使用富氢水增加果蔬的芳香物质含量及其基因表达的方法转让专利

申请号 : CN202110791514.3

文献号 : CN113273346B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 沈文飚曾艳李龙娜尚达王曙承旭刘宇昊

申请人 : 乔治洛德方法研究和开发液化空气有限公司南京农业大学

摘要 :

本发明公开了一种使用富氢水增加果蔬的芳香物质含量及其基因表达的方法,用富氢水灌溉农田的时间段内,保持富氢水的出口氢浓度不低于一设定值。本发明提供的富氢水灌溉农田的方法特别适合于提高果蔬类尤其是莓果类中的芳香物质的表达,在满足果蔬正常水分需求的同时还可发挥高浓度氢气的生物学效应,达到提高果蔬芳香物质含量,增加果蔬香气的目的。

权利要求 :

1.一种使用富氢水增加果蔬的芳香物质含量的方法,其特征在于,用富氢水灌溉农田的时间段内,保持富氢水的出口氢浓度不低于一设定值,所述富氢水的出口氢浓度的设定值为500ppb,其中,所述富氢水为纳米气泡氢水,所述果蔬为莓果类。

2.如权利要求1所述的方法,其特征在于,所述灌溉农田的时间段至少为2小时。

3.如权利要求1所述的方法,其特征在于,所述富氢水灌溉农田的水量占该农田的总灌溉水量的30%以上。

4.如权利要求1所述的方法,其特征在于,所述富氢水的出口氢浓度的设定值为

600ppb。

5.如权利要求1所述的方法,其特征在于,所述富氢水的出口氢浓度的设定值为

700ppb。

6.如权利要求1所述的方法,其特征在于,所述富氢水的出口氢浓度的设定值为

1000ppb。

7.如权利要求1所述的方法,其特征在于,所述富氢水灌溉农田的水量范围为0.1立方米/亩至500立方米/亩。

8.如权利要求1所述的方法,其特征在于,所述芳香物质包括酯类物质、酮类物质和醇类物质。

9.如权利要求8所述的方法,其特征在于,所述醇类物质包括橙花叔醇和沉香醇中的一种或两种,和/或所述酮类物质包括DMMF,和/或所述酯类物质包括己酸乙酯。

10.一种使用富氢水增加果蔬的芳香物质的基因表达的方法,其特征在于,用富氢水灌溉农田的时间段内,保持富氢水的出口氢浓度不低于一设定值;所述基因包括草莓脂氧合酶基因FaLOX、草莓O‑甲基转移酶基因FaOMT和橙花叔醇合成酶基因FaNES1。

说明书 :

使用富氢水增加果蔬的芳香物质含量及其基因表达的方法

技术领域

[0001] 本发明涉及农业技术领域,特别涉及一种使用富氢水灌溉农田的方法,以增加果蔬的芳香物质含量及芳香物质的基因表达。

背景技术

[0002] 果蔬是人类饮食的重要部分。近年来,随着消费者风味需求的多元化,对果蔬中挥发物的重视程度逐渐增强。果蔬中挥发性的风味物质主要包括醛类、酮类、酯类、醇类、萜类化合物、芳香族化合物、脂肪族化合物和杂环化合物等。化肥农药的使用虽然提高了农产品的产量,但阻碍了果蔬体内挥发物的转化合成,削弱了农产品的自然风味。
[0003] 氢气由于其具有多种生物学效应以及使用上的安全性和经济性,在农业生产上的应用前景十分广阔。已知氢气对植物的生长发育具有多种促进作用。氢气作为一种重要的信号分子可以促进黑麦、绿豆和水稻等种子的萌发;促进猪笼草、万寿菊和黄瓜外植体不定根的发育;提高植物抗病、抗虫、抗旱、抗盐等能力等。同时,氢气还可以提高一些次生代谢物的含量,例如提高萝卜芽苗菜和草莓中的花青素和多酚含量,从而改善品质。但尚未发现氢气对果蔬中挥发性的风味物质或芳香物质的影响的报道。
[0004] 现有技术中关于氢气对农作物的影响的报道多见于实验室规模的盆栽土培水培。例如,中国发明专利“一种富氢液态植物生长调节剂及其制备方法与应用”(专利号:
ZL201210154005.0)中记载,在营养液中直接通入氢气以获得富含氢的植物生长调节剂。该发明公开了通过发酵法、电解法、化学法以及钢瓶制备氢气,然后将氢气溶解在水或营养液中,从而产生富含氢的植物生长调节剂。这种富氢的植物生长调节剂可以增加产量和改善品质,以及提高植物抗/耐逆性能。
[0005] 实验室中,用氢棒、纯氢通入水中等方式制富氢水,能够满足需要少量富氢水的情形。实验室规模的盆栽土培水培等的培养条件易控制,观察现象明显,且其研究的往往是单因素或几个可控因素,易于管理。农田农业主要是指在大片田地上种植作物,其与实验室栽培的主要区别在于实际农田环境复杂,可控性差,不精确也不易于管理,因此对农田中农作物的种植情况和性质研究的难度更高。

