立方晶氮化硼烧结体及其制造方法和工具转让专利

申请号 : CN202180001763.6

文献号 : CN113286770B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 中岛巧山田二郎

申请人 : 昭和电工株式会社

摘要 :

提供一种具有优异的耐磨损性和耐缺损性,并且表面与陶瓷被覆膜的密合性也优异的立方晶氮化硼烧结体及其制造方法以及工具。本发明的立方晶氮化硼烧结体包含60.0~90.0体积%的立方晶氮化硼,余量为黏结相,所述黏结相含有:Al的氮化物、硼化物和氧化物中的至少一者、Ti的碳化物、氮化物、碳氮化物和硼化物中的至少一者、以及由下式(1)表示的化合物。W2NixCo(1‑x)B2(0.40≤x

权利要求 :

1.一种立方晶氮化硼烧结体,包含60.0~90.0体积%的立方晶氮化硼,余量为黏结相,所述黏结相含有:Al的氮化物、硼化物和氧化物中的至少一者、Ti的碳化物、氮化物、碳氮化物和硼化物中的至少一者、以及由下式(1)表示的化合物,W2NixCo(1‑x)B2    (1)其中,0.40≤x<1。

2.根据权利要求1所述的立方晶氮化硼烧结体,在以CuKα为射线源的X射线衍射谱中,属于由所述式(1)表示的化合物的(112)面的衍射峰强度IA与属于立方晶氮化硼的(111)面的衍射峰强度IB之比IA/IB为0.330~0.750。

3.根据权利要求1或2所述的立方晶氮化硼烧结体,作为所述Ti的硼化物包含TiB2,在以CuKα为射线源的X射线衍射谱中,属于TiB2的(101)面的衍射峰强度IC与属于立方晶氮化硼的(111)面的衍射峰强度IB之比IC/IB为0.140~0.750。

4.根据权利要求1或2所述的立方晶氮化硼烧结体,‑5 ‑2

25℃时的电阻率为1.0×10 ~5.0×10 Ω·cm。

5.根据权利要求1或2所述的立方晶氮化硼烧结体,立方晶氮化硼粒子的周长包络度为0.600~0.900。

6.一种立方晶氮化硼烧结体的制造方法,是制造权利要求1~5中任一项所述的立方晶氮化硼烧结体的方法,具有:

将配合物混合粉碎从而得到原料混合物的工序,所述配合物包含配合原料和立方晶氮化硼粉末,所述配合原料含有TiN、TiAl3、WC、Co、Ni和B,并且在所述配合物的配合成分的合计100质量%中,立方晶氮化硼粉末的配合量为65.00~97.00质量%,Co的配合量为0.10~

5.00质量%,B的配合量为0质量%以上,TiN的配合量比TiAl3、WC、Co和B的合计配合量多;

在500~800℃下对所述原料混合物进行热处理从而脱气,得到热处理粉末的工序;以及

在惰性气体气氛下、3.0GPa以上且1200~1500℃对所述热处理粉末进行加压加热处理,得到立方晶氮化硼烧结体的工序。

7.一种工具,包含权利要求1~5中任一项所述的立方晶氮化硼烧结体作为构成材料。

8.根据权利要求7所述的工具,其被用于切削或磨削。

9.根据权利要求7或8所述的工具,在所述立方晶氮化硼烧结体的表面具有陶瓷被覆膜。

说明书 :

立方晶氮化硼烧结体及其制造方法和工具

技术领域

[0001] 本发明涉及立方晶氮化硼烧结体及其制造方法、以及用于切削和磨削的工具。

背景技术

[0002] 立方晶氮化硼(以下简称为cBN)是硬度可与金刚石相比拟的物质,以cBN粒子为主成分烧结得到的cBN烧结体,是兼备耐磨损性和耐缺损性这两种特性的材料。因此,cBN烧结
体主要被利用于高硬度钢等难切削材料的切削工具。
[0003] 而且,根据切削加工的目的和切削工具的各种使用方式等,为了满足耐磨损性和耐缺损性的更高要求,正在推进cBN烧结体的改良。
[0004] 例如,专利文献1记载了对于在cBN烧结体中作为化合物存在的金属成分W、Co和Ni,使W的重量相对于W、Co和Ni的合计重量之比为0.2~0.6,并使Co的重量相对于Co和Ni的
合计重量之比为0.6~0.95,来得到强度和耐热性优异的cBN烧结体。
[0005] 另外,专利文献2记载了通过B6Co21W2(420)面的XRD强度相对于cBN(111)面的X射线衍射(XRD)强度之比为0.10~0.40,来得到cBN含量多、电阻率低的cBN烧结体。
[0006] 另外,专利文献3记载了通过TiB2(101)面的XRD峰高度小于cBN(111)面的XRD峰高度的12%,来抑制cBN烧结体的耐缺损性降低。
[0007] 现有技术文献
[0008] 专利文献1:国际公开第2000/047537号
[0009] 专利文献2:日本专利公开2004‑331456号公报
[0010] 专利文献3:国际公开第2006/046125号

