一种聚苯硫醚/电气石复合材料、熔喷布及其制备方法转让专利

申请号 : CN202110453252.X

文献号 : CN113265144B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 杨旭宇金江彬张思灯金瑛

申请人 : 台州学院浙江明江新材料科技股份有限公司

摘要 :

本发明公开一种聚苯硫醚/电气石复合材料、熔喷布及其制备方法,复合材料包括按照原料质量比100:1~5:0.1~1的聚苯硫醚、电气石和六氟二酐,其制备方法是将原料混合后,经螺杆挤出机挤出造粒得到聚苯硫醚/电气石复合材料,并在高速热空气流下拉伸、喷丝和驻极,即得熔喷布。本发明中采用六氟二酐作为聚苯硫醚和电气石的相容剂,六氟二酐一端的酸酐基团可以与电气石颗粒表面的羟基发生酯化反应,另一端的酸酐基团又可以与聚苯硫醚的‑SH官能团发生酯化反应,同时由于六氟二酐含有大量的氟原子还可起到有机驻极剂作用,最终获得的制品相容好、存储电荷稳定、过滤效率高、高强高韧,应用前景广阔。

权利要求 :

1.一种聚苯硫醚/电气石复合材料,其特征在于,包括按照原料质量比100:1~5:0.1~

1的聚苯硫醚、电气石和六氟二酐。

2.根据权利要求1所述的聚苯硫醚/电气石复合材料,其特征在于,所述聚苯硫醚/电气石复合材料包括按照原料质量比100:1~5:0.3~0.6的聚苯硫醚、电气石和六氟二酐。

3.根据权利要求1或2所述的聚苯硫醚/电气石复合材料,其特征在于,所述聚苯硫醚的熔融指数为100~300g/10min。

4.根据权利要求1或2所述的聚苯硫醚/电气石复合材料,其特征在于,所述电气石的平均粒径为4‑6微米。

5.根据权利要求1‑4任一项所述的聚苯硫醚/电气石复合材料的制备方法,其特征在于,包括步骤:将聚苯硫醚、电气石和六氟二酐混合后,经螺杆挤出机熔融挤出、造粒,得到所述聚苯硫醚/电气石复合材料。

6.根据权利要求5所述的聚苯硫醚/电气石复合材料的制备方法,其特征在于,熔融挤出的温度为280‑330℃,螺杆转速为30‑60转/分钟。

7.一种聚苯硫醚/电气石熔喷布,其特征在于,包括权利要求1‑4任一项所述的聚苯硫醚/电气石复合材料。

8.根据权利要求7所述的聚苯硫醚/电气石熔喷布的制备方法,其特征在于,包括步骤:将所述聚苯硫醚/电气石复合材料在高速热空气流下拉伸、喷丝和冷却成形,经高压电晕放电处理和卷绕,得到所述聚苯硫醚/电气石熔喷布。

9.根据权利要求8所述的聚苯硫醚/电气石熔喷布的制备方法,其特征在于,喷丝温度为310‑330℃,电晕5‑10KV,驻极时间2‑5S,驻极隔距30‑50mm。

10.根据权利要求7所述的聚苯硫醚/电气石熔喷布的应用,其特征在于,所述聚苯硫醚/电气石熔喷布作为过滤层应用于制备空气净化产品、常温袋式除尘器、抗菌防尘口罩、医用隔离服和无菌室滤布。

说明书 :

