一种测量屏蔽泵主轴转速的自驱动传感装置转让专利

申请号 : CN202110565839.X

文献号 : CN113236580B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 洪占勇徐志强周丽华丁煦徐崧徐正富

申请人 : 合肥工业大学安徽天富泵阀有限公司

摘要 :

本发明公开了一种测量屏蔽泵主轴转速的自驱动传感装置,其用于测量屏蔽泵的主轴的转速,所述自驱动传感装置包括:套筒、金属连接轴、摩擦纳米装置以及信号处理装置,金属连接轴的一端伸入且悬空在套筒内,金属连接轴的转动带动摩擦纳米装置工作并产生电信号,信号处理装置根据电信号查找一个预设转速对比表,通过查表得到与所述电信号相对应的转速,即为主轴的转速。本发明的自驱动传感装置,在对主轴的转速进行测量时,无需外接设备,也无需对屏蔽泵的结构进行更改,将自驱动传感装置安装在屏蔽泵的内部即可,这样设计其成本较为低廉。

权利要求 :

1.一种屏蔽泵,其特征在于,其包括测量屏蔽泵主轴转速的自驱动传感装置;所述屏蔽泵还包括屏蔽泵主轴径向跳动的检控装置;

所述测量屏蔽泵主轴转速的自驱动传感装置,其用于测量屏蔽泵的主轴的转速,所述自驱动传感装置包括:套筒(22);主轴(18)的一端伸入且悬空在套筒(22)内;

至少一组摩擦纳米装置,每组所述摩擦纳米装置包括至少一个外摩擦块(23)和至少一个内摩擦块(24);所述外摩擦块(23)固定在套筒(22)内,内摩擦块(24)固定在主轴(18)的一端上,且内摩擦块(24)随主轴(18)转动时,内摩擦块(24)与外摩擦块(23)相对应的侧面能够实现滑动摩擦且产生电信号;以及信号处理装置(25),其根据所述电信号查找一个预设转速对比表,通过查表得到与所述电信号相对应的转速,即为主轴(18)的转速;

所述屏蔽泵主轴径向跳动的检控装置包括:

支撑框架,其套设在所述主轴上;

多个检测件,其以所述主轴为中心轴,等比例环绕设置在所述支撑框架面向所述主轴的侧壁上;每个检测件的监测点指向所述主轴方向并构成一个检测平面,并且监测点到所述主轴的距离相等且距离不超过一个预设的距离值;检测件用于在主轴径向跳动时因受主轴触碰而产生感应信号,并通过所述主轴径向方向的形变对主轴径向跳动进行抑制;所述距离值的数值与所述检控装置的检测精度成正比;所述检测件的数量满足所述主轴在径向跳动时只能触碰其中两个检测件,由此形成第一感应信号和第二感应信号;

数据处理器,其根据所述第一感应信号和所述第二感应信号计算得到组合信号c,通过组合信号c表征主轴径向跳动的大小和方向:c=a+b=(x+x',y+y');

其中,a为所述第一感应信号在检测平面的平面向量,b为所述第二感应信号在检测平面的平面向量;(x,y)为a的平面向量坐标,(x',y')为b的平面向量坐标。

2.一种屏蔽泵,其特征在于,其包括测量屏蔽泵主轴转速的自驱动传感装置;所述屏蔽泵还包括屏蔽泵主轴径向跳动的检控装置;

所述测量屏蔽泵主轴转速的自驱动传感装置包括:

套筒(22);

金属连接轴,其一端伸入且悬空在套筒(22)内,另一端与主轴(18)同轴固定;

至少一组摩擦纳米装置,每组所述摩擦纳米装置包括至少一个外摩擦块(23)和至少一个内摩擦块(24);所述外摩擦块(23)固定在套筒(22)内,内摩擦块(24)固定在金属连接轴上,且内摩擦块(24)随金属连接轴转动时,内摩擦块(24)与外摩擦块(23)相对应的侧面能够实现滑动摩擦并产生电信号;以及信号处理装置(25),其根据所述电信号查找一个预设转速对比表,通过查表得到与所述电信号相对应的转速,即为主轴(18)的转速;

所述屏蔽泵主轴径向跳动的检控装置包括:

支撑框架,其套设在所述主轴上;

多个检测件,其以所述主轴为中心轴,等比例环绕设置在所述支撑框架面向所述主轴的侧壁上;每个检测件的监测点指向所述主轴方向并构成一个检测平面,并且监测点到所述主轴的距离相等且距离不超过一个预设的距离值;检测件用于在主轴径向跳动时因受主轴触碰而产生感应信号,并通过所述主轴径向方向的形变对主轴径向跳动进行抑制;所述距离值的数值与所述检控装置的检测精度成正比;所述检测件的数量满足所述主轴在径向跳动时只能触碰其中两个检测件,由此形成第一感应信号和第二感应信号;

数据处理器,其根据所述第一感应信号和所述第二感应信号计算得到组合信号c,通过组合信号c表征主轴径向跳动的大小和方向:c=a+b=(x+x',y+y');

其中,a为所述第一感应信号在检测平面的平面向量,b为所述第二感应信号在检测平面的平面向量;(x,y)为a的平面向量坐标,(x',y')为b的平面向量坐标。

3.如权利要求1或2所述的屏蔽泵,其特征在于,信号处理装置(25)的处理方法包括步骤:步骤S1,将内摩擦块(24)和外摩擦块(23)滑动摩擦产生的强弱不同的电信号转换成不同的数字信号;

步骤S2,对数字信号依据所述预设的电信号‑转速对比表进行逐级分析比较,直至找到符合数字信号范围内的转速,即为主轴(18)的转速。

4.如权利要求3所述的屏蔽泵,其特征在于,所述处理方法还包括步骤:步骤S3,显示所述转速。

5.如权利要求1或2所述的屏蔽泵,其特征在于,所述信号处理装置(25)包括A/D转换器和单片机;所述信号处理装置(25)的处理方法包括步骤:步骤S1,通过A/D转换器将内摩擦块(24)和外摩擦块(23)滑动摩擦产生的强弱不同的电信号转换成不同的数字信号;

步骤S2,将数字信号传输到单片机中,单片机对数字信号依据预设的电信号‑转速对比表进行逐级分析比较,直至找到符合数字信号范围内的转速。

6.如权利要求5所述的屏蔽泵,其特征在于,所述处理方法还包括步骤:步骤S3,通过单片机的引脚控制数码管对转速进行显示。

7.如权利要求1或2所述的屏蔽泵,其特征在于,所述摩擦纳米装置产生的电信号,其部分电信号用于对信号处理装置(25)供电。

8.如权利要求1或2所述的屏蔽泵,其特征在于,所述外摩擦块(23)和内摩擦块(24)的形状均为分段式圆台结构。

9.如权利要求1或2所述的屏蔽泵,其特征在于,所述外摩擦块(23)和内摩擦块(24)的形状均为分段式圆柱结构。

说明书 :

