢包底部吹氩搅拌,通过LF炉电弧加热、炉内还原气氛、造白渣精炼、气体搅拌等步骤,需要强化热力学和动力学条件、脱硫、合金化、升温等,因此熔渣碱度范围大,钢水和炉渣的温度更高,钢水在钢包内的滞留时间延长,热震性强,搅拌力大,这些因素都会使钢包内衬的损坏加剧。研究表明:单纯降低碳复合耐火材料中的碳含量会导致材料的抗渣性、抗热震性及抗冲刷性恶化;同时现有的钢包低碳碳复合耐火材料不仅需要使用树脂作为结合剂(会造成环境污染),而且其抗渣性、抗热震性、抗冲刷性依旧薄弱,使用寿命低(一般为115次左右),不能完全满足钢包精炼生产的要求。

发明内容

[0004] 本发明的目的在于提供一种具有优良抗热震性、抗渣性和抗冲刷性的钢包低碳铝镁碳砖。
[0005] 为实现上述目的,本发明可采取下述技术方案:
[0006] 本发明所述的钢包低碳铝镁碳砖,是由原料刚玉颗粒、镁砂颗粒、刚玉细粉、氧化镁微粉、活性氧化铝微粉、石墨粉、氧化锶粉、氧化镧粉、硅铝合金粉、金属钛粉和铝钙渣粉按照下述质量百分比配方和方法制备而成:
[0007] 原料配方:
[0008] 50~70wt%的刚玉颗粒,2~10wt%的镁砂颗粒,15~22wt%的刚玉细粉,2~6wt%的氧化镁微粉,1~5wt%的活性氧化铝微粉,0.5~3wt%的石墨粉,0.2~0.5wt%的氧化锶粉,1~3wt%的氧化镧粉,0.4~0.7wt%的铝硅合金粉,0.2~0.5wt%的金属钛粉,5~10wt%的铝钙渣粉;
[0009] 制备方法:
[0010] 第一步,将原料中的氧化镁微粉、活性氧化铝微粉、石墨粉、氧化镧粉、铝硅合金粉和金属钛粉预混均匀,再与刚玉颗粒、镁砂颗粒及刚玉细粉混合均匀,得到混合料;
[0011] 第二步,将混合料在50MPa压力下干压成砖坯后放入石墨坩埚内,其中石墨坩埚的内腔长、宽、高尺寸均比砖坯的尺寸大5%;并在石墨坩埚外包裹隔热纤维棉;
[0012] 第三步,将氧化锶粉与铝钙渣粉的混合物熔融成液态后浇注到石墨坩埚内,并迅速盖上纤维板盖,自然冷却至室温后脱除石墨坩埚,得到成品钢包低碳铝镁碳砖。
[0013] 进一步优化,所述原料的质量百分比配方为:55~65wt%的刚玉颗粒,2~8wt%的镁砂颗粒,16~20wt%的刚玉细粉,2~6wt%的氧化镁微粉,1.5~4wt%的活性氧化铝微粉,0.5~2.5wt%的石墨粉,0.2~0.5wt%的氧化锶粉,1.5~2.5wt%的氧化镧粉,0.4~0.6wt%的铝硅合金粉,0.2~0.4wt%的金属钛粉,6~9wt%的铝钙渣粉。
[0014] 熔融所述氧化锶粉与铝钙渣粉混合物的温度为1500 1600℃。~
[0015] 包裹在石墨坩埚外隔热纤维棉的厚度为12 15mm,所述纤维板盖的厚度为12~ ~15mm。
[0016] 所述刚玉为烧结刚玉或电熔刚玉,其中Al2O3含量>99wt%;所述刚玉颗粒的粒径为5~0.15mm,所述刚玉细粉的粒径<0.088mm。
[0017] 所述镁砂为烧结镁砂或电熔镁砂,其中MgO含量>97wt%,所述镁砂颗粒的粒径为5~0.15mm。
[0018] 所述氧化镁微粉中MgO含量>99wt%,其粒径<0.007mm。
[0019] 所述活性氧化铝微粉中Al2O3含量>99wt%,其粒径<0.008mm。
[0020] 所述石墨粉、氧化锶粉、氧化镧粉、铝硅合金粉和金属钛粉的纯度均大于98wt%,其粒径<0.15mm。
[0021] 所述铝钙渣粉中Al2O3含量在23~45 wt%之间,SiO2含量<5wt%,Fe2O3含量<2.5wt%,TiO2含量<3wt%,MgO含量<2wt%。
[0022] 所述隔热纤维棉和纤维板盖的导热系数在0.05 0.1W/m·K之间。~
[0023] 本发明将氧化锶粉与铝钙渣粉混合物熔融成液态后浇注在由混合料干压成的砖坯上,由于其粘度较低,所以在石墨坩埚内腔的约束下,得以均匀地包裹在砖坯外,熔渣首先熔化砖坯中的铝硅合金粉,使其膨胀流动或塑性应变以促进熔渣的分散均匀性,并利用其氧化反应及与熔渣的不浸润性使其逐步形成AlSi@Al2O3球均匀分散在耐火材料的基质中,并和金属钛作用形成一部分含钛铝合金的TiAlSi@Al2O3球;同时,含氧化锶的熔渣会与氧化镧、活性氧化铝微粉及氧化镁微粉反应逐步形成六铝酸镧、六铝酸钙与六铝酸锶及铝镁尖晶石的复合陶瓷结合相;再者,石墨与TiAlSi金属间化合物能进一步形成TiAlC、TiSiC相;此外,该熔渣浇注过程在石墨坩埚内会产生一定的温度分布和变化,使混合料形成了刚柔兼顾的梯度结构,结合上述的金属‑陶瓷复合强韧化,不仅使砖体在高温服役时的热面具有良好的抗渣性和抗钢渣冲刷性,整体砖也具有很好的强度及抗热震性。经测试,成品砖体3
的体积密度>3.05g/cm、显气孔率<3%、1400℃×0.5h热态抗折强度>9MPa,将该成品砖作为钢包内衬砖,可大大提高钢包工作衬的使用寿命。将其应用于大型精炼钢包上作为工作衬砖,可使钢包的平均使用寿命大于130次以上。
[0024] 同时,本发明制备的钢包低碳工作衬砖无需使用树脂结合剂,环境友好,不会对环境造成污染。