一种聚苯硫醚/电气石复合材料、熔喷布及其制备方法

技术领域

[0001] 本发明涉及聚苯硫醚熔喷布领域,具体涉及一种聚苯硫醚/电气石复合材料、熔喷布及其制备方法。

背景技术

[0002] 细颗粒物是雾霾频发的主要诱因。聚苯硫醚具有优异的力学性能、耐热性、耐化学腐蚀性和阻燃性能,广泛作为过滤制品、空气净化产品、袋式除尘器的过滤材料,是控制细
颗粒物的关键材料。2004年,美国Celanese AG公司推出可用在商品熔喷级聚苯硫醚树脂
(Fortron PPS 0203HS),该品种可在通常使用的熔喷设备上就能加工成非织造结构,纤维
直径分布在2‑4μm之间,加工工艺流程简单、过滤效率高,但聚苯硫醚对直径为2‑2.5μm细颗
粒物的过滤效率仍有待提升。将聚苯硫醚过滤材料通过熔喷工艺制成熔喷布并驻极带电,
可使驻极体对细颗粒物的捕集效率提高,从而提高聚苯硫醚制品的过滤效率。
[0003] 电气石是常见的无机驻极材料。赫伟东等将电气石分散在蒸馏水中并静止沉降在聚苯硫醚针毡表面,发现电气石颗粒直径越小,复合材料过滤效率越高(电气石颗粒/聚苯
硫醚针刺毡复合过滤材料的过滤性能,《复合材料学报》2018年第35卷第7期)。然而,该方法
中电气石/聚苯硫醚的制备采用蒸馏水中沉降的方法,后续还需于80℃中烘干3小时去除水
分,工序复杂且非连续生产,在实际工业生产中并不适合于大批量制备。
[0004] CN106237716A公开了一种生物质能垃圾焚烧厂专用过滤材料及其制备方法,以聚苯硫醚纤维和聚四氟乙烯纤维为原料,采用针刺成型得到非织造布;采用化学共沉淀法制
备纳米电气石颗粒;将纳米电气石颗粒加入有机表面活性剂溶剂中,制备磁流体纳米电气
石溶液;溶解并分散磁流体纳米电气石溶液,制备一定粘合效果溶液;在发泡剂及增稠剂作
用下,制备发泡溶液,并将其涂覆在非织造布上得到所需过滤材料。可以获得多功能性空气
过滤材料,具有化学除尘、抗菌杀毒功效、过滤阻力低、过滤效率高等效果。
[0005] 然而,这种方法将电气石通过浸渍工艺于聚苯硫醚和聚四氟乙烯表面,制备过程工艺复杂,且由于电气石与聚苯硫醚不存在化学作用或氢键作用,存在电气石在基体团聚、
过滤效率下降的可能。现有技术常见的相容剂中,马来酸酐接枝聚烯烃、钛酸酯偶联剂、硅
烷偶联剂可以与电气石反应,但这些相容剂与聚苯硫醚均不能相容,即常见的相容剂不能
改善聚苯硫醚/电气石复合材料的界面结合。
[0006] 聚四氟乙烯、氟化乙丙烯共聚物、可溶性聚乙烯、聚偏氟乙烯、聚全氟乙丙烯等氟碳聚合物中,氟原子具有强极性,可束缚进入能量陷阱的电子,保证表面电荷不易因受外界
环境因素的影响而发生逸散,能有效提高过滤材料的过滤性能和使用寿命,是性能优良的
有机驻极材料。有机驻极材料和无机驻极材料相结合,能有效提高驻极效果。同样的,氟碳
聚合物也存在与聚苯硫醚相容困难的问题。
[0007] 因此,设计和制备一种电气石/含氟化合物/聚苯硫醚复合材料的关键,在于选择合适的相容剂改善这三者之间的界面作用力,以有效提升聚苯硫醚对细颗粒物的过滤效
率。