一种测量屏蔽泵主轴转速的自驱动传感装置

技术领域

[0001] 本发明涉及屏蔽泵领域,尤其涉及一种测量屏蔽泵主轴转速的自驱动传感装置。

背景技术

[0002] 屏蔽泵的泵和驱动电机都是被密封在一个压力容器内,此压力容器只有静密封,并由一个电线组来提供旋转磁场并驱动转子。这种结构取消了传统离心泵具有的旋转轴密封装置,故能做到完全无泄漏。屏蔽泵把泵和电机连在一起,电动机的转子和泵的叶轮固定在主轴上,利用屏蔽套将电机的转子和定子隔开,转子在被输送的介质中运转,其动力通过定子磁场传给转子。
[0003] 由于屏蔽泵的主轴是密封在压力容器内的,无法对主轴的转速进行实时测量。为了能够实时对屏蔽泵的主轴的转速进行测量,需要设计出一种测量屏蔽泵主轴转速的自驱动传感装置来满足需求。

发明内容

[0004] 为解决能够实时对屏蔽泵的主轴的转速进行测量的技术问题,本发明提供一种测量屏蔽泵主轴转速的自驱动传感装置。
[0005] 本发明采用以下技术方案实现:一种测量屏蔽泵主轴转速的自驱动传感装置,其包括:
[0006] 套筒;主轴的一端伸入且悬空在套筒内;
[0007] 至少一组摩擦纳米装置,每组所述摩擦纳米装置包括至少一个外摩擦块和至少一个内摩擦块;所述外摩擦块固定在套筒内,内摩擦块固定在主轴的一端上,且内摩擦块随主轴转动时,内摩擦块与外摩擦块相对应的侧面能够实现滑动摩擦且产生电信号;以及[0008] 信号处理装置,其根据所述电信号查找一个预设转速对比表,通过查表得到与所述电信号相对应的转速,即为主轴的转速。
[0009] 本发明通过主轴的转动,带动内摩擦块转动,内摩擦块与外摩擦块滑动摩擦并产生相应的电信号,主轴转速的不同,能够产生强弱不同的电信号,信号处理装置通过查询电信号‑转速对比表,得到与电信号相对应的转速,从而可实现对主轴转速的检测。本发明的自驱动传感装置,在对主轴的转速进行测量时,无需外接设备,也无需对屏蔽泵的结构进行改造,将自驱动传感装置安装在屏蔽泵的内部即可,这样设计其成本较为低廉。本发明的自驱动传感装置能够实时对主轴转速进行测量,且自驱动传感装置中的纳米摩擦装置产生的电信号,可用于对信号处理装置进行供电,无需外接电源,从而能够进一步降低成本。

附图说明

[0010] 图1为本发明实施例1提供的一种测量屏蔽泵主轴转速的自驱动传感装置的结构示意图。
[0011] 图2为图1中测量屏蔽泵主轴转速的自驱动传感装置的套筒去除端盖之后的结构示意图。
[0012] 图3为图1中测量屏蔽泵主轴转速的自驱动传感装置的信号处理装置的电路图,其中为了更清晰的显示图3中的内容,将图3分为图4、图5左右两个区域,且分别放大显示。
[0013] 图4为图3中电路图左边区域的放大示意图。
[0014] 图5为图3中电路图右边区域的放大示意图。
[0015] 图6为本发明实施例2中屏蔽泵隔离套管爆裂保护方法的结构框图。
[0016] 图7为采用图6中的屏蔽泵隔离套管爆裂保护方法的屏蔽泵隔离套管爆裂保护装置的结构示意图。
[0017] 图8为本发明实施例3屏蔽泵主轴轴向窜动的检控装置的结构示意图。
[0018] 图9为应用于图8中屏蔽泵主轴轴向窜动的检控装置的屏蔽泵主轴轴向窜动的检控方法的结构框图。
[0019] 图10为本发明实施例4屏蔽泵主轴径向跳动检测装置的结构示意图。
[0020] 图11为图10公开的屏蔽泵主轴径向跳动检测装置中检测件的结构示意图。
[0021] 图12为应用于图10屏蔽泵主轴径向跳动检测装置的中屏蔽泵主轴径向跳动检测方法的框图。
[0022] 图13为本发明实施例5中屏蔽泵无接触轴承磨损检测装置的结构示意图。
[0023] 图14为图13中屏蔽泵无接触轴承磨损检测装置的模块示意图。
[0024] 图15为图13公开的屏蔽泵无接触轴承磨损检测装置中的传输管和安装接头部分的结构示意图。
[0025] 图16为图14公开的屏蔽泵无接触轴承磨损检测装置中采用电池供电时的模块示意图。
[0026] 图17为应用于图13中屏蔽泵无接触轴承磨损检测装置的屏蔽泵无接触轴承磨损检测方法的流程图。
[0027] 图中:1、缸体;2、压电式传感器;3、活塞;4、连接杆;11、第一活塞;12、顶珠;13、压力传感器;14、弹簧;15、吊耳;16、支撑框架;17、第二活塞;18、主轴;19、固定壳体;22、套筒;23、外摩擦块;24、内摩擦块;25、信号处理装置;
[0028] 101、安装接头;102、检测探头;103、传输管;104、处理装置;105、可调支架;107、警报装置;110、检测腔;111、连接套;112、开口;121、谐振感应电路;141、信号发生模块;142、反馈信号采样模块;143、数据处理模块;144、谐振逆变器;145、电池;151、安装脚;161、对中圆盘片;162、进深刻度尺。