发明内容

[0011] 然而,近年来,为了应对轻量化的被切削材料的难切削化和用于降低加工成本的切削加工速度的高速化显著,对于利用cBN烧结体的工具(以下简称为CBN工具)的性能要求
愈发严格。为了满足这样的要求,例如也使用由TiN、TiAlN、TiCN或CrAlN等耐热性优异的陶
瓷被覆膜覆盖了cBN烧结体表面的CBN工具。
[0012] 但是,上述专利文献1~3所记载的现有的cBN烧结体中,与陶瓷被覆膜的密合性未必足够。例如在齿轮端面或针孔等断续部、洛氏硬度(HRC)60以上的高硬度钢的切削或磨削
加工时,存在陶瓷被覆膜从cBN烧结体表面剥离,从该剥离部位产生异常磨损、剥蚀、缺损的
课题。
[0013] 另外,采用物理蒸镀(PVD)法形成陶瓷被覆膜的情况下,若施加高的偏置电压,则现有的cBN烧结体无法充分得到与陶瓷被覆膜的密合性。
[0014] 本发明是为了解决如上所述的课题而完成的,其目的在于提供一种耐磨损性和耐缺损性优异,且表面与陶瓷被覆膜的密合性也优异的cBN烧结体及其制造方法和工具。
[0015] 本发明是基于发现了以下内容而完成的,通过提高cBN含量,将含有Ni源的配合原料与cBN混合烧结,使黏结相生成W2NixCo(1‑x)B2而得到cBN烧结体,根据该cBN烧结体,在耐磨
损性和耐缺损性优异之外,还可抑制覆盖表面的陶瓷被覆膜的剥离。
[0016] 即,本发明提供以下的[1]~[9]。
[0017] [1]一种立方晶氮化硼烧结体,包含60.0~90.0体积%的立方晶氮化硼,余量为黏结相,所述黏结相含有:Al的氮化物、硼化物和氧化物中的至少一者、Ti的碳化物、氮化物、
碳氮化物和硼化物中的至少一者、以及由下式(1)表示的化合物,
[0018] W2NixCo(1‑x)B2 (0.40≤x<1)   (1)。
[0019] [2]根据上述[1]记载的立方晶氮化硼烧结体,在以CuKα为射线源的X射线衍射谱中,属于由所述式(1)表示的化合物的(112)面的衍射峰强度IA与属于立方晶氮化硼的
(111)面的衍射峰强度IB之比IA/IB为0.330~0.750。
[0020] [3]根据上述[1]或[2]记载的立方晶氮化硼烧结体,作为所述Ti的硼化物包含TiB2,在以CuKα为射线源的X射线衍射谱中,属于TiB2的(101)面的衍射峰强度IC与属于立方
晶氮化硼的(111)面的衍射峰强度IB之比IC/IB为0.140~0.750。
[0021] [4]根据上述[1]~[3]中任一项记载的立方晶氮化硼烧结体,25℃时的电阻率为‑5 ‑2
1.0×10 ~5.0×10 Ω·cm。
[0022] [5]根据上述[1]~[4]中任一项记载的立方晶氮化硼烧结体,立方晶氮化硼粒子的周长包络度为0.600~0.900。
[0023] [6]一种立方晶氮化硼烧结体的制造方法,是制造上述[1]~[5]中任一项记载的立方晶氮化硼烧结体的方法,具有:将配合物混合粉碎从而得到原料混合物的工序,所述配
合物包含配合原料和立方晶氮化硼粉末,所述配合原料含有Al源、Ti源、Ni源、W源和Co源;
在500~800℃下对所述原料混合物进行热处理从而脱气,得到热处理粉末的工序;以及在
惰性气体气氛下、3.0GPa以上且1200~1500℃对所述热处理粉末进行加压加热处理,得到
立方晶氮化硼烧结体的工序。
[0024] [7]一种工具,包含上述[1]~[5]中任一项记载的立方晶氮化硼烧结体作为构成材料。
[0025] [8]根据上述[7]记载的工具,其被用于切削或磨削。
[0026] [9]根据上述[7]或[8]记载的工具,在所述立方晶氮化硼烧结体的表面具有陶瓷被覆膜。
[0027] 根据本发明,提供一种耐磨损性和耐缺损性优异、并且与陶瓷被覆膜的密合性也优异的cBN烧结体。
[0028] 因此,通过使用本发明的cBN烧结体,即使在难切削材料的磨削加工中也能够实现CBN工具的长寿命化,进而,能够降低断续部和高硬度钢的切削和磨削加工中的加工成本。