发明内容

[0008] 本发明旨在解决现有技术中聚苯硫醚过滤材料与驻极电气石之间的相容性问题,提供一种能够解决两者之间相容性的相容剂,该相容剂还能起到有机驻极剂的效果,最终
获得存储电荷稳定、过滤效率高的聚苯硫醚/电气石的复合材料。
[0009] 为实现上述目的,本发明选择一种合适的碳氟相容剂,既能解决聚苯硫苯/电气石间的相容性,又能起到有机驻极剂的作用,避免了常规有机驻极剂与聚苯硫醚相容性不佳
的问题,相应的技术方案是:
[0010] 一种聚苯硫醚/电气石复合材料,包括按照原料质量比100:1~5:0.1~1的聚苯硫醚、电气石和六氟二酐。
[0011] 在现有技术中,若采用传统偶联剂对电气石表面处理,往往需要先将偶联剂溶解分散于乙醇等溶剂,再将电气石溶于含有偶联剂的溶剂,这种多道工序制造成本高、工艺流
程繁杂。
[0012] 本发明中加入六氟二酐作为聚苯硫醚和电气石的增容剂,六氟二酐一端的酸酐基团可以与电气石颗粒表面的羟基发生酯化反应。同时,六氟二酐分子另一端的酸酐基团又
可以与聚苯硫醚的‑SH官能团发生酯化反应,这样起到在聚苯硫醚与电气石之间界面增容
的效果,增强两者间相容性。其反应原理如图1所示,由于六氟二酐二端都含有酸酐基团,与
聚苯硫醚、电气石间皆可发生反应,化学反应连接点较多。因此,六氟二酐可以强化聚苯硫
醚与电气石之间的界面作用,且六氟二酐为白色粉末可直接添加工艺简单,不会导致聚苯
硫醚的颜色发生改变。
[0013] 而另一方面,由于六氟二酐中含有氟原子,常规氟碳聚合物是常见的有机驻极剂,氟原子具有强极性,可以束缚进入能量陷阱的电子,使表面电荷不易受温度和温度等因素
的影响导致逸散,从而提高过滤材料的过滤性能和使用寿命,常见的有机驻极剂包括聚四
氟乙烯、氟化乙丙烯共聚物、可溶性聚乙烯、聚偏氟乙烯等,而这些有机驻极剂与聚苯硫醚
的相容性却不是很好。本发明中六氟二酐不仅可以作为相容剂,还能使反应产物中含有大
量的氟原子,起到有机驻极剂作用。
[0014] 本发明中六氟二酐的添加量仅仅0.1‑1.0%,可以起到良好的相容作用和驻极效果。
[0015] 优选地,所述聚苯硫醚/电气石复合材料包括按照原料质量比100:1~5:0.3~0.6的聚苯硫醚、电气石和六氟二酐,发明人经试验发现添加六氟二酐后,聚苯硫醚/电气石复
合材料的的拉伸强度和断裂伸长率均大幅提高,这是因为六氟二酐起到相容剂作用,均匀
分散的电气石成核效果更明显,改善复合材料的表面界面,使电气石在基体中分散更均匀
并使成核效果更明显,导致复合材料的晶体变小,而小球晶能对复合材料起到增强和增韧
作用。随着六氟二酐的增加,断裂伸长率和拉伸强度反而下降,可能是因为六氟二酐是小分
子化合物,过量时导致复合材料的力学性能下降,因此六氟二酐的添加量也不可过高。
[0016] 所述聚苯硫醚的熔融指数为100~300g/10min,优先选用美国Celanese AG公司的熔喷级聚苯硫醚树脂,牌号为Fortron PPS 0203HS。
[0017] 所述电气石的平均粒径为4‑6微米。微米级电气石表面能更高,更有利于与六氟二酐发生化学作用。
[0018] 本发明还提供所述的聚苯硫醚/电气石复合材料的制备方法,包括步骤:将聚苯硫醚、电气石和六氟二酐混合后,经螺杆挤出机熔融挤出、造粒,得到所述聚苯硫醚/电气石复
合材料。
[0019] 熔融挤出的温度为280‑330℃,螺杆转速为30‑60转/分钟。
[0020] 本发明还提供一种聚苯硫醚/电气石熔喷布,包括所述的聚苯硫醚/电气石复合材料。
[0021] 本发明还提供所述聚苯硫醚/电气石熔喷布的制备方法,包括步骤:将所述聚苯硫醚/电气石复合材料在高速热空气流下拉伸、喷丝和冷却成形,经高压电晕放电处理和卷
绕,得到所述聚苯硫醚/电气石熔喷布。熔融纺丝温度为310‑330℃,电晕5‑10KV,驻极时间
2‑5S,驻极隔距30‑50mm。
[0022] 与现有技术相比,本发明具有以下有益效果:
[0023] (1)本发明中采用六氟二酐作为聚苯硫醚和电气石的相容剂,六氟二酐一端的酸酐基团可以与电气石颗粒表面的羟基发生酯化反应。同时,六氟二酐分子另一端的酸酐基
团又可以与聚苯硫醚的‑SH官能团发生酯化反应。六氟二酐二端均含有酸酐基团,作用力较
大且化学反应点多,比传统偶联剂作用力更大。
[0024] (2)本发明中六氟二酐中含有大量的氟原子,另一方面还可起到有机驻极剂作用,电气石和六氟二酐分别起无机驻极和有机驻极作用,可以调整二者比例,起到协同驻极、强
化电荷储存作用。
[0025] (3)将制备的聚苯硫醚/电气石复合材料加工成熔喷布并驻极后,最终获得的制品界面作用力强、存储电荷稳定、过滤效率高、高强高韧,应用前景广阔。