具体实施方式

[0029] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
[0030] 实施例1
[0031] 请参阅图1,本实施例介绍了一种屏蔽泵。屏蔽泵包括主轴18以及测量主轴18转速的自驱动传感装置。自驱动传感装置包括套筒22、摩擦纳米装置以及信号处理装置25。
[0032] 主轴18的一端伸入且悬空在套筒22内,套筒22内布设有多组用于将金属连接轴的转速转换成相应的电信号的纳米摩擦装置。每组纳米摩擦装置包括至少一个外摩擦块23和至少一个内摩擦块24。外摩擦块23固定在套筒22内,内摩擦块24固定在主轴18上,从而主轴18转动时,能够带动内摩擦块24同步转动,从而使得内摩擦块24与外摩擦块23相对应的侧面能够产生滑动摩擦并产生电信号。为了使主轴18在转动时稳定,多组纳米摩擦装置可沿主轴18的方向等距布设在套筒22内。
[0033] 请参阅图2,每组纳米摩擦装置内的多个内摩擦块24沿环形等角度固定在主轴18上。外摩擦块23和内摩擦块24的形状不加限制,满足滑动摩擦时能够产生相应的电信号即可,例如外摩擦块23和内摩擦块24可为分段式圆台结构、分段式圆柱结构、条状形,圆盘形等。
[0034] 因为屏蔽泵的型号不同,主轴18的长短各异,另外应用场合也不同,因此主轴18的一端不一定能够延伸在套筒22内,因此在其他实施例中,可以增设金属连接轴。金属连接轴的一端与主轴18的一端同轴固定,其固定方式不加限制,如金属连接轴可通过焊接、螺栓连接、一体成型等固定在主轴18的一端上。金属连接轴随主轴18的转动而同步转动,从而金属连接轴的转速与主轴18的转速相同,故通过对金属连接轴的转速测量,即可实现对主轴18的转速测量。
[0035] 信号处理装置25根据电信号查找一个预设的电信号‑转速对比表,由于主轴18的转速不同,从而内摩擦块24与外摩擦块23摩擦时产生的电信号的强弱不同,预先进行多次实验,根据转速的不同,产生的电信号的强度也不同,从而能够得到一个电信号‑转速对比表,可以根据电信号的强弱计算出相应的转速,该电信号‑转速对比表存在一定的误差,但属于合理范围内。纳米摩擦装置产生的电信号,其部分可用于对信号处理装置25进行供电,无需外接电源,能够实现传感装置的自驱动,在一定程度上能够降低成本。
[0036] 请参阅图3,信号处理装置25包括A/D转换器,单片机以及数码管,其中,A/D转换器的型号为ADC0809,单片机的型号为AT89C51。
[0037] 所述信号处理装置25的处理方法,处理方法包括步骤:步骤S1,通过A/D转换器将内摩擦块24和外摩擦块23滑动摩擦产生的强弱不同的电信号转换成不同的数字信号;步骤S2,将数字信号传输到单片机中,单片机对数字信号依据预设的电信号‑转速对比表进行逐级分析比较,直至找到符合数字信号范围内的转速;步骤S3,通过单片机的引脚控制数码管对转速进行显示。
[0038] 请参阅图3和图4,A/D转换器的1、2、3、4、5、26、27以及28号引脚分别接输入信号,A/D转换器的23、24以及25分别与其19、20以及21号引脚相接。A/D转换器的10、7、17、14、15、8、18、19、20以及21号引脚分别与单片机的30、12、8、7、6、5、4、3、2以及1号引脚相接。单片机的18和19号引脚之间串联有电容C2和C1,且电容C2和C1的两端并联有外部晶振Y1。单片机的28和17号引脚分别与或非门U2A的2号和3号输入相接,或非门U2A的1号输出与A/D转换器的9号引脚相接。单片机的28和16号引脚分别与或非门U2B的5号和6号输入相接,或非门U2B的4号输出与A/D转换器的6号和22号引脚相接。单片机的32、33、34、35、36、37、38以及39号引脚分别与数码管的DS1的8、7、6、5、4、3、2以及1号引脚相接。
[0039] 请参阅图3和图5,单个数码管的8、7、6、5、4、3、2以及1号引脚分别与另一数码管的8、7、6、5、4、3、2以及1号引脚串联,。单片机的32、33、34、35、36、37、38以及39号引脚分别与电阻R8、R7、R6、R5、R4、R3、R2以及R1的一端相连,且电阻R8、R7、R6、R5、R4、R3、R2以及R1的另一端并联后接地。
[0040] 本发明通过主轴18的转动,带动内摩擦块转动,内摩擦块与外摩擦块滑动摩擦并产生相应的电信号,主轴18转速的不同,能够产生强弱不同的电信号,信号处理装置通过查询电信号‑转速对比表,得到与电信号相对应的转速,从而可实现对主轴18转速的检测。
[0041] 本发明的自驱动传感装置,在对主轴18的转速进行测量时,无需外接设备,也无需对屏蔽泵的结构进行改造,将自驱动传感装置安装在屏蔽泵的内部即可。当主轴18的长度过短无法外接自驱动传感装置时,可通过对与主轴同轴固定的金属连接轴的转速进行测量,这样设计其成本较为低廉。本发明的自驱动传感装置能够实时对主轴转速进行测量,且自驱动传感装置中的纳米摩擦装置产生的电信号,可用于对信号处理装置进行供电,无需外接电源,从而能够进一步降低成本。
[0042] 实施例2
[0043] 如图6所示,为本发明实施例提供的一种屏蔽泵隔离套管爆裂保护方法。屏蔽泵隔离套管爆裂保护方法可应用于实施例1中的屏蔽泵,在屏蔽泵中,隔离套管安装在屏蔽泵中,并介于定子和转子之间,将介质和转子封闭住,将动密封转化成静密封,防止定子绕组接触介质,用于屏蔽工艺介质,保证工艺介质与大气隔离,定子和转子摩擦力产生磨损,容易造成隔离套管,屏蔽泵隔离套管爆裂保护方法用于对屏蔽泵中隔离套管的保护。
[0044] 所述屏蔽泵隔离套管爆裂保护方法包括:
[0045] S1、启动屏蔽泵并进行检测,对屏蔽泵的转子和/或定子进行多点温度检测,获得相应的检测温度T1、T2、……、Tn,其中,n代表温度检测点;
[0046] S2、在检测温度T1、T2、……、Tn中提取最高的检测温度max(T1……Tn)和最低的检测温度min(T1、……、Tn),并获得屏蔽泵内部的温度对比最大差值ΔT=max(T1……Tn)‑min(T1……Tn);
[0047] S3、判断ΔT是否小于一个预设的保护温度差ΔT0,是则进行S4,否则进行S5;
[0048] S4、控制屏蔽泵正常运行;
[0049] S5、控制屏蔽泵停止作业,并将max(T1……Tn)对应的温度检测点定位为磨损位置;
[0050] S6、显示所述磨损位置。