附图说明

[0029] 图1是实施例14的cBN烧结体的X射线衍射(XRD)图。
[0030] 图2是比较例10的cBN烧结体的XRD图。
[0031] 图3是用于说明cBN烧结体中的cBN粒子的周长及包络周长的概略图。
[0032] 图4A是实施例1的烧结体试料的扫描型电子显微镜(SEM)的摄影图像(倍率2000倍)。
[0033] 图4B是图4A的SEM图像的二值化处理图像。

具体实施方式

[0034] 以下,对本发明的cBN烧结体及其制造方法、以及使用cBN烧结体的工具的实施方式进行说明。
[0035] [cBN烧结体]
[0036] 本发明的cBN烧结体包含60~90体积%的cBN,余量为黏结相。并且,所述黏结相含有Al的氮化物、硼化物和氧化物中的至少一者、Ti的碳化物、氮化物、碳氮化物和硼化物中
的至少一者、以及由下式(1)表示的化合物A。
[0037] W2NixCo(1‑x)B2 (0.40≤x<1)   (1)
[0038] 这样的cBN烧结体具有优异的耐磨损性和耐缺损性,并且与覆盖表面的陶瓷被覆膜可得到良好密合性。
[0039]
[0040] 本实施方式的cBN烧结体中的cBN含量为60.0~90.0体积%,优选为60.0~85.0体积%,更优选为65.0~80.0体积%。
[0041] 通过所述含量为60.0体积%以上,可有效利用高硬度、高耐氧化性和高导热性等cBN的优异特性,并且即使在产生微小裂纹的情况下也可抑制其向cBN烧结体内部的伸展,
可得到良好的耐缺损性。另外,如果所述含量为90.0体积%以下,则cBN粒子彼此的凝聚被
抑制,cBN粒子容易烧结而不会脱落,因此可得到良好的耐磨损性。
[0042] 再者,cBN烧结体中的cBN含量是基于cBN烧结体的镜面研磨面的扫描型电子显微镜(SEM)的观察图像,将cBN的占有面积比例看作体积含量而得到的值。具体而言,采用下述
实施例记载的方法求出。
[0043] 本实施方式的cBN烧结体中的cBN粒子,周长包络度优选为0.600~0.900,更优选为0.700~0.880,进一步优选为0.750~0.850。
[0044] 周长包络度是与粒子形状有关的参数,表示包络周长相对于粒子周长的比例,成为粒子表面的凹凸度的指标。周长包络度越接近1,意味着粒子表面凹凸越少,轮廓越平滑。
另外,周长包络度越小,粒子表面凹凸越多,轮廓越粗糙,粒子越有扭曲的倾向。
[0045] 在cBN粒子的周长包络度小的情况下,cBN粒子和黏结相的界面强度高,cBN粒子难以脱粒,另外,在cBN烧结体中难以产生裂纹。另外,在这样的cBN烧结体的表面,例如即使在
采用PVD法施加高偏置电压而形成陶瓷被覆膜的情况下,也难以产生cBN粒子的脱落,与该
陶瓷被覆膜可得到良好的密合性。
[0046] 如果所述周长包络度为0.600以上,则cBN粒子与黏结相的构成原料的过剩反应被抑制,可充分发挥作为cBN粒子的本来特性的高硬度和优异的耐磨损性。另外,如果周长包
络度为0.900以下,则cBN粒子不会脱落,通过与黏结相的构成原料的烧结反应适度地进行,
显示良好的耐磨损性和耐缺损性,并且与陶瓷涂覆膜可得到良好的密合性。
[0047] 再者,在本发明中,所谓cBN烧结体中的cBN粒子的周长包络度,是指基于cBN烧结体的镜面研磨面的SEM的观察图像,测定100个cBN粒子的周长LA和包络周长LB,算出LB/LA,
对它们进行算术平均后得到的值。具体而言,如图3所示,例如在SEM的观察图像中的1个cBN
粒子的轮廓为a的情况下,轮廓a的总长度为周长LA。将轮廓a的凸部连结而成的周长为b,周
长b的总长度为包络周长LB。周长包络度具体采用下述实施例中记载的方法求出。
