一种冶炼污酸废水回收金的方法转让专利

申请号 : CN202110630097.4

文献号 : CN113249580B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 蒋国民赵次娴岑家山雷吟春刘锐利陈龙廖圆王凯

申请人 : 赛恩斯环保股份有限公司

摘要 :

本发明公开了一种冶炼污酸废水回收金的方法,包括以下步骤:(1)选择性沉铜:往污酸废水中加入沉铜剂,搅拌反应,固液分离得到富铜渣和沉铜后液;(2)选择性沉砷:往沉铜后液中加入沉砷剂,搅拌反应,固液分离得到富砷渣和沉砷后液;(3)沉金:往沉砷后液中加入沉金剂,搅拌反应,固液分离得到富金渣和沉金后液。本发明严格按照铜‑砷‑金的顺序分步沉降,实现有价金属铜、金的回收和有害元素砷和氟的开路。

权利要求 :

1.一种冶炼污酸废水回收金的方法,其特征在于,包括以下步骤:(1)选择性沉铜:往污酸废水中加入沉铜剂,搅拌反应,固液分离得到富铜渣和沉铜后液;

沉铜剂选自二氧化硫、亚硫酸、亚硫酸钾、亚硫酸钠、亚硫酸铵、硫代硫酸钠、硫代硫酸钾中的至少一种;其中二氧化硫、亚硫酸、亚硫酸钾、亚硫酸钠、亚硫酸铵的加入量为理论沉铜量的1 5倍;硫代硫酸钠、硫代硫酸钾的加入量为理论沉铜量的1.2 2倍;

~ ~

(2)选择性沉砷:往沉铜后液中加入沉砷剂,搅拌反应,固液分离得到富砷渣和沉砷后液;

沉砷剂选自钙盐或铁盐,所述钙盐选自氧化钙、氢氧化钙、碳酸钙中的至少一种,所述铁盐选自硫酸铁、聚合硫酸铁、氯化铁中的至少一种;其中钙盐或铁盐的加入量为理论沉砷量的1.2 1.5倍;

~

(3)沉金:往沉砷后液中加入沉金剂,搅拌反应,固液分离得到富金渣和沉金后液;

沉金剂选自硫化钠、硫氢化钠、硫化铁中的至少一种,加入量为理论沉金量的2 10倍;

~

沉金过程的pH为9 11。

~

2.根据权利要求1所述的一种冶炼污酸废水回收金的方法,其特征在于:步骤(1)中,所述污酸废水为铜冶炼行业产生的污酸废水,其中Cl:4 15g/L、F:1 5g/L、As:2 10g/L、Cu:~ ~ ~

0.5 5g/L、Au:0.2 0.5mg/L,酸度10 100g/L。

~ ~ ~

说明书 :