发明内容

[0006] 本发明的目的在于提供一种使用富氢水灌溉农田的方法,以增加果蔬的芳香物质含量及其基因表达,同时克服现有制氢技术中制备的富氢水半衰期短、浓度低等缺点。通过在农田中浇灌富氢水,在满足作物正常水分需求的同时,还可发挥高浓度氢气的生物学效应,达到提高果蔬的芳香物质含量,增强果蔬香气的目的。
[0007] 本发明第一方面公开了一种使用富氢水增加果蔬的芳香物质含量的方法,用富氢水灌溉农田的时间段内,保持富氢水的出口氢浓度不低于一设定值。
[0008] 进一步地,所述灌溉农田的时间段至少为2小时。
[0009] 进一步地,所述富氢水灌溉农田的水量占该农田的总灌溉水量的30%以上。
[0010] 进一步地,所述富氢水为纳米气泡氢水。
[0011] 进一步地,所述芳香物质包括酯类物质、酮类物质和醇类物质。
[0012] 进一步地,所述富氢水的出口氢浓度的设定值为500ppb,较佳地为600ppb,更佳地为700ppb,最佳地为1000ppb。
[0013] 进一步地,所述富氢水灌溉农田的水量范围为0.1立方米/亩至500立方米/亩。
[0014] 进一步地,所述醇类物质包括橙花叔醇和沉香醇中的一种或两种,和/或所述酮类物质包括DMMF,和/或所述酯类物质包括己酸乙酯。
[0015] 进一步地,所述果蔬包括含有芳香气味的果类和蔬菜作物中的一种或两种,较佳地,所述果蔬包括莓果类。
[0016] 本发明第二方面公开了一种使用富氢水增加果蔬的芳香物质的基因表达的方法,用富氢水灌溉农田的时间段内,保持富氢水的出口氢浓度不低于一设定值。
[0017] 进一步地,所述基因包括草莓脂氧合酶基因FaLOX、草莓O‑甲基转移酶基因FaOMT和橙花叔醇合成酶基因FaNES1。
[0018] 与现有技术相比较,本发明所提供的技术方案具有以下优点:
[0019] 1.特定浓度的氢水灌溉可以提升果蔬的各类芳香物质的含量,提高果蔬的挥发性物质的积累,同时增强相关的调控基因的相对表达量,增强果蔬风味的完整性。
[0020] 2.纳米气泡氢水中的氢气得到了尽量多的溶解,在水中的停留时间更长,半衰期更长,更适合农田生产中灌溉面积大、灌溉耗时长的实际情况。
[0021] 3.氢水可当作正常灌溉用水使用,对人体没有刺激性,安全性高,农田灌溉后扩散快,远低于氢气爆炸最低极限(4%)。
[0022] 4.氢水仅由氢气和水构成,化学性质稳定,无污染,绿色环保,不会对人体或环境产生不良影响。

附图说明

[0023] 图1显示草莓中特定酯类物质随着富氢水浓度变化的趋势示意图;
[0024] 图2显示草莓中特定醇类物质随着富氢水浓度变化的趋势示意图;
[0025] 图3显示草莓中橙花叔醇和橙花叔醇合成酶基因FaNES1表达随着富氢水浓度变化的趋势示意图;
[0026] 图4显示草莓中DMMF和O‑甲基转移酶基因(FaOMT)表达随着富氢水浓度变化的趋势示意图。

