一种转炉后吹碳含量动态预测方法及装置转让专利

申请号 : CN202110444392.0

文献号 : CN113239482B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 袁飞谷茂强徐安军汪红兵

申请人 : 北京科技大学

摘要 :

本发明公开了一种转炉后吹碳含量动态预测方法及装置,该方法包括:以当前转炉生产过程为新案例,历史转炉生产过程为历史案例,根据新案例的主吹阶段工艺参数,基于案例推理算法检索出历史案例中的相似案例及其后吹阶段工艺参数;利用相似案例的后吹阶段工艺参数对碳含量预测模型进行训练;将新案例的后吹阶段工艺参数输入训练好的碳含量预测模型,实现吹炼后期碳含量的实时动态预测。本发明针对目前转炉终点静态控制模型和动态控制模型存在的问题,基于案例推理和长短期记忆网络建立了转炉预测模型,实现了对转炉吹炼后期碳含量的实时动态预测,可为操作人员提高终点命中率提供参考。

权利要求 :

1.一种转炉后吹碳含量动态预测方法,其特征在于,包括:以当前转炉生产过程为新案例,历史转炉生产过程为历史案例,根据新案例的主吹阶段工艺参数,基于案例推理算法,检索出历史案例中与所述新案例之间的相似度符合预设要求的相似案例及所述相似案例的后吹阶段工艺参数;

利用所述相似案例的后吹阶段工艺参数,对预设的碳含量预测模型进行训练;其中,所述碳含量预测模型为长短期记忆网络模型,所述碳含量预测模型的输入为上一时刻的后吹阶段工艺参数,输出为下一时刻的碳含量;

将新案例的后吹阶段工艺参数输入训练好的碳含量预测模型,通过训练好的碳含量预测模型实现新案例吹炼后期碳含量的实时动态预测;

所述根据新案例的主吹阶段工艺参数,基于案例推理算法,检索出历史案例中与所述新案例之间的相似度符合预设要求的相似案例,包括:根据新案例的主吹阶段工艺参数,基于案例推理算法,采用欧式距离相似度计算历史案例与所述新案例之间的相似度;将历史案例按照计算出的各自对应的相似度进行降序排列,选择排名靠前的预设数量的历史案例作为相似案例;

所述相似案例的数量为多个,所述碳含量预测模型的数量与相似案例的数量相匹配;

所述对预设的碳含量预测模型进行训练,包括:将相似案例与碳含量预测模型一一对应,分别利用每一相似案例的后吹阶段工艺参数训练相应的碳含量预测模型,得到多个训练好的碳含量预测模型;

所述将新案例的后吹阶段工艺参数逐步输入训练好的碳含量预测模型,通过训练好的碳含量预测模型实现新案例吹炼后期碳含量的实时动态预测,包括:将新案例的后吹阶段工艺参数分别输入每一训练好的碳含量预测模型;

将各碳含量预测模型输出的碳含量进行加权融合,得到吹炼后期的碳含量。

2.如权利要求1所述的转炉后吹碳含量动态预测方法,其特征在于,所述主吹阶段工艺参数包括:入炉铁水成分、入炉铁水温度、入炉铁水重量、废钢种类、废钢重量、转炉副枪探头检测的碳含量和转炉副枪探头检测的温度结果。

3.如权利要求1所述的转炉后吹碳含量动态预测方法,其特征在于,所述后吹阶段工艺参数包括:枪位变化、供氧流量、底吹气体流量和碳含量变化。

4.如权利要求1所述的转炉后吹碳含量动态预测方法,其特征在于,所述将各碳含量预测模型输出的碳含量进行加权融合,包括:将各碳含量预测模型输出的碳含量按照下式进行加权融合:其中,C(k)为新案例的第k个时刻的碳含量变化预测值,Ci(k)为第i个碳含量预测模型的第k个时刻的输出,yi为第i个碳含量预测模型对应的权重,si为第i个相似案例与新案例之间的相似度,n为碳含量预测模型的数量。