具体实施方式

[0025] 下面结合具体实施对本发明做更加详细的说明,以便于本领域技术人员的理解。
[0026] 本发明制备的钢包低碳铝镁碳砖所用原料如下:
[0027] 1、刚玉颗粒、刚玉细粉:刚玉为烧结刚玉或电熔刚玉,其中Al2O3含量>99wt%;刚玉颗粒的粒径为5~0.15mm,所述刚玉细粉的粒径<0.088mm。
[0028] 2、镁砂颗粒:镁砂为烧结镁砂或电熔镁砂,其中MgO含量>97wt%,镁砂颗粒的粒径为5~0.15mm。
[0029] 3、氧化镁微粉:氧化镁微粉中MgO含量>99wt%,其粒径<0.007mm。
[0030] 4、活性氧化铝微粉:活性氧化铝微粉中Al2O3含量>99wt%,其粒径<0.008mm。
[0031] 5、石墨粉、氧化锶粉、氧化镧粉、铝硅合金粉和金属钛粉:其纯度均大于98wt%,其粒径<0.15mm。
[0032] 6、铝钙渣粉:铝钙渣粉中要求Al2O3含量在23~45 wt%之间,SiO2含量<5wt%,Fe2O3含量<2.5wt%,TiO2含量<3wt%,MgO含量<2wt%。
[0033] 实施例1 制备一种180t精炼钢包用的低碳铝镁碳砖
[0034] 原料配方:
[0035] 63wt%的刚玉颗粒,2wt%的镁砂颗粒,20wt%的刚玉细粉,2wt%的氧化镁微粉,2wt%的活性氧化铝微粉,2wt%的石墨粉,0.2wt%的氧化锶粉,1.9wt%的氧化镧粉,0.6wt%的铝硅合金粉,0.3wt%的金属钛粉和6wt%的铝钙渣粉;
[0036] 制备方法:
[0037] 首先将原料中的氧化镁微粉、活性氧化铝微粉、石墨粉、氧化镧粉、铝硅合金粉和金属钛粉预混均匀,再与刚玉颗粒、镁砂颗粒及刚玉细粉混合均匀,得到混合料;其后将混合料在50MPa压力下干压成型(砖坯)后放入内腔长、宽、高尺寸均比砖坯尺寸大5%的石墨坩埚内,并在石墨坩埚外包裹厚度12 15mm隔热纤维棉;最后将氧化锶粉与铝钙渣粉的混合物~在1500 1600℃温度下熔融成液态后浇注到石墨坩埚内,并迅速盖上厚度12 15mm的纤维板~ ~
盖,待自然冷却至室温后脱除石墨坩埚,即可得到成品钢包低碳铝镁碳砖。
[0038] 经测试,实施例1制备的钢包低碳铝镁碳砖体积密度3.14g/cm3、显气孔率2.3%、1400℃×0.5h热态抗折强度11MPa;将其作为180t精炼钢包的工作衬砖,钢包的平均使用寿命可达140次。
[0039] 实施例2 制备一种150t精炼钢包用的低碳铝镁碳砖
[0040] 原料配方:
[0041] 57.4wt%的刚玉颗粒,8wt%的镁砂颗粒,18wt%的刚玉细粉,4wt%的氧化镁微粉,1.5wt%的活性氧化铝微粉,0.5wt%的石墨粉,0.3wt%的氧化锶粉,2.5wt%的氧化镧粉,
0.4wt%的铝硅合金粉,0.4wt%的金属钛粉和7wt%的铝钙渣粉;
[0042] 制备方法同实施例1。
[0043] 经测试,实施例2制备的钢包低碳铝镁碳砖体积密度3.09g/cm3、显气孔率2.62%、1400℃×0.5h热态抗折强度13MPa;将其作为150t精炼钢包的工作衬砖,钢包的平均使用寿命可达150次。
[0044] 实施例3 制备一种180t精炼钢包用的低碳铝镁碳砖
[0045] 原料配方:
[0046] 56.8wt%的刚玉颗粒,3wt%的镁砂颗粒,16wt%的刚玉细粉,6wt%的氧化镁微粉,4wt%的活性氧化铝微粉,2.5wt%的石墨粉,0.5wt%的氧化锶粉,1.5wt%的氧化镧粉,
0.5wt%的铝硅合金粉,0.2wt%的金属钛粉,9wt%的铝钙渣粉;
[0047] 制备方法同实施例1。
[0048] 经测试,实施例3制备的钢包低碳铝镁碳砖体积密度3.07g/cm3、显气孔率2.6%、1400℃×0.5h热态抗折强度9.8MPa;将其作为180t精炼钢包的工作衬砖,钢包的平均使用寿命可达132次。
[0049] 实际配制时,所用原料在本发明公开的范围内进行适当调整,可满足各种型号钢包精炼生产的要求。