具体实施方式

[0027] 下面结合附图详细说明本发明的具体实施例。然而,应当将本发明理解成并不局限于以下描述的这种实施方式,并且本发明的技术理念可以与其他公知技术或功能与那些公知技术相同的其他技术组合实施。
[0028] 此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括一个或多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的规定。
[0029] 除非清楚地指出相反的,这里限定的每个方面或实施方案可以与任何其他一个或多个方面或一个或多个实施方案组合。特别地,任何指出的作为优选的或有利的特征可以与任何其他指出的作为优选的或有利的特征组合。
[0030] 术语说明
[0031] 如本文所用,“纳米气泡氢水”中的“纳米气泡”可以理解为直径在10nm至500nm范围内的气泡,纳米气泡可以具有小于500nm的平均直径,或范围约10nm至约500nm,或范围约75nm至约200nm的平均直径。纳米气泡氢水的氢浓度可以达到500至1500ppb。在一些实施方式中,这些纳米气泡在环境压力和温度下在液体载体中可稳定至少15小时左右。
[0032] 如本文所用,氢气的溶解度指的是氢气(其压强为1标准大气压)在一定温度时溶解在1体积水里的体积数。在标准条件下,就是所谓的一个大气压和20℃时,氢气的溶解度为1.83%(每100毫升水中可以溶解1.83毫升的氢气,体积比和质量比可以进行换算,也就是1.6ppm)。
[0033] 如本文所用,“富氢水”(Hydrogen Rich Water,HRW)或“氢水”,是指富含氢气的水。在一个大气压、20℃的环境下,氢气溶于水的最高浓度为1.6ppm(即1600ppb),也即每公斤的水最多溶入1.6毫克的氢气,此时达到了饱和浓度。
[0034] 如本文所用,“半衰期”指的是浓度减半所需的时间。氢气溶于水后,在开放容器中仍会缓慢地从水中离开,让水中的氢气浓度逐渐降低,称为“皙溶”现象。在开放容器中,普通氢水的氢气半衰期为1至2小时左右,纳米气泡氢水的氢气半衰期视浓度不同约为3小时至8小时。
[0035] 如本文所用,“富氢水的出口氢浓度”指的是富氢水的出口处测得的溶解氢浓度。尽管考虑到氢气的逸散,本领域技术人员所知悉的是可以采用持续加入氢水等方式使得农田中灌溉的氢水浓度尽可能接近于该出口浓度,例如80%以上的出口浓度,较佳地为85%以上的出口浓度,更佳地为90%以上的出口浓度,最佳地为95%~99.9%的出口浓度。
[0036] 本文中“灌溉农田的时间段”是指在一段时间内,通过使用富氢水,而使农田中灌溉的氢水浓度超过本发明要求的最低值。该时间段既可以是连续的,也可以是间歇的。
[0037] 为了增加氢气在水中的溶解度和停留时间,人们通过纳米气泡技术与富氢水相结合,将电解法制氢或钢瓶氢气作为气源,利用纳米气泡产生模块分离出纳米纯氢气气泡,溶解于水中得到纳米气泡氢水。相较来说,直接将氢气通入水中制备的富氢水中的溶解氢半衰期很短,只有约为1~2小时,氢气的停留时间很短,制备后需立即使用,否则氢气将逸散出来。纳米气泡氢水的半衰期更长,适合农田生产中浇灌面积大、耗时长的实际情况。
[0038] 如本文所用,术语“农药”是指至少一种选自杀真菌剂、杀昆虫剂、杀线虫剂、除草剂、安全剂、生物农药和/或生长调节剂的活性物质。在一个实施方案中,农药是杀虫剂。术语“农药成分”意指包括用于作物保护的药品或所述药品的混合物。更具体地说,各成分系选自除草剂、杀真菌剂、杀菌剂、杀虫剂、昆虫拒食剂、杀螨剂、杀螨药、杀线虫剂和植物生长调节剂等。术语“杀虫剂”旨在表示用于吸引、引诱、摧毁或减轻任何害虫的物质。杀虫剂是一类杀生物剂。农药的最常用用途是作为植物保护产品(也称为作物保护产品),其通常保护植物免受诸如杂草、植物疾病或昆虫的有害影响,包括但不限于除草剂、杀昆虫剂、昆虫生长调节剂、杀线虫剂、杀白蚁剂、杀软体动物剂、杀鱼剂、杀鸟剂、灭鼠剂、毒杀剂、杀细菌剂、昆虫驱除剂、动物驱除剂、抗微生物剂、杀真菌剂、消毒剂(抗微生物剂)和消毒杀菌剂。