[0051] 在本发明实施例中,将温度检测点设置在屏蔽泵定子和/或转子的多个地方,并设定保护温度差ΔT0。在ΔT0之内保证屏蔽泵定子和转子无磨损或者磨损在接受范围内。屏蔽泵运行时,转子相对定子转动,当轴承磨损时,屏蔽泵转子和定子之间发生摩擦,会使轴承磨损端的定子摩擦严重,造成轴承磨损端产生巨大的摩擦温度,检测的温度大大升高,对定子进行多点温度检测获得温度检测信号T1、T2……Tn。通过对各个温度检测信号进行对比,获得温度对比最大差值ΔT=max(T1……Tn)‑min(T1……Tn)。通过温度对比最大差值与保护温度差进行比较,判断ΔT0>ΔT,则正常运行,判断ΔT0≤ΔT,则转子停止运行,通过对各个检测点进行对比,可以获得最高的检测温度max(T1……Tn),并将最高的检测温度该温度对应的检测检测点为磨损位置。工作人员可以对定点位置进行检测,确定磨损程度。可以通过定位的磨损位置信号进行查表,从而确定其屏蔽泵的内部磨损位置。通过对于温度差值进行对比,可以对多个点进行检测,并排除正常运行产热的干扰,提高了检测准确性,通过温度差值控制是否运行,避免了屏蔽泵持续磨损,最大限度的保护了屏蔽泵使用,提高了使用寿命。
[0052] 在本实施例中,为了方便观察磨损位置,可设置显示件如显示器来显示定位信息从而确定磨损位置,通过显示器显示磨损位置的编号、图像或者三维位置信息等。
[0053] 在本发明实施例中,如图7所示,提供一种屏蔽泵隔离套管爆裂保护装置,通过上述所述的屏蔽泵隔离套管爆裂保护方法,并对屏蔽泵的隔离套管进行保护,所述屏蔽泵隔离套管爆裂保护装置包括:接触器、显示件、温差控制器和多个温度检测器。
[0054] 每个温度检测点对应设置一个所述的温度检测器,温度检测点可处于屏蔽泵的转子和/或定子上,每个温度检测器用于检测相应温度检测点的温度。所述屏蔽泵隔离套管爆裂保护方法的S2可由温度检测器执行。由于温度检测器可以安装在定子上,当然也可以安装在转子上,并不局限固定的安装方式,通过安装在定子上,安装方便,便于定子的位置检测和磨损位置定位。温度检测器安装在转子上便于转子的检测和磨损位置定位,当然还可以在定子和转子上同时进行安装,便于检测和磨损位置定位,实际安装可以根据实际检测需要进行设计。将温度检测点设置在屏蔽泵的定子或者转子的多个地方,通过显示件输入设定保护温度差,保护温度差选定为保证定子和转子无磨损或者磨损在接受范围内。启动屏蔽泵,转子相对定子转动,当轴承磨损时,转子和定子之间发生摩擦,会使轴承磨损端的定子摩擦严重,造成轴承磨损端产生巨大的摩擦温度,检测的温度大大升高,对定子进行多点温度检测获得检测温度。
[0055] 温度检测点也可以设置有两个,并设置在定子的不同端的相对位置,例如一支安装在定子铁芯的内圆端口侧下部,另外一只温度检测头的位置,安装在定子铁芯的外圆端口侧上部,这样安排安装位置,通过检测温度差,更加地灵敏精准。通过两个检测点检测,可以判定磨损端和温度差值。当然还可以根据实际需要设置,例如对易磨损的一端设置多个,不易磨损的一端设置数量适当减少等。
[0056] 接触器处于常闭状态并与温差控制器连接,用于控制负载电器电路开关。负载电器为实施例1中的屏蔽泵,屏蔽泵的电路开关控制屏蔽泵的运行,因此所述屏蔽泵运行与否由接触器执行。
[0057] 显示件与温差控制器连接,用于输入数据(如设定保护温度差ΔT0)和显示定位信息(如磨损位置)。屏蔽泵隔离套管爆裂保护装置还包括三维场景构建模块,三维场景构建模块与温度检测器、显示件电连接,用于对温度检测器的位置点进行定位,构建屏蔽泵结构及温度检测点分布的三维模拟场景,并通过显示件进行三维显示。三维模拟场景构建为现有技术,在此不做描述。通过三维场景构建模块构建出屏蔽泵内部结构的三维结构,温度检测点分布在三维结构内部,与实际位置对应,便于对升温位置进行显示定位。通过多个点温度检测,可以通过显示件构建三维的结构模型,通过对最大检测温度对应的温度监测点标定,显示磨损位置,定位方便快捷,在构建的三维结构上,可以通过各种颜色进行结构的温度进行显示,观察清晰明了,在此不做赘述。当转子停止运行时,显示件显示定位信息,通过显示件进行三维场景定位闪频定位。从而便于对磨损位置进行查找,对应方便快捷。显示件可以是触屏显示屏,或者是输入键和显示屏的组合结构,在此不做描述。
[0058] 温差控制器,用于在检测温度T1、T2、……、Tn中找出最高的检测温度max(T1……Tn)和最低的检测温度min(T1……Tn),对比max(T1……Tn)和min(T1……Tn)获得屏蔽泵内部的温度对比最大差值ΔT=max(T1……Tn)‑min(T1……Tn);判断ΔT0是否大于ΔT,是则控制接触器控制屏蔽泵正常运行,否则控制接触器对屏蔽泵的转子停止运行,实现屏蔽泵的停止作业,并将max(T1……Tn)对应的温度检测点定位为磨损位置,且控制显示件显示所述磨损位置。温差控制器对各个温度检测信号进行对比,获得温度对比差值;通过温度对比差值与保护温度差进行比较,若保护温度差大于温度对比差值,接触器处于闭合状态,屏蔽泵则正常运行,若保护温度差小于或者等于温度对比差值,接触器处于断开状态,负载电源断开,则转子停止运行,避免屏蔽泵进行磨损,从而防止隔离套管发生爆裂。
[0059] 因此所述屏蔽泵隔离套管爆裂保护方法的S4“控制屏蔽泵正常运行”以及S5“控制屏蔽泵停止作业”由接触器执行。在正常的工作中,接触器是处于常闭状态,此时的电路为闭合工作状态,屏蔽泵可以正常工作。当接触器接收到断开信号时,接触器断开,使屏蔽泵的电路断开,屏蔽泵的转子停止运行,屏蔽泵停止作业。
[0060] 在本发明实施例中,所述的屏蔽泵隔离套管爆裂保护装置还包括有报警器,通过报警进行提示,警报器可以是蜂鸣器、频闪器等各种可以发出警报的装置,当温差控制器判断屏蔽泵温度对比最大差值超过阀值,则警报器发出警报信号,相关的运维管理人员可以第一时间接收到相关的故障状况,根据运维需求对屏蔽泵进行检修处理。
[0061] 作为本发明的一种优选实施例提供一种计算机终端,所述计算机终端用于执行存储器中存储的计算机程序时实现上述所述的屏蔽泵隔离套管爆裂保护方法的步骤。计算机终端可以是电脑、智能手机、控制系统以及其他物联网设备等。一种屏蔽泵隔离套管爆裂保护方法也可以设计成嵌入式运行的程序,安装在计算机终端上,如安装在单片机上。
[0062] 作为本发明的一种优选实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其上存储有计算机程序。程序被处理器执行时,实现屏蔽泵隔离套管爆裂保护方法的步骤。屏蔽泵隔离套管爆裂保护方法在应用时,可以软件的形式进行应用,如设计成计算机可读存储介质可独立运行的程序,计算机可读存储介质可以是U盘,设计成U盾,通过U盘设计成通过外在触发启动整个方法的程序。
[0063] 所述计算机程序被处理器执行时实现上述所述的屏蔽泵隔离套管爆裂保护方法的步骤。
[0064] 实施例3
[0065] 如图8所示,为本发明实施例提供的一种屏蔽泵主轴轴向窜动的检控装置,应用于实施例1、2中屏蔽泵,所述屏蔽泵可以包括:屏蔽泵主体,以及上述所述的屏蔽泵的主轴18轴向窜动的检控装置;
[0066] 其中,屏蔽泵的主轴18轴向窜动的检控装置连接在屏蔽泵主体上,屏蔽泵主体的主轴18与屏蔽泵主轴轴向窜动的检控装置连接。
[0067] 通过屏蔽泵主轴轴向窜动的检控装置内的压强对主轴18轴向窜动起到抑制作用,提高主轴18轴向的稳定性。