5.一种转炉后吹碳含量动态预测装置,其特征在于,包括:相似案例检索模块,用于以当前转炉生产过程为新案例,历史转炉生产过程为历史案例,根据新案例的主吹阶段工艺参数,基于案例推理算法,检索出历史案例中与所述新案例之间的相似度符合预设要求的相似案例及所述相似案例的后吹阶段工艺参数;

模型训练模块,用于利用所述相似案例检索模块检索到的相似案例的后吹阶段工艺参数,对预设的碳含量预测模型进行训练;其中,所述碳含量预测模型为长短期记忆网络模型,所述碳含量预测模型的输入为上一时刻的后吹阶段工艺参数,输出为下一时刻的碳含量;

吹炼后期碳含量实时动态预测模块,用于将新案例的后吹阶段工艺参数输入经所述模型训练模块训练好的碳含量预测模型,通过训练好的碳含量预测模型实现新案例吹炼后期碳含量的实时动态预测;

所述相似案例检索模块具体用于:

根据新案例的主吹阶段工艺参数,基于案例推理算法,采用欧式距离相似度计算历史案例与所述新案例之间的相似度;将历史案例按照计算出的各自对应的相似度进行降序排列,选择排名靠前的预设数量的历史案例作为相似案例;

所述相似案例的数量为多个,所述碳含量预测模型的数量与相似案例的数量相匹配;

所述模型训练模块具体用于:

将相似案例与碳含量预测模型一一对应,分别利用每一相似案例的后吹阶段工艺参数训练相应的碳含量预测模型,得到多个训练好的碳含量预测模型;

所述吹炼后期碳含量实时动态预测模块具体用于:将新案例的后吹阶段工艺参数分别输入每一训练好的碳含量预测模型;

将各碳含量预测模型输出的碳含量进行加权融合,得到吹炼后期的碳含量。

6.如权利要求5所述的转炉后吹碳含量动态预测装置,其特征在于,所述主吹阶段工艺参数包括:入炉铁水成分、入炉铁水温度、入炉铁水重量、废钢种类、废钢重量、转炉副枪探头检测的碳含量和转炉副枪探头检测的温度结果;所述后吹阶段工艺参数包括枪位变化、供氧流量、底吹气体流量和碳含量变化。

7.如权利要求5所述的转炉后吹碳含量动态预测装置,其特征在于,所述将各碳含量预测模型输出的碳含量进行加权融合,包括:将各碳含量预测模型输出的碳含量按照下式进行加权融合:其中,C(k)为新案例的第k个时刻的碳含量变化预测值,Ci(k)为第i个碳含量预测模型的第k个时刻的输出,yi为第i个碳含量预测模型对应的权重,si为第i个相似案例与新案例之间的相似度,n为碳含量预测模型的数量。

说明书 :