[0039] 如本文所用,术语“化肥”或“化肥物质”意在表示农业和/或园艺中使用的任何产品,目的在于创造、重组、保护或增加一处地面的生产力,为该地面提供可供植物利用的一个或多个营养成分,而不管该产品的组成形式是颗粒状、粉末状或液体状。当然,术语“化肥物质”还包括肥料、土壤改良剂和/或土壤改善物质。
[0040] 如本文所用,术语“农田”是指农业生产的用地、耕种的田地,包括但不限于种植粮食作物﹑经济作物(油料作物、蔬菜作物、花卉、牧草、果树)、工业原料作物、饲料作物,中药材的土地或田地;优选地,是指能大批长成或大面积收获,供盈利或口粮用的植物种植地(例如谷物、蔬菜、棉花、亚麻等);更优选地,是指种植水稻、玉米、豆类、薯类、青稞、蚕豆、小麦、油籽、蔓青、大芥、花生、胡麻、大麻、向日葵、萝卜、白菜、芹菜、韭菜、蒜、葱、胡萝卜、菜瓜、莲花菜、菊芋、刀豆、芫荽、莴笋、黄花、辣椒、黄瓜、西红柿、香菜等的田地或土地。在本发明中,术语“田地”等同于“农田”,对田地或农田的面积或大小、形状没有特别的要求。
[0041] 农产品香气成分的测定方法见参考文献Zhang  Y,Wang  G,Dong J,et al.Analysis of volatile compounds in fruits of 33European and American strawberry varieties.Journal of Fruit Science,2011,28(3):438‑442.(张运涛,王桂霞,董静,等.33个欧美草莓品种果实挥发性物质的分析.果树学报,2011,28(3):438‑442.)[0042] 电解制备的富氢水:由氢气发生器(SHC‑300,赛克赛斯,山东,中国)采用2至24V直流电电解水,经水气分离和干燥后得到氢气,再通入水溶液中60分钟得到电解制备的富氢水。
[0043] 钢瓶制备的富氢水:将氢气钢瓶中的氢气通入水中得到钢瓶氢气制备的富氢水。
[0044] 电解制备的纳米富氢水:由氢气发生器(CA/H,卡沃罗,广东,中国)采用7至21V直流电电解水,将水气分离和干燥后得到氢气经纳米曝气头通入水中,得到电解制备的纳米富氢水。
[0045] 钢瓶制备的纳米富氢水:将氢气钢瓶中的氢气经纳米曝气头通入水中,得到钢瓶制备的纳米富氢水。
[0046] 电解制备的或钢瓶气制备的富氢水或纳米气泡氢水中,使用经过气相色谱校正过的溶存水素计ENH‑2000(TRUSTLEX,日本)测定溶解氢气的浓度。
[0047] 本发明的实施例以草莓的农田生产为例,选取的“红颜”草莓种子购买于上海市种子市场。将“红颜”草莓种子播种于农田中,每块农田的面积为467平方米(约为0.7亩)。各块农田的处理如下:
[0048] 1号田;普通水灌溉,不施加化肥和农药;
[0049] 3号田:电解制备的富氢水灌溉(灌溉期间,富氢水的出口氢浓度约为300ppb,半衰期约为1小时),不施加化肥和农药;
[0050] 5号田:钢瓶氢气制备的纳米气泡氢水灌溉(灌溉期间,富氢水的出口氢浓度约为500ppb,半衰期约为3小时),不施加化肥和农药;
[0051] 7号田:钢瓶氢气制备的纳米气泡氢水灌溉(灌溉期间,富氢水的出口氢浓度约为1000ppb,半衰期约为6小时),不施加化肥和农药;
[0052] 9号田:钢瓶氢气制备的纳米气泡氢水灌溉(灌溉期间,富氢水的出口氢浓度约为1500ppb,半衰期约为8小时),不施加化肥和农药。