[0068] 在本发明实施例中,屏蔽泵还包括固定壳体,缸体1固定安装在固定壳体的内部,固定壳体连接在屏蔽泵主体并设置有轴向调节结构,通过调节结构调节固定壳体与传感屏蔽泵距离,固定壳体靠近传感屏蔽泵,连接结构与主轴18连接,可以进行检测;固定壳体远离传感屏蔽泵,连接结构与主轴18分离,屏蔽泵主体正常使用。固定壳体与屏蔽泵主体轴向滑动连接,调节结构可以是丝杆、液压杆、电动伸缩杆等,在此不做赘述。
[0069] 屏蔽泵的主轴18转动过程中可能会发生轴向的位移,造成屏蔽泵发生磨损。所述屏蔽泵的主轴18轴向窜动的检控装置包括:活塞3、缸体1、连接结构和传感器。
[0070] 缸体1,内部形成轴向的空腔;活塞3,轴向滑动设置在缸体1的内部,此为活塞和缸体配合的常规结构。活塞3和缸体1构成密封结构,通过受到主轴18轴向力在缸体1内部的位置改变从而改变缸体1内部的压力。主轴18推拉活塞3滑动嵌套在缸体1的内部,活塞3的滑动方向与主轴18轴向方向一致,主轴18转动轴向的窜动,轴向力传送给活塞3上,从而使活塞3和缸体1相对位移发生改变,使传感器感应信号。在实现测量的同时可以通过缸体1内的压强对主轴18轴向窜动起到抑制作用,提高主轴18轴向的稳定性,通过活塞3也可以对径向跳动起到缓冲作用,减小径向跳动对轴向跳动测量的影响。主轴18可以通过连接结构转动连接在活塞3或者缸体1上,以活塞3为宜。主轴18与活塞3、缸体1相对滑动方向可以在同一条直线上或者处于平行线上,缸体1可以为圆桶状结构,活塞3的截面与缸体1的内部截面一致且密封滑动设置,通过活塞3在缸体1内部滑动,从而保证了活塞3和缸体1组成密封结构,避免了缸体1和活塞3的泄漏。通过活塞3在缸体1内部滑动,通过缸体1刚性设置,对主轴18具有较强的反作用力,从而提高了抑制作用,增加了主轴18稳健性。当然,密封机构并不排除其他结构,例如气囊、伸缩囊等,在此不做赘述,但是失去其刚性结构,抑制效果大大降低。
[0071] 缸体1和活塞3组成的密封结构内部盛放有液体或者气体,或者液体和气体的组合;液体可以是液压油、硅油等,气体可是惰性气体、空气等。当液体和气体的组合,可以进行一定比例设置,可以调节抑制能力和位移。通过液体可以增加压力感应的灵敏性,避免了空气体积变化造成信号检测不灵敏,信号延迟等;使用气体进行感应压强,屏蔽泵制造成本低,重量小。当使用空气时,不用考虑泄漏状况的存在,同时减少了成本,避免了污染。
[0072] 连接结构用于连接密封结构与所述主轴18,用于主轴18窜动量转化为活塞3在缸体1内部滑动的位移;屏蔽泵的主轴18转动,主轴18可以转动与连接结构进行连接,从而便于密封结构接收主轴18轴向力,当然连接结构不一定必须连接在主轴18的端部,还可以设置在主轴18的其他部位,只要能够接收传动力即可,在此不做描述。连接结构和主轴18可转动且可以进行轴向力传动,连接结构可以通过连接杆4、万向球、轴承、轴心磁吸附等进行连接,使主轴18可以相对连接结构转动且可以轴向力传动。当连接结构为连接杆4,连接杆4的非连接端设置有连接件,连接杆4通过连接件可拆卸的与屏蔽泵主体的主轴18转动连接,连接件可以是与主轴18配合设置的凹槽,主轴18在生产时,主轴的端部设置有与凹槽配合的余量,余量可以嵌套在凹槽的内部,从而进行转动连接和轴向传动。以此可以进行屏蔽泵的主轴18轴向窜动的检控。
[0073] 传感器,其用于检测所述密封腔内部压强;传感器输出电信号,可以通过电信号进行查表、或者直接连接显示件进行显示,其中显示件显示快速。由于密封结构对主轴18具有一定的抑制作用,会使主轴18的窜动量变小,可以通过对传感器的信号进行补偿后显示、或者对输出的信号进行修正后进行查表。传感器可以为压电式传感器2,通过压电式传感器2进行压强感应,增加了感应的灵敏性和准确性,压电式传感器2频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。通过压电式传感器2可实现非接触测量,在实现实时测量的同时可以对主轴轴向窜动起到一定的抑制作用、提高稳定性、减小磨损、延长使用寿命。密封结构内部压强改变使压电式传感器2感应到的压强发生改变,压电式传感器2感应缸体1内部的压强,并转化为电信号,压电式传感器2将电信号传送给显示件,通过显示件显示电信号,电信号与主轴18的轴向窜动对应,从而可以通过显示件读出主轴18的轴向窜动。当然还可以通过输出的电信号进行查表,从而读出主轴18的主轴轴向窜动量。
[0074] 当然传感器还可以包括压电材料、电荷放大器、电容、电阻,压电材料、电容、电阻并联并与电荷放大器串联,压电材料感应压强并转化为电信号,电信号通过电荷放大器进行放大处理,压电材料、电荷放大器、电容、电阻一起构成压力测量电路,通过电阻和电容对电路进行保护。当然压电式传感器可以用压阻式传感器、电容式传感器代替,这时主轴窜动量将与电阻或电容有关,知道电阻或者电容就可以知道主轴窜动量,在此不做赘述。
[0075] 控制器,可以包括实施例1中的信号处理装置25和实施例2中的温差控制器,其根据所述压力信号,计算所述主轴的轴向窜动量即轴向窜动位移x:x=(dnRT)/q;其中,d为所述传感器的压电系数,n表示所述缸体的物质的量,T表示所述缸体内的绝对温度,R表示缸体气体常数。通过电信号转化为位移输出并表征轴向的窜动量,显示灵敏性好且为非接触式检测,避免了传感器磨损。
[0076] 在本发明实施例中,一种屏蔽泵主轴轴向窜动的检控装置还可以设置有存储件,通过存储件进行数据存储,可以存储历史检测信号,控制器从存储件内部提取数据并通过显示件进行显示或者可以导出检测曲线,以此查看轴向窜动波动。从而可以观察窜动变化趋势。
[0077] 在本发明实施例中,将密封结构通过连接结构与主轴18的端部连接,当启动屏蔽泵时,主轴18在屏蔽泵的内部转动,转动的主轴18会产生轴向的窜动,从而造成波动,主轴18轴向的窜动使主轴18沿轴向产生轴向的波动,轴向的波动推动密封结构发生形变,从而使密封结构内部的压强对应的发生改变,密封结构内的压强改变同时给主轴18一个反作用力,反作用力可以有效的抑制主轴18的轴向波动,使主轴18轴向趋于稳定,安装在密封结构内部的压力传感器感应到压力变化,将压力变化转化为电信号变化,通过电信号变化表征主轴18轴向变化。
[0078] 在本发明的一个实例中,如图9所示,本发明实施例还提供的一种屏蔽泵主轴轴向窜动的检控方法。屏蔽泵主轴轴向窜动的检控方法应用于实施例1和2中的屏蔽泵,通过上述所述的屏蔽泵的主轴18轴向窜动的检控方法,并对屏蔽泵的主轴轴向窜动进行检测。所述屏蔽泵的主轴18轴向窜动的检控方法包括:
[0079] 传感器感应活塞移动所致的压强改变,并将压强变化转化为电信号变化即电荷q;
[0080] 活塞受到压力反作用抑制主轴轴向窜动;
[0081] 控制器根据所述电荷q计算所述主轴轴向窜动位移x,计算过程为x=(dnRT)/q;
[0082] 其中,d为所述传感器的压电系数,n表示所述缸体的物质的量,T表示所述缸体内的绝对温度,R表示缸体气体常数;
[0083] 通过轴向窜动位移x变化表征屏蔽泵主轴轴向窜动量。