[0048] 本实施方式的cBN烧结体中的cBN粒子,其平均粒径优选为1.0~10.0μm,更优选为1.0~6.0μm,进一步优选为2.0~5.0μm。如果所述平均粒径为1.0μm以上,则所有cBN粒子容
易被黏结相牢固地保持。另外,如果所述平均粒径为10.0μm以下,则容易成为韧性优异的烧
结体。
[0049] 再者,本说明书中所说的cBN烧结体中的cBN粒子的平均粒径,是基于cBN烧结体的镜面研磨面的SEM观察图像,求出100个cBN粒子的面积等效直径,作为其累积分布的累积面
积50%的粒径。
[0050] <黏结相>
[0051] 本实施方式的cBN烧结体中的cBN的余量是黏结相。所述黏结相含有Al的氮化物、Al的硼化物和Al的氧化物中的至少一者;Ti的碳化物、Ti的氮化物、Ti的碳氮化物和Ti的硼
化物中的至少一者;以及由下式(1)表示的化合物A。
[0052] W2NixCo(1‑x)B2 (0.40≤x<1)   (1)
[0053] 所述黏结相与cBN具有高结合力,抑制cBN烧结体中裂纹的产生及伸展,带来优异的耐缺损性。
[0054] 在优选实施方式中,构成所述黏结相的化合物优选含有TiN、TiCN、TiB2、AlN、Al2O3及化合物A,还含有W2Co21B6。
[0055] 再者,构成所述黏结相的各化合物是对于cBN烧结体采用XRD法的定性分析来确认的。具体而言,CBN烧结体的定性分析如下述实施例所示,通过与现有的无机材料数据库进
行对照来进行。
[0056] 化合物A使黏结相牢固地粘接在cBN粒子上,承担促进cBN烧结体的致密化的作用。从这样的观点出发,表示化合物A中Ni和Co的比率的x为0.40≤x<1,优选为0.45≤x≤0.95,
进一步优选为0.50≤x≤0.90。
[0057] 如果x为0.40以上,则在黏结相中生成足以使cBN烧结体适度致密化的量的化合物A。另外,如果x小于1,则通过在黏结相中生成作为含有Co和Ni的复合化合物的化合物A,容
易得到高硬度的cBN烧结体。
[0058] 化合物A促进黏结相中以及黏结相和cBN粒子的反应烧结,能够提高cBN粒子和黏结相的界面强度,另一方面,优选其硬度比cBN差,从而不发生晶体粗大生长,从cBN烧结体
良好的耐磨损性和耐缺损性的观点出发,优选不过多。因此,化合物A优选含有相对于cBN在
预定范围内的量比。
[0059] 在本发明中,化合物A相对于cBN的优选量比基于cBN烧结体的XRD谱的衍射峰强度来确定。具体而言,在以CuKα为射线源的XRD谱中,属于化合物A的(112)面的衍射峰强度IA
与属于cBN的(111)面的衍射峰强度IB之比IA/IB优选为0.330~0.750,更优选为0.350~
0.730,进一步优选为0.410~0.700。
[0060] 再者,XRD谱中的峰强度不仅受到结晶相的生成量影响,还受到烧结体中粒子的结晶性和取向性的影响,因此需要注意的是,本发明中的衍射峰强度比并不一定与cBN烧结体
中的组成比例相对应。
[0061] 另外,所述cBN烧结体优选含有TiB2作为Ti的硼化物,关于TiB2的含量,与化合物A同样,从cBN粒子与黏结相的界面强度和cBN烧结体的耐磨损性的观点出发,优选相对于cBN
在预定量比的范围内。
[0062] 在本发明中,TiB2相对于cBN的优选量比是对于cBN烧结体基于XRD谱的衍射峰强度确定的。具体而言,在以CuKα为射线源的XRD谱中,属于TiB2的(101)面的衍射峰强度IC与
属于cBN的(111)面的衍射峰强度IB的比IC/IB优选为0.140~0.750,更优选为0.200~
0.750,进一步优选为0.250~0.700。
[0063] 不过,由于TiB2和AlB2的X射线衍射图重叠,所以难以区别这两种化合物,在本发明中,为了方便起见,即使该衍射峰对于两化合物重叠,也视为属于TiB2的(101)面的衍射峰。