一种冶炼污酸废水回收金的方法

技术领域

[0001] 本发明涉及一种冶炼污酸废水回收金的方法,属于污酸废水处理与资源回收技术领域。

背景技术

[0002] 铜冶炼烟气制酸工艺中的洗涤净化环节产生大量的酸性废水,冶炼企业一般称之为“污酸”。污酸溶液体系非常复杂,组分多、浓度高,主要含有高浓度的硫酸根离子、氟离
子、氯离子,以及高浓度的砷,少量多种金属如铜、锌、铅、镉、铁、金、银等,是一种危害大,而
且难处理的矿冶工业废水。针对此废水的特点,研究能够将废水中的多种有价元素(如砷、
金属、稀硫酸等)资源化回收的处理工艺技术具有重要的实际意义。
[0003] 目前废液中金回收的传统方法包括活性炭吸附法、树脂吸附法、硫化沉淀法、石灰中和法、置换法、膜分离法、溶剂萃取法等。
[0004] 活性炭吸附法和树脂吸附法在酸性氯化体系中对金、银吸附效果不佳。硫化沉淀+
过程由于含金滤液中H 浓度约为10 100g/L,使得硫化沉淀过程产生大量硫化氢气体,硫
~
化钠耗量偏大,同时污酸中的铜、砷和金一起进入硫化渣中,无法实现有价金属的分离回
收。若采用石灰中和法处理含金污酸时,铜、砷、氟、金也共沉淀,中和渣量偏大,同时中和渣
中金属品位低,不具备回收价值。由于污酸中含有大量铜离子,采用金属置换法,会导致试
剂消耗大,选择性差,尾渣贵金属含量低,同时导致溶液中引入其他金属离子。膜分离法一
般用于精细分离,在分离过程中仅限于富集,成本较高,且复杂环境下膜技术还不成熟,膜
的应用寿命不长,不适用于含金污酸金回收。污酸体系复杂,而溶剂萃取法对萃取体系要求
苛刻、原料适应性差,同时该法不适用于处理含金浓度低的溶液,多数溶剂对其他贱金属有
共萃作用。
[0005] 总之,由于污酸溶液体系复杂,现有传统工艺无法实现含金污酸中金及其他有价金属的回收和有害元素的开路,急需一种解决含金污酸废水中金回收存在的技术缺陷的新
的技术。

发明内容

[0006] 为了解决现有含金废水处理技术用于处理含金污酸过程中存在的缺陷,本发明的目的是在于提出一种冶炼污酸废水回收金的方法,严格按照铜‑砷‑金的顺序分步沉降实现
金的高效回收。
[0007] 为了实现上述技术目的,本发明采用如下技术方案:
[0008] 一种冶炼污酸废水回收金的方法,包括以下步骤:
[0009] (1)选择性沉铜:往污酸废水中加入沉铜剂,搅拌反应,固液分离得到富铜渣和沉铜后液;沉铜剂选自二氧化硫、亚硫酸、亚硫酸钾、亚硫酸钠、亚硫酸铵、硫代硫酸钠、硫代硫
酸钾中的至少一种;
[0010] (2)选择性沉砷:往沉铜后液中加入沉砷剂,搅拌反应,固液分离得到富砷渣和沉砷后液;沉砷剂选自钙盐或铁盐,所述钙盐选自氧化钙、氢氧化钙、碳酸钙中的至少一种,所
述铁盐选自硫酸铁、聚合硫酸铁、氯化铁中的至少一种;
[0011] (3)沉金:往沉砷后液中加入沉金剂,搅拌反应,固液分离得到富金渣和沉金后液;沉金剂选自硫化钠、硫氢化钠、硫化铁中的至少一种。
[0012] 作为优选,步骤(1)中,所述污酸废水为铜冶炼行业产生的污酸废水,其中Cl:4~
15g/L、F:1 5g/L、As:2 10g/L、Cu:0.5 5g/L、Au:0.2 0.5mg/L,酸度10 100g/L。
~ ~ ~ ~ ~
[0013] 作为优选,步骤(1)中,二氧化硫、亚硫酸、亚硫酸钾、亚硫酸钠、亚硫酸铵的加入量为理论沉铜量的1 5倍;硫代硫酸钠、硫代硫酸钾的加入量为理论沉铜量的1.2 2倍。
~ ~
[0014] 例如,当采用SO2作为沉铜剂时,其反应式见式(1);而当采用硫代硫酸钠作为沉铜剂时,其反应式见式(2):
[0015] 2Cu2+ + 2Cl‑ + SO2+ 2H2O = Cu2Cl2 ↓ + SO42‑ + 4H+          (1)
[0016] 2Cu2+ + 2S2O32‑ + 2H2O = Cu2S ↓ + 4H+ + 2SO42‑ + S↓     (2)
[0017] 作为优选,步骤(2)中,钙盐或铁盐的加入量为理论沉砷量的1.2 1.5倍。~
[0018] 例如,当采用氢氧化钙作为沉砷剂时,其反应式见式(3)和(4):
[0019] 2H3AsO4 + 3Ca(OH)2= Ca3(AsO4)2 ↓ + 3H2O     (3)
[0020] Ca(OH)2 + 2HF = CaF2 ↓+ 2H2O               (4)
[0021] 作为优选,步骤(3)中,沉金剂的加入量为理论沉金量的2 10倍;沉金过程的pH为9~
11。
~
[0022] 本发明中,若先采用钙盐除砷,溶液中铜离子将会以氢氧化铜的形式沉淀出来,铜离子开始水解沉淀的pH为4.7,无法实现铜砷分离;若先硫化回收金,则溶液中的铜、砷、金
都会一起沉淀下来。因此,基于根据污酸溶液的性质和反应原理,本发明严格按照铜‑砷‑金
的顺序分步沉降,最终实现有价金属铜、金的回收和有害元素砷和氟的开路。