一种转炉后吹碳含量动态预测方法及装置

技术领域

[0001] 本发明涉及转炉炼钢控制技术领域,特别涉及一种转炉后吹碳含量动态预测方法及装置。

背景技术

[0002] 转炉炼钢是一个非常复杂的高温物理化学变化过程,具有生产效率高、能耗少、成本低等特点,是目前我国主要的炼钢生产方式。转炉终点控制是指控制钢水的成分和温度
达到合理的范围内,然而,转炉冶炼过程中熔池温度太高,现有的检测手段无法实现对熔池
内的成分和温度的连续监测,导致目前大多数钢厂的转炉终点控制大多还是依靠人工经
验,控制精度低且不稳定,因此建立精确的转炉终点预测模型对转炉终点控制具有重大意
义。
[0003] 目前转炉终点预测模型可以分为静态预测模型和动态预测模型,其中静态预测模型可以分为理论模型和数据驱动模型。理论模型是以物料平衡和热平衡为基础而建立的,
但由于模型中存在大量假设条件,导致无法真实的反映转炉实际生产过程,所以控制精度
较差。而数据驱动模型是利用历史生产数据进行学习和建模,因此更能有效的反映出转炉
生产过程,目前已经有很多学者对此进行了深入的研究。韩敏等人基于案例推理模型,并通
过组合不同的案例检索和案例重用方法建立了转炉供氧量控制模型。王心哲等人提出了一
种基于因果关系的案例推理CBR模型用于转炉炼钢静态控制。Tae Chang Park等人通过敏
感分析删除无关紧要的输入参数,并以此分别建立人工神经网络ANN模型和最小二乘支持
向量机模型预测转炉终点温度。高闯等人提出了基于改进的孪生支持向量回归机模型来预
测转炉终点。李威等人基于BP神经网络BPNN和改进粒子群优化算法PSO算法建立了转炉终
点预测模型。韩敏等人提出一种基于膜算法改进极限学习机的转炉终点预测模型。严良涛
等人建立了基于遗传算法的核偏最小二乘回归GA‑KPLSR的终点碳含量的预测模型。程进等
人提出一种由数据驱动的多任务学习炼钢终点预测方法。除此之外,还有部分学者利用火
焰光谱和炉口火焰图像建立转炉终点预测模型。
[0004] 上述数据驱动模型虽然在预测精度上有所提高,但模型只能实现吹炼终点时的温度和碳含量的预测,无法实现对吹炼过程碳含量变化的计算,也就无法进一步在吹炼过程
中进行动态调整,因此一次命中率是有限的。
[0005] 而对于动态模型可以分为基于副枪的控制模型和基于炉气分析的控制模型。基于副枪的控制模型方面,岳峰等利用转炉吹炼末期脱碳指数方程、热平衡和热力学方程分别
建立了转炉终点碳、温度、磷和锰的预报模型。韩敏等人建立了基于自适应神经模糊系统
ANFIS和相关向量机的转炉炼钢动态控制模型。王心哲等人建立了基于数据驱动的转炉炼
钢终点碳含量实时预测模型。
[0006] 基于炉气分析控制的模型方面,胡志刚等人利用炉气分析技术基于碳积分模型进行转炉钢水连续定碳和定温。刘锟等人提出了基于烟气分析转炉终点碳含量控制的新算法
实现动态推算吹炼后期熔池碳含量。加拿大Dofasco公司采用转炉烟气分析吹炼控制系统
后,已经不再使用副枪,冶炼全部炉次直接出钢,烟气分析系统作业率100%,补吹率小于
1%。林文辉等人提出了基于“极限碳含量拟合+曲线同步更新”算法的改进指数模型预测转
炉吹炼后期碳含量。
[0007] 上述两种动态控制方法在一定程度上提高了转炉终点控制的命中率,但还存在以下问题,基于副枪的控制模型由于副枪无法实现连续测量,因此无法实现吹炼后期碳含量
的动态预测,而基于炉气分析的控制模型,炉气的检测设备远离熔池反应区,因此炉气数据
存在一定的延迟,导致模型虽然能够实现碳含量的动态预测却无法实现实时预测。