[0064] 黏结相中也可以含有如上所述的Al化合物、Ti化合物和化合物A以外的其他化合物。例如,可以包含Al和Ti的复合氧化物或第4~6族过渡金属元素的硼化物(ZrB2、ZrB12、
HfB2、HfB、HfB12、VB2、V3B4、V3B12、VB、V5B6、V2B2、NbB2、Nb3B2、NbB、TaB2、Ta2B、Ta3B2、TaB、Ta3B4、
CrB、CrB4、Cr2B、Cr2B3、Cr5B3、CrB2、MoB、Mo2B5、MoB4、Mo2B、MoB2、WB、W2B、WB4)、氮化物(ZrNx(0<
x≤1)、Hf3N2、HfNx(0Ta4N、Ta2N、Cr2N、CrNx(0溶体。其中,在cBN烧结体中,Ti和W以外的第4~6族过渡金属元素各自的含量优选尽可能
少,更优选为1000质量ppm以下,进一步优选为100质量ppm以下。
[0065] 另外,例如有时也包含来源于配合原料、和/或在来自粉碎容器的污染等制造过程中混入的不可避免的杂质。作为所述不可避免的杂质,例如可举出Li、Mg、Ca、Al、Si、Ti、C、
B、S、P、Ga、Co、Ni、Mn、Fe、Cl、W和它们的化合物等,也可以包含与所述其他化合物重复的物
质。
[0066] <电阻率>
[0067] 本实施方式的cBN烧结体在25℃时的电阻率优选为1.0×10‑5~5.0×10‑2Ω·cm,‑5 ‑2
更优选为1.0×10 ~1.0×10 Ω·cm。
[0068] 如果cBN烧结体的电阻率在上述范围内,则即使在例如采用物理蒸镀(PVD)法施加高的偏置电压,用陶瓷被覆膜覆盖该cBN烧结体表面的情况下,在与该陶瓷被覆膜得到良好
密合性方面也是优选的。
[0069] 再者,本发明中所说的cBN烧结体的电阻率,具体而言,是采用4探针法对于如下述实施例所示制作出的测定试料进行测定而得到的值。
[0070] <维氏硬度>
[0071] 本发明的cBN烧结体作为CBN工具,从适合用于高硬度钢的切削加工等观点出发,优选为高硬度的,具体而言,以依据JIS Z 2244:2009的方法,在载荷9.8N且保持时间15秒
的条件下测定的维氏硬度优选为2950以上,更优选为3000以上,进一步优选为3100以上。
[0072] [cBN烧结体的制造方法]
[0073] 本实施方式的cBN烧结体可以通过经历以下工序来制造:将包含配合原料和cBN粉末的配合物混合粉碎而得到原料混合物的工序(1),所述配合原料含有Al源、Ti源、Ni源、W
源和Co源;在500~800℃下对所述原料混合物热处理从而脱气,得到热处理粉末的工序
(2);在惰性气体气氛下、3.0GPa以上且1200~1500℃对所述热处理粉末进行加压加热处
理,得到cBN烧结体的工序(3)。
[0074] 根据包括上述工序(1)~(3)的制造方法,可以合适地得到本实施方式的cBN烧结体。
[0075] <工序(1)>
[0076] 工序(1)中,首先,将包含配合原料和cBN粉末的配合物混合粉碎,得到原料混合物,所述配合原料含有Al源、Ti源、Ni源、W源和Co源。
[0077] 作为CBN粉末,适合使用例如将在3GPa以上且1200℃以上的超高压高温合成中得到的纯度99.9%以上的cBN粒子进行微粉碎,且将粒径和粒子形状调整后的粉末。
[0078] 作为微粉碎的手段,例如可以使用钳式破碎机粉碎、喷射磨机粉碎、辊式破碎机粉碎、振动磨削机粉碎、球磨机粉碎、锅磨机粉碎、行星球磨机粉碎、珠磨机粉碎等粉碎机。
[0079] 所述cBN粉末在采用激光衍射散射法测定的粒径的体积分布中的累积体积50%的粒径(以下记为D50)优选为0.3~10.0μm,更优选为1.0~8.0μm,进一步优选为2.0~5.0μm。