附图说明

[0026] 图1为聚苯硫醚、电气石、六氟二酐间的反应原理图。
[0027] 图2为实施例1‑3和对比例1中聚苯硫醚/电气石原料的应力应变曲线。
[0028] 图3为实施例1‑3和对比例1中聚苯硫醚/电气石标准样条的冲击断面的扫描电镜图。

具体实施方式

[0029] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于
限定本发明。本领域技术人员在理解本发明的技术方案基础上进行修改或等同替换,而未
脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围内。
[0030] 实施例1
[0031] (1)将聚苯硫醚(Celanese AG公司,Fortron PPS 0203HS)、电气石电气石(灵寿县光辉矿产品加工公司,粒径5μm)和六氟二酐(无锡博海化工公司)在高速混合机中共混均
匀,通过双螺杆挤出机将混合物熔融挤出,经水槽冷却并通过切粒机进行切粒,其中双螺杆
挤出机的区间温度分别为280、300、300、310、310、310℃,螺杆转速50rpm,烘干后即得聚苯
硫醚/电气石复合材料,其中聚苯硫醚、电气石、六氟二酐的质量比为100:2:1。
[0032] (2)将步骤(1)制备的聚苯硫醚/电气石复合材料做成塑料标准样条测试;将聚苯硫醚/电气石复合原料在高速热空气流下拉伸和喷丝,得到熔喷布经过高压电晕放电处理,
即得聚苯硫醚/电气石驻极熔喷布;双螺杆挤出机的温度区间为280~340℃,转速为50转/
分钟。电晕10KV,驻极时间2S,驻极隔距45mm。
[0033] 实施例2
[0034] 按照实施例1的制备工艺,其中聚苯硫醚、电气石、六氟二酐的质量比为100:2:0.6,得到聚苯硫醚/电气石熔喷原料和驻极熔喷布。
[0035] 实施例3
[0036] 按照实施例1的制备工艺,其中聚苯硫醚、电气石、六氟二酐的质量比为100:2:0.3,得到聚苯硫醚/电气石熔喷原料和驻极熔喷布。
[0037] 对比例1
[0038] 按照实施例1的制备工艺,其中聚苯硫醚、电气石、六氟二酐的质量比为100:2:0,即不添加六氟二酐,得到聚苯硫醚/电气石熔喷原料和驻极熔喷布。
[0039] 性能测试
[0040] 将实施例1、实施例2、实施例3、对比例1所得的原材料和熔喷布,按照国标GB19082‑2009标准进行过滤效率测试,结果如表1所示。测试流量为85L/min,介质粒径为
0.075±0.02μm的NaCl颗粒。拉伸性能按GB1447‑83标准测试,拉伸速率为10mm/min。从表1
中可以看出,相对于对比例1,实施例2所得熔喷无纺材料拉伸强度、断裂伸长率和过滤效率
增大,即添加六氟二酐的熔喷无纺材料过滤效率更高,且力学性能提升。该熔喷布在抗菌防
尘口罩、医用隔离服和无菌室滤布中具有光明的应用前景。
[0041] 表1实施例1‑3和对比例的原材料和熔喷布性能表
[0042]
[0043] 实施例1‑3和对比例1中,聚苯硫醚/电气石原料的应力应变曲线如图2所示。可见未添加六氟二酐时,聚苯硫醚/电气石复合材料的拉伸强度和断裂伸长率较低(对比例1);
而添加六氟二酐后,聚苯硫醚/电气石复合材料的的拉伸强度和断裂伸长率均大幅提高。这
是因为六氟二酐起到相容剂作用,均匀分散的电气石成核效果更明显,改善复合材料的表
面界面,使电气石在基体中分散更均匀并使成核效果更明显,导致复合材料的晶体变小,而
小球晶能对复合材料起到增强和增韧作用。随着六氟二酐的增加,断裂伸长率和拉伸强度
反而下降,可能是因为六氟二酐是小分子化合物,过量时导致复合材料的力学性能下降(实
施例1)。
[0044] 实施例1‑3和对比例1中聚苯硫醚/电气石复合材料冲击断面的扫描电镜照片如图3所示。未添加六氟二酐时,复合材料表面存在明显的杂质(对比例1);实施例2中添加0.6%
时,复合材料表面未加明显杂质且呈现出明显的韧窝,即添加六氟二酐后复合材料相容性
改善,与复合材料的应力应变曲线相互对应和佐证。