[0053] 其中,3号田、5号田、7号田和9号田中,草莓的生长期内进行氢水灌溉的水量占总灌溉水量的30%。灌溉方式为滴灌,灌溉流量为10t/h,每次灌溉时间为2小时或以上。
[0054] 本实施例不意图限制草莓的生长期内的灌溉次数和方式,本领域技术人员可以选择在每次灌溉时均先灌溉占总灌溉水量30%的氢水;也可以选择集中灌溉数次氢水,使氢水的体积达到占整个生长期总灌溉水量的约30%。
[0055] 采摘成熟的草莓,每次处理随机抽取20个样品,然后研磨成匀浆,通过气相质谱法鉴定挥发性的芳香物质并测定其含量。研究发现,“红颜”草莓果实中共鉴定到54种主要挥发性的芳香化合物,包括醇类物质、醛类物质、酸类物质、酮类物质和酯类物质等。代表性的醛类物质包括己醛和反式‑2‑己烯醛,酯类物质包括己酸乙酯,酸类物质包括己酸,醇类物质包括萜烯醇类,例如沉香醇和橙花叔醇,酮类物质包括2,5‑二甲基‑4‑甲氧基‑3(2H)‑呋喃酮(DMMF)等。
[0056] 本实施例中分别测定了“红颜”草莓果实中主要的芳香化合物的含量。表1对包含上述提到的54种主要挥发性的醇类物质、酯类物质和酮类物质等的含量分别进行了测量,加和得到芳香物质的总含量。采用内标法测量上述几类挥发性物质,取测量的草莓样品加入统一的内标物,根据峰面积计算出每克挥发性物质中含有内标物的量(微克),以此衡量待测挥发性物质的含量。
[0057] 从表1中可以看到各组的处理方式对草莓果实的芳香物质总含量的影响。与1号田中使用普通水灌溉处理相比,随着水中氢浓度的升高,草莓的芳香物质的总含量也随之提高。其中纳米气泡氢水的效果更加明显,这可能是因为纳米气泡氢水中的氢气得到了尽量多的溶解,在水中的停留时间更长,更能满足长时间灌溉的需求。
[0058] 表1草莓的芳香物质总含量
[0059]农田编号 溶解氢气浓度(ppb) 芳香物质总含量(μg/g) 较1号田上升/下降(%)
1 0 8.49±1.30 ‑‑‑‑‑‑‑‑
3 300 9.97±0.96 17.43
5 500 11.70±1.53 37.81
7 1000 13.08±0.99 54.06
9 1500 14.59±1.64 71.85
[0060] 醛类是草莓的芳香物质中重要的一类物质。草莓脂氧合酶基因(FaLOX)与挥发性的醛类的合成相关。表2中测量的醛类物质包含己醛和反式‑2‑己烯醛。从下表2可以看出,氢水灌溉可以显著提高FaLOX的表达水平,这与草莓中的醛类物质的含量变化趋势是一致的。
[0061] 表2草莓的醛类物质含量及脂氧合酶(FaLOX)基因相对表达量
[0062]
[0063]
[0064] 除此之外,发明人观察到,尽管低浓度的富氢水能提高草莓中芳香物质和醛类物质的总含量,但是针对草莓中特定的酯类、醇类和酮类化合物含量及其对应的基因表达量,并不是任何浓度的氢水都可以对上述物质的含量起促进作用。不同浓度的氢水灌溉对每类物质的影响各有不同,从而导致草莓的芳香物质含量的差异,也影响草莓风味的完整。
[0065] 在灌溉低浓度的富氢水时,相较于普通水灌溉,部分特征芳香物质的含量反而会下降。而灌溉更高浓度的氢水一段时间后,才能使得它们的含量较普通水灌溉的一组呈现上升趋势。
[0066] 草莓中的酯类和醇类物质含量如表3所示。此处的醇类物质包含沉香醇和橙花叔醇,酯类物质包含己酸乙酯。
[0067] 表3草莓的酯类和醇类物质含量
[0068]
[0069] “‑”代表减少
[0070] 将表3中的3号田、5号田、7号田和9号田中酯类物质和醇类物质较1号田变化的百分比与富氢水浓度的关系做出图1和图2。如图1和图2所示,可以看出只有在出口氢水浓度大于510~530ppb以上时,灌溉氢水才可以有效地对酯类和醇类物质的含量的提升起到促进作用。