[0084] 在本发明的一个实例中,将密封结构通过连接结构与主轴的端部连接,当启动屏蔽泵时,主轴18在屏蔽泵的内部转动,转动的主轴18会产生轴向的窜动,从而造成波动,主轴18轴向的窜动使主轴18沿轴向产生轴向的波动,轴向的波动推动密封结构发生形变,从而使密封结构内部的压强对应的发生改变,密封结构内的压强改变同时给主轴18一个反作用力,传感器感应到压力变化,并输出相应压力所致的电荷q,通过x=(dnRT)/q进行计算,可以得出主轴18的轴向移动位移。压力的反作用力可以有效的抑制主轴18的轴向波动,使主轴18轴向趋于稳定,安装在密封结构内部的传感器感应到压力变化,将压力变化转化为电信号变化,通过电信号变化显示主轴18轴向变化。
[0085] 实施例4
[0086] 如图10所示,为本发明实施例提供的一种屏蔽泵主轴径向跳动检测装置。同样适用于实施例1‑3中的屏蔽泵,屏蔽泵的主轴18转动过程中不仅可能会发生轴向的位移,还有可能造成径向位移波动,造成屏蔽泵的主轴18在径向位置上磨损,降低屏蔽泵的使用寿命。
[0087] 所述屏蔽泵包括:
[0088] 屏蔽泵主体;以及,上述所述的屏蔽泵的主轴径向跳动检控装置;
[0089] 其中,屏蔽泵的主轴18径向跳动检控装置连接在屏蔽泵主体上,屏蔽泵主轴径向跳动检测装置内部的检测件的内端与主轴18接触。所述屏蔽泵的主轴径向跳动检控装置用于检测主轴18径向跳动量。所述屏蔽泵的主轴径向跳动检控装置包括:支撑框架16、数据处理器以及多个检测件。
[0090] 支撑框架16,其套设在所述主轴18上,设置在主轴18的外围,形成支撑结构;支撑框架16可以设置圆环形结构,当然也可以设置为多棱的环形结构,支撑框架16的边部可以和检测件的数量对应或者为检测件设置个数的倍数,检测件可以固定设置在支撑框架16的内侧壁上,检测件可以均匀设置在支撑框架16上,从而可以对主轴18径向推动力进行检测,便于组合计算。当然可以将检测件直接安装到屏蔽泵壳体、轴承等的内圈上,此时的壳体和轴承均是起到支撑框架的作用,效果同等。所述主轴18径向方向的形变可以通过检测件和/或支撑框架16形变。支撑框架16可以由弹性材料支撑,并有一定的恢复形变力,当径向力施加到检测件上时,使支撑框架16变形,并产生形变力,对主轴18进行抑制。支撑框架16的外壁可以周向固定设置有若干固定件,通过固定件对支撑框架16进行固定,从而增加了支撑框架16固定的稳定性,固定件可以是吊耳15、螺帽、固定圈等,在此不做赘述。
[0091] 检测件,设置多个,所有的检测件均以所述主轴18为中心轴,等比例环绕设置在所述支撑框架16面向所述主轴18的侧壁上。每个检测件的监测点指向所述主轴18方向并构成一个检测平面,此检测平面为垂直主轴18轴线的平面,可以为检测件的的投影平面,便于标定主轴18径向跳动的方向和大小。并且监测点到所述主轴18的距离相等且距离不超过一个预设的距离值;检测件用于在主轴18径向跳动时因受主轴18触碰而产生感应信号,并通过所述主轴18径向方向的形变对主轴18径向跳动进行抑制。所述距离值的数值与所述检控装置的检测精度成正比。所述检测件的数量满足所述主轴18在径向跳动时只能触碰其中两个检测件,由此形成第一感应信号和第二感应信号。所述的距离值,可以构成检测件的检测灵敏度,当这个距离较大时,检测灵敏度较小,当这个距离较小时,灵敏度就较高,这个灵敏度可以根据检测需要进行设定,设定的原则为,在这个距离值之内不会产生磨损、径向窜动不会产生其他不良后果或者产生后果和磨损在接受范围内。当然这个距离值可以为零,此时检测件就与主轴18接触,当主轴18径向跳动较小时,即可进行检测。检测件可以设置在主轴18的端部,端部的径向跳动范围最大,通过检测件给主轴18的反作用力抑制能力最强,在此不做描述。
[0092] 如图11所示,当检测件形变进行主轴18抑制时,检测件可以包括固定壳体19、弹性件、压力传感器13。固定壳体19固定在所述支撑框架上,其内部形成滑动空腔,弹性件滑动设置在滑动空腔的内部。弹性件一端位于所述滑动空腔的内部,其另一端穿出所述固定壳体19后与所述主轴18接触。压力传感器13,其设置在所述弹性件与所述固定壳体19之间,用于在所述弹性件受压形变时检测所述弹性件的形变力。当主轴18进行波动时,产生径向推动力,推动弹性件挤压压力传感器13,压力传感器13感应压力并转化为信号。通过弹性件对主轴18进行径向接触,通过弹性件弹性对主轴18进行夹持,可以适应多种规格主轴18进行夹持,适用能力强。
[0093] 弹性件可以包括接触杆、弹簧14、导向杆、第二活塞17和第一活塞11。弹簧14滑动设置在滑动空腔的内部,导向杆嵌套在弹簧14的内部并对弹簧14进行导向。第一活塞11和第二活塞17固定设置在弹簧14的两端对弹簧14进行限位。通过第一活塞11与固定壳体19的摩擦力进行阻尼,通过第二活塞17对压力进行均化,从而使压力传感器13受力均匀。导向杆与接触杆连接,接触杆与主轴18接触。第一活塞11和第二活塞17可以是橡胶垫、树脂圈等,当然弹簧14还可以是其他弹性结构,例如弹性片、金属圈等,在此不做赘述。
[0094] 检测件与主轴18的接触的一端可以转动设置有滚动结构,通过滚动结构减小检测件与主轴18之间的转动摩擦力,避免了摩擦阻碍,减小了主轴18的转动阻力,滚动结构可以是顶珠12、滚筒等,在此不做赘述。
[0095] 数据处理器,此处的数据处理器与实施例3中的控制器为同一保护主题,起到相同的功能。此处的数据处理器与实施例用于接收第一感应信号和所述第二感应信号,并根据所述第一感应信号和所述第二感应信号计算得到组合信号c,通过组合信号c表征主轴径向跳动的大小和方向:c=a+b=(x+x',y+y');其中,a为所述第一感应信号在检测平面的平面向量,b为所述第二感应信号在检测平面的平面向量;(x,y)为a的平面向量坐标,(x',y')为b的平面向量坐标。
[0096] 在本发明实施例中,将检测件周向设置在主轴18的端部连接,当启动屏蔽泵时,主轴18在屏蔽泵的内部转动,转动的主轴18可能会产生径向的跳动,从而造成波动,主轴18径向的跳动使主轴18产生径向的推力,推力作用在检测件上,检测件检测在检测件安装方向上的推力,检测件同时给主轴18一个反作用力,反作用力可以有效的抑制主轴18的径向波动,使主轴18转动趋于稳定,避免了主轴18产生磨损。检测件对安装方向的径向推力进行感应,并输出感应的信号,通过对各个安装方向的推力信号进行组合计算,计算得到组合信号,所述组合信号表征所述屏蔽泵的主轴18径向跳动程度,径向跳动程度包括大小和方向。
[0097] 在本发明实施例中,所述屏蔽泵的主轴18径向跳动检控装置还包括存储件,通过存储件进行数据存储并存储历史组合信号,通过数据处理器控制存储件导出数据并通过显示件显示检测曲线,从而可以查看径向跳动趋势。
[0098] 如图12所示,本发明实施例还提供的一种屏蔽泵主轴径向窜动的检控方法。屏蔽泵的主轴18径向窜动的检控方法应用于上述屏蔽泵,同样适用于实施例1、2中的屏蔽泵,通过上述所述的屏蔽泵的主轴径向窜动的检控装置,并对屏蔽泵的主轴18径向窜动进行检测。