发明内容

[0008] 本发明提供了一种转炉后吹碳含量动态预测方法及装置,以解决现有转炉终点静态控制模型和动态控制模型所存在的上述技术问题。
[0009] 为解决上述技术问题,本发明提供了如下技术方案:
[0010] 一方面,本发明提供了一种转炉后吹碳含量动态预测方法,包括:
[0011] 以当前转炉生产过程为新案例,历史转炉生产过程为历史案例,根据新案例的主吹阶段工艺参数,基于案例推理算法,检索出历史案例中与所述新案例之间的相似度符合
预设要求的相似案例及所述相似案例的后吹阶段工艺参数;
[0012] 利用所述相似案例的后吹阶段工艺参数,对预设的碳含量预测模型进行训练;其中,所述碳含量预测模型为长短期记忆网络模型,所述碳含量预测模型的输入为上一时刻
的后吹阶段工艺参数,输出为下一时刻的碳含量;
[0013] 将新案例的后吹阶段工艺参数输入训练好的碳含量预测模型,通过训练好的碳含量预测模型实现新案例吹炼后期碳含量的实时动态预测。
[0014] 进一步地,所述主吹阶段工艺参数包括:入炉铁水成分、入炉铁水温度、入炉铁水重量、废钢种类、废钢重量、转炉副枪探头检测的碳含量和转炉副枪探头检测的温度结果。
[0015] 进一步地,所述后吹阶段工艺参数包括:枪位变化、供氧流量、底吹气体流量和碳含量变化。
[0016] 进一步地,所述根据新案例的主吹阶段工艺参数,基于案例推理算法,检索出历史案例中与所述新案例之间的相似度符合预设要求的相似案例,包括:
[0017] 根据新案例的主吹阶段工艺参数,基于案例推理算法,采用欧式距离相似度计算历史案例与所述新案例之间的相似度;将历史案例按照计算出的各自对应的相似度进行降
序排列,选择排名靠前的预设数量的历史案例作为相似案例。
[0018] 进一步地,所述相似案例的数量为多个,所述碳含量预测模型的数量与相似案例的数量相匹配;
[0019] 所述对预设的碳含量预测模型进行训练,包括:
[0020] 将相似案例与碳含量预测模型一一对应,分别利用每一相似案例的后吹阶段工艺参数训练相应的碳含量预测模型,得到多个训练好的碳含量预测模型;
[0021] 所述将新案例的后吹阶段工艺参数逐步输入训练好的碳含量预测模型,通过训练好的碳含量预测模型实现新案例吹炼后期碳含量的实时动态预测,包括:
[0022] 将新案例的后吹阶段工艺参数分别输入每一训练好的碳含量预测模型;
[0023] 将各碳含量预测模型输出的碳含量进行加权融合,得到吹炼后期的碳含量。
[0024] 进一步地,所述将各碳含量预测模型输出的碳含量进行加权融合,包括:
[0025] 将各碳含量预测模型输出的碳含量按照下式进行加权融合:
[0026]
[0027]
[0028] 其中,C(k)为新案例的第k个时刻的碳含量变化预测值,Ci(k)为第i个碳含量预测模型的第k个时刻的输出,yi为第i个碳含量预测模型对应的权重,si为第i个相似案例与新
案例之间的相似度,n为碳含量预测模型的数量。
[0029] 另一方面,本发明还提供了一种转炉后吹碳含量动态预测装置,包括:
[0030] 相似案例检索模块,用于以当前转炉生产过程为新案例,历史转炉生产过程为历史案例,根据新案例的主吹阶段工艺参数,基于案例推理算法,检索出历史案例中与所述新