具体实施方式

[0023] 为更好地说明本发明,下面结合实施例对本发明提供的一种冶炼污酸废水回收金的方法进行详细描述。但下述的实施实例仅仅是本发明的简易例子,并不代表或限制本发
明的权力保护范围,本发明的保护范围以权力要求书为准。
[0024] 实施例1
[0025] 某铜冶炼污酸废水,溶液酸度为97.09g/L,F:2650mg/L,Cl:4700mg/L,Cu:3406.52mg/L,As:8935.38mg/L,Au:0.45mg/L。
[0026] 步骤1:取该冶炼污酸废水,加入硫代硫酸钠理论量的1.2倍,即10g/L,搅拌反应时间为15min,絮凝过滤,得到富铜渣和沉铜后液;
[0027] 步骤2:取步骤1的沉铜后液,加入氧化钙理论量的1.3倍,即22.26g/L。搅拌反应时间为15min,絮凝过滤,得沉砷及除氟渣和沉砷后液;
[0028] 步骤3:取步骤2的沉砷后液,加入九水硫化钠理论量的5倍,即0.31g/L,搅拌反应时间为15min,絮凝过滤,得富金渣和沉金后液。相关水质检测结果如表1所示:
[0029] 表1 水样实验检测结果表(单位:mg/L)
[0030]水样 酸度(g/L) F Cl Cu As Au
污酸废水 97.09 2650 4700 3406.52 8935.38 0.45
沉铜后液 104.5 2642 4680 0.36 8824.25 0.45
沉砷后液 pH=9.24 5.2 4596 0.06 12.52 0.42
沉金后液 pH=10.38 4.8 4588 0.01 0.22 0.01
[0031] 对比例1‑1
[0032] 传统硫化法:
[0033] 步骤1:往污酸中加入37.5g/L的硫化钠,反应10min。
[0034] 步骤2:过滤,分析检测滤液中相关元素。结果见表2:
[0035] 表2 水样实验检测结果表(单位:mg/L)
[0036]水样 酸度(g/L) F Cl Cu As Au
污酸废水 97.09 2650 4700 3406.52 8935.38 0.45
硫化后液 42.05 2643 4682 0.52 0.76 0.02
[0037] 对比例1‑2
[0038] 活性炭和树脂
[0039] 采用吸附金活性炭和树脂(Purolite S920)分别吸附污酸中的金,按加入量为25g/L活性炭和树脂,静态吸附20h,取溶液进行分析检测,结果见表3:
[0040] 表3 水样实验检测结果表(单位:mg/L)
[0041]水样 酸度(g/L) F Cl Cu As Au
污酸废水 97.09 2650 4700 3406.52 8935.38 0.45
活性炭 96.97 2647 4678 3402.47 8929.35 0.37
树脂 96.86 2643 4691 3405.54 8934.29 0.41
[0042] 实施例2
[0043] 某铜冶炼污酸废水,溶液酸度为45.38g/L,F:1527mg/L,Cl:8650mg/L,Cu:1286.44mg/L,As:6520.34mg/L,Au:0.36mg/L。
[0044] 步骤1:取该冶炼污酸废水,通入SO2理论量的2倍,还原反应20min,絮凝过滤,得到富铜渣和沉铜后液;
[0045] 步骤2:取步骤1的沉铜后液,加入氧化钙理论量的1.3倍,即12.6g/L,搅拌反应时间为20min,絮凝过滤,得沉砷及除氟渣和沉砷后液;
[0046] 步骤3:取步骤2的沉砷后液,加入70%有效含量的硫氢化钠理论量的8倍,即0.26g/L,搅拌反应时间为20min,絮凝过滤,得富金渣和沉金后液。相关水质检测结果如表4所示:
[0047] 表4 水样实验检测结果表(单位:mg/L)
[0048]水样 酸度g/L F Cl Cu As Au
污酸废水 45.38 1527 8650 1286.44 6520.34 0.36
沉铜后液 49.26 1524 7452 35.26 6518.25 0.34
沉砷后液 pH=9.53 16.5 7434 0.02 16.42 0.33
沉金后液 pH=10.56 13.6 7438 0.01 0.28 0.02
[0049] 对比例2
[0050] 活性炭和树脂
[0051] 采用活性炭和树脂(Tulsimer A‑654)分别吸附污酸中的金,按加入量为20g/L活性炭和树脂,静态吸附20h,取溶液进行分析检测,结果见表5:
[0052] 表5 水样实验检测结果表(单位:mg/L)
[0053]水样 酸度(g/L) F Cl Cu As Au
污酸废水 45.38 1527 8650 1286.44 6520.34 0.36
活性炭 45.42 1523 8647 1284.49 6519.35 0.27
树脂 45.36 1529 8653 1285.41 6521.12 0.31
[0054] 实施例3
[0055] 某铜冶炼污酸废水,溶液酸度为38.24g/L,F:3750mg/L,Cl:11250mg/L,Cu:896.21mg/L,As:6520.34mg/L,Au:0.36mg/L。
[0056] 步骤1:取该冶炼污酸废水,加入亚硫酸钠理论量的4倍,即32g/L,还原反应30min,絮凝过滤,得到富铜渣和沉铜后液;
[0057] 步骤2:取步骤1的沉铜后液,加入碳酸钙理论量的1.1倍,硫酸铁理论量的1.1倍,用10wt%石灰乳调节pH值为9.0,搅拌反应时间为30min,絮凝过滤,得沉砷及除氟渣和沉砷
后液;
[0058] 步骤3:取步骤2的沉砷后液,加入70%有效含量的硫氢化钠理论量的10倍,即0.32g/L,搅拌反应时间为20min,絮凝过滤,得富金渣和沉金后液。相关水质检测结果如表6
所示:
[0059] 表6 水样实验检测结果表(单位:mg/L)
[0060] 水样 酸度g/L F Cl Cu As Au污酸废水 38.24 3750 11250 896.21 2650 0.25
沉铜后液 42.62 3742 10822 15.41 10.25 0.24
沉砷后液 pH=9.0 18.21 10818 0.5 16.42 0.24
沉金后液 pH=10.88 10.05 10810 0.01 0.11 0.01
[0061] 对比例3‑1
[0062] 传统硫化法
[0063] 步骤1:往污酸中加入13.5g/L的硫化钠,反应10min。
[0064] 步骤2:过滤,分析检测滤液中相关元素。结果见表7:
[0065] 表7 水样实验检测结果表(单位:mg/L)
[0066] 水样 酸度(g/L) F Cl Cu As Au污酸废水 38.24 3750 11250 896.21 2650 0.25
硫化后液 34.31 3748 11253 0.52 0.76 0.02
[0067] 对比例3‑2
[0068] 中和法
[0069] 步骤1:往污酸中加入13.5g/L的Ca(OH)2,反应10min。
[0070] 步骤2:过滤,分析检测滤液中相关元素。结果见表8:
[0071] 表8 水样实验检测结果表(单位:mg/L)
[0072]水样 酸度(g/L) F Cl Cu As Au
污酸废水 38.24 3750 11250 896.21 2650 0.25
中和后液 pH=10 24.25 11226 0.27 0.35 0.03