[0099] 所述屏蔽泵的主轴18径向跳动检控方法包括:
[0100] 产生第一感应信号和第二感应信号;
[0101] 根据所述第一感应信号和所述第二感应信号计算得到组合信号c,所述组合信号c表征所述屏蔽泵主轴径向跳动程度:c=a+b=(x+x',y+y');
[0102] 其中,a为所述第一感应信号的平面向量,b为所述第二感应信号的平面向量;(x,y)为a平面向量坐标,(x',y')为b平面向量坐标。
[0103] 在本发明实施例中,当启动屏蔽泵时,主轴18在屏蔽泵的内部转动,转动的主轴18会产生径向的跳动,从而造成波动,主轴18径向的跳动使主轴18产生径向的推力,推力作用在检测件上,检测件检测在检测件安装方向上的推力,检测件同时给主轴18一个反作用力,反作用力可以有效的抑制主轴18的径向波动,使主轴18转动趋于稳定,避免了主轴18产生磨损。检测件对安装方向的径向推力进行感应,并输出感应的信号,假设可以感应主轴18径向推力的检测件为两个,当然当检测件设置密度增加时,可以是两个以上,其中以两个为宜,即减少了安装数量,减少了成本,同时计算过程简单。其中两个感应信号包括:第一检测件信号向量为a=(x,y),第二检测件信号向量b=(x',y'),通过组合计算,得到的组合信号c为a+b=(x+x',y+y')。(x,y)为a平面向量坐标,(x',y')为b平面向量坐标。通过对检测平面建立坐标系,从而得到两个信号的向量表示。向量的加法满足平行四边形法则和三角形法则。由于检测件设置在主轴18的周围,当主轴18的径向跳动时,跳动方向与一个检测件安装方向一致时,则该检测件检测信号即为径向跳动信号,当方向不一致时,则是通过两个检测件抑制对主轴18跳动,从而可以通过两个检测件进行组合计算。从而可以得到径向跳动的方向和大小。通过对各个安装方向的推力信号进行组合计算,计算得到组合信号,组合信号与主轴18的实际跳动一致,通过组合信号变化表征屏蔽泵的主轴18径向窜动程度,从而进行显示。
[0104] 实施例5
[0105] 本实施例提供一种无接触轴承磨损检测装置,无接触轴承磨损检测装置可以对实施例1‑4中的屏蔽泵的主轴18上连接的轴承的磨损状态进行检测。
[0106] 如图13所示,该检测装置包括:安装接头101、检测探头102、传输管103以及处理装置104。
[0107] 安装接头101用于与屏蔽泵的主轴18的尾端可拆卸固定连接;安装接头101内部含有圆筒形的检测腔110;安装接头101的其中一端设置有用于连接屏蔽泵的主轴18尾端的连接套111,另一端设有圆形的开口112,开口112与检测腔110连通,开口112的孔径小于检测腔110的内径;安装接头101由导磁性材料制备而成。
[0108] 检测探头102位于安装接头101的检测腔110内;检测探头102的尺寸小于检测腔110的尺寸;检测探头102内部含有由线圈、电容构成的谐振感应电路121。
[0109] 传输管103的其中一端与检测探头102可拆卸固定连接,另一端与一个处理装置104可拆卸固定连接;传输管103内设置有用于电连接检测探头102和处理装置104的信号线缆。
[0110] 处理装置104包括信号发生模块141、反馈信号采样模块142,以及数据处理模块143;信号发生模块141用于通过信号线缆向谐振感应电路121输出检测信号,从而激发谐振感应电路121在检测探头102周围产生交变磁场;反馈信号采样模块142用于采集检测探头
102接收到的表征轴承磨损的反馈振荡信号;数据处理模块143用于对反馈信号采样模块
142在单位时间内采集到的反馈振荡信号进行计数,将该计数值与表征轴承出现最大允许摩擦的临界值进行比较,得到屏蔽泵轴承磨损状况的分析结果。
[0111] 结合图13和图14说明本实施例中检测装置的工作原理,该型屏蔽泵无接触轴承磨损检测装置的工作原理如下:
[0112] 该型检测装置包括一个动组件和一个定组件。动组件即安装接头101,安装接头101连接在屏蔽泵的主轴18的尾端,因此会与屏蔽泵的主轴18同轴转动。检测探头102、传输管103、处理装置104构成的组合体为定组件;其中,可以通过调节组合体中检测探头102在安装接头101的安装腔内的位置,使得检测探头102在初始状态下恰好位于安装腔的正中位置,检测探头102的中心线与安装接头101的中心轴位于同一直线上,并将定组件固定在某个固定的安装基面上。
[0113] 在这种安装状态下,检测探头102和安装接头101中的检测腔110存在均匀的间隙,二者之间不接触。当屏蔽泵运行且检测装置运行时,安装接头101随着主轴18转动,处理装置104中的信号发生器向检测探头102中的谐振感应电路121输入一个交流电信号,谐振感应电路121在交流电信号的激励下会在检测探头102的周围产生一个交变磁场。在这种状态下,检测探头102中的谐振感应电路121和安装接头101中的检测腔110就相当于构成了一个检测电感量变化的“传感器”;谐振感应电路121的谐振频率就是“传感器”的振荡频率,振荡频率的大小是由检测探头102内部的电容、线圈,以及安装接头101的检测腔110三者共同决定的。
[0114] 该“传感器”的振荡频率可由如下的LC振荡电路的模型描述:
[0115]
[0116] 上式中,f表示传感器的振荡频率;L表示传感器的电感量;C表示传感器的电容,谐振感应电路121中的电容C为固定电容。
[0117] 在本实施例的检测装置检测过程中,屏蔽泵运转。理论上说,当轴承未发生磨损时,屏蔽泵的主轴18按照原始的同心度进行无偏移转动,因此安装接头101的转动也是无偏移的;又因为检测装置中的其余的定组件也是位置固定的,所以安装接头101和检测探头102之间相当于无相对位移。此时,传感器中的L和C不变。
[0118] 但是当屏蔽泵轴承发生摩擦时,转子组件的位置就会发生改变,此时屏蔽泵的主轴18的转动过程会发生偏移。连接在主轴18尾端的安装接头101也会随着主轴18发生偏移转动。
[0119] 在前述情况下,一旦轴承的磨损量超过阀值,主轴18转动过程的跳动量过大;安装接头101中检测腔110与检测探头102的相对位置便会不断发生改变;此时,“传感器”的电感量L发生改变。在轴承磨损状态下,“传感器”的电感量L在达到最大允许磨损时和未达到最大允许磨损时是不一样的;达到最大允许磨损时,电感量变大。
[0120] 处理装置104中的反馈信号采样模块142在达到轴承最大允许磨损时设定一个对应的振荡频率,并由此测出一个判断单位时间内的脉冲个数临界值。通常在未达到最大允许磨损时振荡频率会大幅度的变大。同时,处理装置104中的反馈信号采样模块142用于采集检测探头102处接收到的反馈振荡信号,本实施例中,在单位时间内,处理装置104中的数据处理模块143根据反馈信号采样模块142的采样结果,对送来的反馈振荡信号进行采样计数;并根据单位时间内获得的脉冲个数与脉冲个数临界值比较来确定是否最大允许磨损,从而得出对轴承的磨损量的评估分析结果;当脉冲个数超过临界值时,则认为轴承磨损超过最大允许磨损量,需要进行检修维护。