案例之间的相似度符合预设要求的相似案例及所述相似案例的后吹阶段工艺参数;
[0031] 模型训练模块,用于利用所述相似案例检索模块检索到的相似案例的后吹阶段工艺参数,对预设的碳含量预测模型进行训练;其中,所述碳含量预测模型为长短期记忆网络
模型,所述碳含量预测模型的输入为上一时刻的后吹阶段工艺参数,输出为下一时刻的碳
含量;
[0032] 吹炼后期碳含量实时动态预测模块,用于将新案例的后吹阶段工艺参数输入经所述模型训练模块训练好的碳含量预测模型,通过训练好的碳含量预测模型实现新案例吹炼
后期碳含量的实时动态预测。
[0033] 进一步地,所述主吹阶段工艺参数包括:入炉铁水成分、入炉铁水温度、入炉铁水重量、废钢种类、废钢重量、转炉副枪探头检测的碳含量和转炉副枪探头检测的温度结果;
所述后吹阶段工艺参数包括枪位变化、供氧流量、底吹气体流量和碳含量变化。
[0034] 进一步地,所述相似案例检索模块具体用于:
[0035] 根据新案例的主吹阶段工艺参数,基于案例推理算法,采用欧式距离相似度计算历史案例与所述新案例之间的相似度;将历史案例按照计算出的各自对应的相似度进行降
序排列,选择排名靠前的预设数量的历史案例作为相似案例。
[0036] 进一步地,所述相似案例的数量为多个,所述碳含量预测模型的数量与相似案例的数量相匹配;
[0037] 所述模型训练模块具体用于:
[0038] 将相似案例与碳含量预测模型一一对应,分别利用每一相似案例的后吹阶段工艺参数训练相应的碳含量预测模型,得到多个训练好的碳含量预测模型;
[0039] 所述吹炼后期碳含量实时动态预测模块具体用于:
[0040] 将新案例的后吹阶段工艺参数分别输入每一训练好的碳含量预测模型;
[0041] 将各碳含量预测模型输出的碳含量进行加权融合,得到吹炼后期的碳含量;
[0042] 其中,所述将各碳含量预测模型输出的碳含量进行加权融合,包括:
[0043] 将各碳含量预测模型输出的碳含量按照下式进行加权融合:
[0044]
[0045]
[0046] 其中,C(k)为新案例的第k个时刻的碳含量变化预测值,Ci(k)为第i个碳含量预测模型的第k个时刻的输出,yi为第i个碳含量预测模型对应的权重,si为第i个相似案例与新
案例之间的相似度,n为碳含量预测模型的数量。
[0047] 再一方面,本发明还提供了一种电子设备,其包括处理器和存储器;其中,存储器中存储有至少一条指令,所述指令由处理器加载并执行以实现上述方法。
[0048] 又一方面,本发明还提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现上述方法。
[0049] 本发明提供的技术方案带来的有益效果至少包括:
[0050] 本发明通过以当前转炉生产过程为新案例,历史转炉生产过程为历史案例,根据新案例的主吹阶段工艺参数,基于案例推理算法检索出历史案例中的相似案例及其后吹阶
段工艺参数;利用相似案例的后吹阶段工艺参数对基于长短期记忆网络的碳含量预测模型
进行训练;利用训练好的碳含量预测模型实现了对转炉吹炼后期碳含量的实时动态预测,
可为操作人员提高终点命中率提供参考。