[0071] 在“红颜”草莓果实中,醇类物质中的特征芳香物质主要有沉香醇和橙花叔醇。表4显示了沉香醇和橙花叔醇在五组农田中的含量变化。与普通水灌溉的1号田相比,低浓度的氢水灌溉反而导致沉香醇和橙花叔醇的含量下降,而较高浓度的氢水灌溉才使得沉香醇和橙花叔醇的含量逐渐提升。发明人认为,这可能是由于较低浓度的氢水灌溉使得植物根系吸收的氧元素减少,而此时氢的生物活性尚不足以抵消缺氧带来的负面影响,因此相较于1号田,3号农田出现了沉香醇和橙花叔醇含量反而下降的现象。而随着氢水浓度的提高,氢的生物活性作用愈加强烈,其对芳香物质的提升作用才显现出来。
[0072] 表4草莓的沉香醇和橙花叔醇的含量及橙花叔醇合成酶基因(FaNES1)相对表达量[0073]
[0074] “‑”代表减少
[0075] 草莓的橙花叔醇合成酶基因(FaNES1)与萜烯类化合物的合成相关。FaNES1的表达水平如表4所示,其相对表达量与橙花叔醇的含量的变化趋势是一致的。
[0076] 对表4中的2号田、5号田、7号田和9号田中的沉香醇、橙花叔醇和FaNES1较1号田变化的百分比与富氢水浓度的关系做出图3,从图3可以看出在氢水浓度大于约540ppb以上时,灌溉氢水才可以有效地对橙花叔醇和橙花叔醇合成酶基因(FaNES1)的相对表达量的提升起到促进作用。
[0077] 此外,2,5‑二甲基‑4‑甲氧基‑3(2H)‑呋喃酮(DMMF)也是草莓的特征芳香成分。如表5所示,与1号田的普通水灌溉相比,低浓度的氢水灌溉反而使得DMMF的含量降低,而较高浓度的氢水灌溉可以一定程度上提高草莓果实中DMMF的含量。并且,随着纳米气泡氢水浓度的升高,DMMF的含量上升地也更加显著。草莓O‑甲基转移酶基因(FaOMT)是DMMF合成的关键酶。FaOMT的相对表达量的变化与DMMF含量的变化趋势是一致的。较高浓度的纳米气泡氢水灌溉才可以提高果实中FaOMT的表达水平;而低浓度的氢水灌溉反而导致了FaOMT的相对表达量的下降。
[0078] 表5草莓的DMMF含量及O‑甲基转移酶基因(FaOMT)相对表达量
[0079]
[0080]
[0081] “‑”代表减少
[0082] 根据表5中的2号田、5号田、7号田和9号田的DMMF和FaOMT相对表达量的较一号田变化的百分比与富氢水浓度的关系做出图4,从图4可以看出在氢水浓度大于500ppb以上时,灌溉氢水才可以有效地对FaOMT相对表达量的提升起到促进作用;在氢水浓度大于680ppb时,灌溉氢水才可以有效地对DMMF的提升起到促进作用。
[0083] 在以往的研究中,人们往往更关注氢气或者氢水对农作物起到的生长调节剂作用,通常认为只要对农作物灌溉氢水,就可以正向地促进植物生长发育和形态建成,调控果蔬的生长发育和营养品质。然而本发明的发明人在探究草莓的芳香物质时,观察到只有高于特定浓度的氢水灌溉对于草莓的各类芳香物质的提升才具有明显的促进效果,才能使得草莓果实的风味更加完整。结合纳米气泡技术,纳米气泡氢水会具有更长的半衰期,可以更好地发挥氢气的生物学作用。
[0084] 综上所述,本发明提供的富氢水灌溉农田的方法特别适合于提高果蔬类尤其是莓果类中的芳香物质的含量及其相应的基因表达,在满足果蔬正常水分需求的同时还可发挥高浓度氢气的生物学效应,达到提高果蔬芳香物质含量,增加果蔬香气的目的。
[0085] 本说明书中所述的只是本发明的较佳具体实施例,以上实施例仅用以说明本发明的技术方案而非对本发明的限制。凡本领域技术人员依本发明的构思通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在本发明的范围之内。