[0121] 本实施例中,检测探头102还包括第一壳体,第一壳体呈圆饼状,谐振感应电路121密封安装在第一壳体内部;第一壳体中设置用于连接传输管103的第一螺纹口;第一壳体由低磁力线阻尼系数、高耐腐蚀性和高结构强度的材料制备而成。
[0122] 第一壳体的作用是作为检测探头102中谐振感应电路121的保护罩,因此第一壳体通常需要选择耐腐蚀和结构强度均较强的材料。同时,由于第一壳体还不能对谐振感应电路121周围的磁场环境产生干扰,因此需要第一壳体的材料具有第磁力线阻尼系数。在综合考虑下,本实施例中,第一壳体采用的微晶玻璃材质。
[0123] 本实施例中,处理装置104还包括第二壳体;信号发生模块141、反馈信号采样模块142和数据处理模块143位于第二壳体内部;第二壳体的侧面设置用于连接传输管103的第二螺纹口。
[0124] 第二壳体主要作为信号发生模块141、反馈信号采样模块142和数据处理模块143的防护壳体,因此可以根据需要选择金属或高分子材料等,综合考量实际应用过程中对第二壳体的散热性能、抗冲击性能、耐腐蚀性能和生产成本等因素的要求。
[0125] 本实施例中,传输管103的两端均设置外螺纹,传输管103的两端分别与第一螺纹口和第二螺纹口可拆卸连接;传输管103的内壁上设置屏蔽层,传输管103内的信号线缆为屏蔽线缆。
[0126] 传输管103的作用包括两个方面:一方面作为处理装置104和检测探头102的结构连接件,另一方面还作为信号发生模块141、反馈信号采样模块142,与检测探头102中谐振感应电路121之间的安装屏蔽线缆的容器。传输管103的屏蔽层进一步提高了屏蔽线缆的电磁防护性能,从而提高该检修装置的检测精度。
[0127] 其中,本实施例中的信号发生模块141采用交流电源供电,信号发生模块141将交流电源的电信号滤波后转换为谐振感应电路121的输入。在这种结构下,本实施例的屏蔽泵无接触轴承磨损检测装置直接采用交流电进行供电,同时根据需要,信号发生模块141可以将市电转换为高频交流电信号进行输出,或者直接使用高频交流电。
[0128] 在此基础上,本实施例还增加了一个可调支架105,可调支架105固定连接在处理装置104上;可调支架105用于调节并固定处理装置104、传输管103和检测探头102构成的组合体的位置,从而对检测探头102在安装接头101的检测腔110内的初始位置进行对中调整,可调支架105的底面设置用于与安装基面固定连接的安装脚151。
[0129] 使用可调支架可以更便于对检测探头102在安装接头101的检测腔内的位置进行调整,从而使得检测装置处于最佳的检测状态下,得出最准确的检测结果。
[0130] 在此基础上,如图16所示,本实例的屏蔽泵无接触轴承磨损检测装置中还包括警报装置107,警报装置107接收数据处理模块的分析结果,并在分析结果显示存在轴承过度磨损时,发出警报信号。
[0131] 此外,本实施例的屏蔽泵无接触轴承磨损检测装置中,传输管103中靠近检测探头102的一端还设置有对中辅助装置,对中辅助装置包括设置在传输管103外壁上的进深刻度尺162,以及套接在传输管103外侧的对中圆盘片161;对中圆盘片161的外径小于安装接头
101中开口112的孔径。
[0132] 正如本实施例1中对该型检测装置的原理描述所言,本实施例的产品对设备安装条件要求较为严格。当检测探头102在安装接头101的检测腔110中的同轴性较差、位置不准,或者是二者发生非屏蔽泵转轴偏移导致的相对位移时,会对最终的检测结果造成影响。因此为了保障设备安装过程中的精准度,本实施例中在传输管103上设计了如图15所示的对中辅助装置。
[0133] 通常每次安装时,保证安装接头101的开口112位于位于进深刻度尺162的同一刻度上,即可保持检测探头102在检测腔110内的进深国定。再通保证对中圆盘片161与安装接头101的圆形开口112具有较高的同心度,即可使得检测探头102和检测腔110保持较高的同心度。这样就可以保证检测结果具有极高的精确度。
[0134] 对中圆盘片161并不是用来堵住安装接头101的开口112,只是用来与安装接头101的开口112进行对比,作为参照物,便于操作人员观察,从而确定安装过程中二者之间的同轴度。
[0135] 进一步的,信号发生模块141还可以采用直流电源供电,处理装置104中还包括可充电的电池145和谐振逆变器144;谐振逆变器144将电池145产生的直流电信号变换成交流电信号,并由信号发生模块141将交流电信号滤波后转换为谐振感应电路121的输入。
[0136] 无接触轴承磨损检测装置的屏蔽泵无接触轴承磨损检测方法,如图17所示,检测方法包括如下步骤:
[0137] S1:将屏蔽泵无接触轴承磨损检测装置布置在屏蔽泵尾端,对检测装置的位置和高度进行预调节;预调节过程需保证在安装接头101与屏蔽泵主轴18尾端连接后,检测探头102与安装接头101的检测腔110内部不接触;
[0138] S2:将安装接头101的连接套111固定连接在屏蔽泵主轴18的尾端;
[0139] S3:对检测装置的位置进行精调,保证检测探头102在安装接头101的检测腔110中保持对中;
[0140] 精调过程包括如下步骤:
[0141] S31:以保持安装接头101的开口112与进深刻度尺162中的标准线对齐为标准,调节处理装置104的与安装接头101的间距,完成检测探头102的深度调节;
[0142] S32:以保持对中圆盘片161与安装接头101的开口112同轴为标准,通过可调支架105调整处理装置104的水平位置和竖直高度,完成检测探头102的与检测腔110的位置对中调节;
[0143] S33:通过可调支架105的安装脚151将完成深度调节和位置对中调节的检测装置固定在安装基面上;
[0144] S4:开启屏蔽泵运行,并打开屏蔽泵无接触轴承磨损检测装置;
[0145] S5:屏蔽泵无接触轴承磨损检测装置运行过程中,信号发生模块141通过线缆向谐振感应电路121输出检测信号,谐振感应电路121在检测探头102周围产生交变磁场;反馈信号采样模块142采集检测探头102接收到的表征轴承磨损的反馈振荡信号;数据处理模块143获取反馈信号采样模块142采集的反馈振荡信号的个数,并对采样结果进行处理,得到屏蔽泵轴承磨损状况的分析结果,并根据检测检测结果做出判断:
[0146] (1)当采集的反馈振荡信号个数小于临界值时,数据处理模块的分析结果显示轴承的磨损值小于安全阀值时,警报装置107不运行;
[0147] (2)当采集的反馈振荡信号个数大于等于临界值时,数据处理模块的分析结果显示轴承的磨损值大于等于安全阀值时,数据处理模块向警报装置107发送指令,警报装置107运行,发出警报信号。
[0148] 以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。