附图说明

[0051] 为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于
本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他
的附图。
[0052] 图1为本发明实施例提供的转炉后吹碳含量动态预测方法的执行流程图;
[0053] 图2为本发明实施例提供的相似案例检索流程图;
[0054] 图3为本发明实施例提供的碳含量预测模型训练流程图;
[0055] 图4为本发明实施例提供的碳含量预测模型验证流程图;
[0056] 图5为本发明实施例提供的碳含量预测模型预测结果示意图。

具体实施方式

[0057] 为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
[0058] 第一实施例
[0059] 碳含量是转炉终点控制的重要参数之一,而转炉吹炼过程碳含量实时预测是终点控制的关键。而基于副枪的控制模型无法实现对后吹阶段碳含量的动态预测以及碳积分模
型由于炉气数据延迟的问题无法实现实时预测。针对该问题,本实施例提供了一种转炉后
吹碳含量动态预测方法,基于案例推理CBR和长短期记忆网络LSTM建立了转炉吹炼后期的
碳含量实时动态预测模型。
[0060] 本实施例的转炉后吹碳含量动态预测方法可以由电子设备实现,该电子设备可以是终端或者服务器。该方法的执行流程如图1所示,包括以下步骤:
[0061] S101,以当前转炉生产过程为新案例,历史转炉生产过程为历史案例,根据新案例的主吹阶段工艺参数,基于案例推理CBR算法检索出历史案例中与新案例之间的相似度符
合预设要求的相似案例及相似案例的后吹阶段工艺参数;
[0062] S102,利用相似案例的后吹阶段工艺参数,对预设的碳含量预测模型进行训练;其中,碳含量预测模型为长短期记忆网络LSTM模型,碳含量预测模型的输入为上一时刻的后
吹阶段工艺参数,输出为下一时刻的碳含量;
[0063] S103,将新案例的后吹阶段工艺参数输入训练好的碳含量预测模型,通过训练好的碳含量预测模型实现新案例吹炼后期碳含量的实时动态预测。
[0064] 其中,在进行案例推理时,需首先对案例进行描述,案例描述也称为案例表示,是案例推理的基础。案例描述主要是通过一定的方法将案例描述出来,案例描述一般包括案
例特征描述以及案例的解决方案描述,表达式如下:
[0065] Case={x1,x2,…,xn|s}                   (1)
[0066] 式中:xi为案例的第i个特征,n为特征的个数,s为案例的解决方案。
[0067] 案例检索是根据待解决案例的问题描述在案例库中找到该案例或情况最相似的案例。当案例的特征属性比较多的时候,一般情况下案例库中没有完全与之相同的案例,所
以需要一定的计算方法来找出与之最相似的案例。
[0068] 对于相似度计算方法,本实施例采用欧式距离相似度。假设案例的影响因素个数为n,案例库中案例的第j个因素是yj,在问题案例中第j个影响因素为xj,则问题案例和案例
库中案例之间的欧氏距离公式如公式(2)‑(3)所示:
[0069]
[0070] 式中:m为案例的影响因素个数;xj为新案例的第j个影响因素;yj为案例库中案例的第j个影响因素。则案例与案例之间的相似度为:
[0071]
[0072] 具体地,本实施例的相似案例检索的实现流程如图2所示,相似案例检索的目的是利用新案例的单值类型数据(入炉铁水成分、入炉铁水温度、入炉铁水重量、废钢种类、废钢
重量、转炉副枪探头TSC检测的碳含量和转炉副枪探头TSC检测的温度结果等信息)在历史
案例库中检索到相似案例对应的后吹阶段时序数据(枪位变化、供氧流量、底吹气体流量和
碳含量变化)。
[0073] 其中,碳含量变化通过碳积分模型拟合得到,碳积分模型基于质量平衡原理,首先根据炼钢原料成分计算出溶池初始的碳量,减去不断从炉气中以CO和CO2方式溢出的碳量,
剩下的部分就是溶池钢液中的碳量。该模型通过连续的积分运算可动态地计算出溶池w(C)
在冶炼全过程中的变化趋势图。根据质谱仪测得的烟气中的CO和CO2的百分含量、以及流量
计测得的烟气流量,利用转炉冶炼过程中的碳平衡,可计算出熔池中的脱碳速度。公式如
下:
[0074]
[0075] 式中:VC为熔池的脱碳速度,kg/s;Qsmoke为烟气流量,m3/s; 分别为烟气中的CO和CO2的体积分数;
[0076] 则熔池瞬时w(C)可表示为:
[0077]
[0078] 式中:w(C)(t)为熔池t时刻的碳含量,%;WCini为熔池初始条件下的总碳量,kg;WSteel为熔池钢水质量,kg。
[0079] 对碳含量预测模型进行训练时,是利用检索出来的相似案例的后吹阶段的时序数据(枪位变化、供氧流量、底吹气体流量和碳含量变化)进行碳含量预测模型的训练。该模型
训练过程如图3所示,是将上一时刻的枪位、供氧流量、底吹气体流量和碳含量作为输入,下
一时刻的碳含量作为输出。
[0080] 进一步地,上述根据新案例的主吹阶段工艺参数,基于案例推理算法,检索出历史案例中与所述新案例之间的相似度符合预设要求的相似案例,具体为:
[0081] 根据新案例的主吹阶段工艺参数,基于案例推理算法,采用欧式距离相似度计算历史案例与所述新案例之间的相似度;将历史案例按照计算出的各自对应的相似度进行降
序排列,选择排名靠前几个历史案例作为相似案例。其中,相似案例的数量为多个,碳含量
预测模型的数量与相似案例的数量相匹配。
[0082] 相应地,对碳含量预测模型进行训练,包括:
[0083] 将相似案例与碳含量预测模型一一对应,分别利用每一相似案例的后吹阶段工艺参数训练相应的碳含量预测模型,得到多个训练好的碳含量预测模型。
[0084] 通过训练好的碳含量预测模型实现新案例吹炼后期碳含量的实时动态预测的过程如图4所示,是将新案例吹炼后期中上一时刻的枪位变化、供氧流量、底吹气体流量和碳
含量输入训练好的每个碳含量预测模型,将各碳含量预测模型输出的碳含量进行加权融
合,得到下一时刻的碳含量变化,然后将得到的下一时刻碳含量预测值作为再下一时刻的
输入,以此类推,逐步得到新案例吹炼后期碳含量变化曲线。其中,将各模型输出的碳含量
进行加权融合,公式如下:
[0085]
[0086]
[0087] 式中:C(k)为新案例的第k个时刻的碳含量变化预测值,Ci(k)为第i个碳含量预测模型的第k个时刻的输出,yi为第i个碳含量预测模型对应的权重,si为第i个相似案例与新
案例之间的相似度,n为碳含量预测模型的数量。
[0088] 下面,以具体应用实例来验证上述碳含量预测模型的预测精度。
[0089] 1数据集
[0090] 为了验证上述碳含量预测模型的预测精度,本实施例以B钢厂采集的946个炉次SHPC钢种转炉实际生产数据。转炉吹炼过程的单值类型和时序类型工艺参数统计结果如表
1和表2所示:
[0091] 表1转炉主吹阶段单值型工艺参数统计结果
[0092]
[0093]
[0094] 其中:TSC[C]、TSC[T]和TSO[C]分别为转炉副枪探头TSC检测的碳含量和温度以及TSO检测的碳含量。
[0095] 表2转炉后吹阶段工艺参数统计结果
[0096]
[0097] 2相似案例检索
[0098] 由于转炉炼钢过程是一个远离平衡态的体系,副枪检测的结果无法完全的反映出转炉熔池内的状态,因此还需要综合考虑转炉入炉原料条件和转炉吹炼前中期的工艺操
作。案例推理模型的输入包括:铁水温度、铁水重量、铁水碳含量、铁水硅含量、铁水锰含量、
铁水磷含量、废钢量、石灰加入量、白云石加入量、主吹阶段供氧量、TSC[C]和TSC[T]。
[0099] 2.1案例推理模型参数设置
[0100] 本实施例的案例推理模型中,相似度计算方法采用欧式距离相似度,案例重用规则是选取相似度最高的4个案例作为重用案例。
[0101] 2.2案例检索结果
[0102] 以某一炉次为例,案例推理模型检索出的相似案例结果如表3所示,其中炉次3726为新案例,炉次3276,3674,3383,1838为检索出的相似案例。
[0103] 表3相似案例检索结果
[0104]
[0105]
[0106] 其中,碳含量变化曲线按照公式(5)拟合得到。
[0107] 3碳含量实时动态预测
[0108] 3.1模型训练
[0109] 将上一时刻的枪位变化、供氧流量、底吹气体流量和碳含量为碳含量预测模型的输入,下一时刻碳含量变化作为模型的输出。模型参数中优化后确定神经元数为10,batch
为1,epoch为500,损失函数为mae,优化求解器为Adam。
[0110] 3.2模型验证
[0111] 利用训练好的碳含量预测模型对新案例进行验证,得到每个模型的预测结果,并结合案例的相似度加权得到最终结果。最终得到各模型的终点预测结果分别为0.0495,
0.0399,0.0449和0.0470,结合相似度加权,最终得到碳含量预测结果为0.0454,而实际碳
含量值为0.046,由此可得该模型预测误差为0.0006。
[0112] 为可进一步验证模型可行性,将全部946炉次数据划分为训练集和测试集,其中训练集846个炉次和测试集100个炉次,模型的预测结果如图5所示。
[0113] 4其他模型对比
[0114] 进一步地,为了进一步验证本实施例所建立的碳含量预测模型的预测精度,本实施例还建立了碳积分模型、三次方模型和指数模型。通过采用相同的数据集对上述各模型
进行训练和验证,可得到本实施例所建立的碳含量预测模型的预测误差在[‑0.005,
0.005],[‑0.010,0.010],[‑0.015,0.015]和[‑0.020,0.020]范围内的命中率分别为24%,
46%,69%和88%,与传统的碳积分模型、三次方模型和指数模型相比,在[‑0.02,0.02]范
围内命中率分别提升了16%,12%和4%,证明本实施例的模型能够有效的预测转炉终点碳
含量,为现场操作人员提供指导。
[0115] 综上,本实施例基于CBR和LSTM建立了碳含量预测模型,实现了对转炉后吹阶段碳含量实时动态预测。且所建立的碳含量预测模型的预测误差在[‑0.005,0.005],[‑0.010,
0.010],[‑0.015,0.015]和[‑0.020,0.020]范围内的命中率分别为24%,46%,69%和
88%,高于传统的碳积分模型、三次方模型和指数模型。
[0116] 第二实施例
[0117] 本实施例提供了一种转炉后吹碳含量动态预测装置,该装置包括以下模块:
[0118] 相似案例检索模块,用于以当前转炉生产过程为新案例,历史转炉生产过程为历史案例,根据新案例的主吹阶段工艺参数,基于案例推理算法,检索出历史案例中与所述新
案例之间的相似度符合预设要求的相似案例及所述相似案例的后吹阶段工艺参数;
[0119] 模型训练模块,用于利用所述相似案例检索模块检索到的相似案例的后吹阶段工艺参数,对预设的碳含量预测模型进行训练;其中,所述碳含量预测模型为长短期记忆网络
模型,所述碳含量预测模型的输入为上一时刻的后吹阶段工艺参数,输出为下一时刻的碳
含量;
[0120] 吹炼后期碳含量实时动态预测模块,用于将新案例的后吹阶段工艺参数输入经所述模型训练模块训练好的碳含量预测模型,通过训练好的碳含量预测模型实现新案例吹炼
后期碳含量的实时动态预测。
[0121] 本实施例的转炉后吹碳含量动态预测装置与上述第一实施例的转炉后吹碳含量动态预测方法相对应;其中,本实施例的转炉后吹碳含量动态预测装置中的各功能模块所
实现的功能与上述第一实施例的转炉后吹碳含量动态预测方法中的各流程步骤一一对应;
故,在此不再赘述。
[0122] 第三实施例
[0123] 本实施例提供一种电子设备,其包括处理器和存储器;其中,存储器中存储有至少一条指令,所述指令由处理器加载并执行,以实现第一实施例的方法。
[0124] 该电子设备可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器(central processing units,CPU)和一个或一个以上的存储器,其中,存储器中存
储有至少一条指令,所述指令由处理器加载并执行上述方法。
[0125] 第四实施例
[0126] 本实施例提供一种计算机可读存储介质,该存储介质中存储有至少一条指令,所述指令由处理器加载并执行,以实现上述第一实施例的方法。其中,该计算机可读存储介质
可以是ROM、随机存取存储器、CD‑ROM、磁带、软盘和光数据存储设备等。其内存储的指令可
由终端中的处理器加载并执行上述方法。
[0127] 此外,需要说明的是,本发明可提供为方法、装置或计算机程序产品。因此,本发明实施例可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。
而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存
储介质上实施的计算机程序产品的形式。
[0128] 本发明实施例是参照根据本发明实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图
中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些
计算机程序指令到通用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以
产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生
用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的
装置。
[0129] 这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包
括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方
框或多个方框中指定的功能。这些计算机程序指令也可装载到计算机或其他可编程数据处
理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机
实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一
个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
[0130] 还需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要
素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端
设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排
除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
[0131] 最后需要说明的是,以上所述是本发明优选实施方式,应当指出,尽管已描述了本发明优选实施例,但对于本技术领域的技术人员来说,一旦得知了本发明的基本创造性概
念,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应
视为本发明的保护范围。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明
实施例范围的所有变更和修改。