[0080] 通过所述D50为0.3μm以上,可抑制成为黏结相的构成成分,容易得到以足够量含有cBN的、硬度高的烧结体。另外,如果所述D50为10.0μm以下,则容易得到韧性优异、耐缺损
性优异的烧结体。
[0081] 所述cBN粉末的粒子形状优选圆形度为0.910~0.950,更优选为0.920~0.950,进一步优选为0.925~0.945。
[0082] 通过圆形度为0.910以上,原料混合物的流动性良好,cBN粉末与黏结相的界面的反应适度进行,容易得到均匀的烧结体。另外,如果圆形度为0.950以下,则可确保cBN粉末
与黏结相的适度接触状态,烧结反应容易良好地进行。
[0083] 另外,从得到cBN烧结体时的烧结反应均匀进行的观点出发,所述cBN粉末的圆形度为0.900以下的粒子所占的体积优选为25.0体积%以下,更优选为5.0~20.0体积%,进
一步优选为10.0~18.0体积%。
[0084] 再者,圆形度是表示粒子在多大程度上接近球体的指标,基于JIS Z8890:2017的2
定义。在粒子的二维图像中,当S为投影面积,L为周长时,用4πS/L 表示。二维图像中的形状
越接近圆,圆形度的值就越接近1。本说明书中所说的cBN粉末的圆形度是关于约1000个cBN
粉末的粒子的圆形度的算术平均值。具体而言,可以用下述实施例所示的流动式粒子像分
析装置进行测定。
[0085] Al源、Ti源、Ni源、W源和Co源构成cBN烧结体的黏结相的一部分,分别可以是元素单质,也可以是化合物。
[0086] 优选使用通过得到cBN烧结体时的烧结,而在黏结相中生成TiN、TiCN、TiB2、AlN、Al2O3和化合物A的物质。
[0087] 作为所述配合原料,例如可以使用TiN、TiAl3、WC、Co、Ni和B的组合。
[0088] 从使cBN烧结体的组成均匀化的观点出发,用于所述配合原料的各原料粉末优选使用粒径与cBN粉末为同等程度或其以下的粉末,更优选D50为5.0μm以下,进一步优选D50
为0.01~3.0μm。
[0089] 再者,在所述配合原料中,有时由于来自各原料粉末的原料或制造过程中的混入等原因,含有Ti及W以外的第4~6族过渡金属元素或其他不可避免的杂质。
[0090] 作为所述配合原料,例如使用TiN、TiAl3、WC、Co、Ni和B的组合,与cBN粉末配合的情况下,为了得到所述cBN烧结体,这些配合成分的合计100质量%中的cBN粉末的配合量优
选为65.00~97.00质量%,更优选为67.00~95.00质量%,进一步优选为70.00~92.00质
量%。
[0091] 另外,在使用这样的配合原料的情况下,从提高维氏硬度和耐酸性等观点出发,该配合原料中,TiN的配合量更优选比TiAl3、WC、Co和B的合计配合量多。
[0092] 另外,在这样的配合原料中,从容易生成化合物A的观点出发,在所述配合成分的合计100质量%中,WC的配合量优选为1.00~5.00质量%,更优选为1.00~3.00质量%,进
一步优选为1.50质量%以上且小于3.0质量%。
[0093] 同样,Co的配合量优选为0.10~5.00质量%,更优选为0.15~2.00质量%,进一步优选为0.20~0.50质量%。另外,Ni的配合量优选为0.10~15.00质量%,更优选为0.15~
12.00质量%,进一步优选为0.20~10.00质量%。另外,B的配合量优选为0~10.00质量%,
更优选为0~7.00质量%,进一步优选为0~5.00质量%。
[0094] 将含有所述配合原料和cBN粉末的配合物混合粉碎而得到的原料混合物可以是将所述配合原料和cBN粉末干燥粉碎而得到的原料混合物。从混合的均匀化观点出发,优选使
通过使用分散介质的湿式粉碎调制出的混合浆料干燥而得到的混合物。该情况下,例如,作
为分散介质,可以使用丙酮、己烷、2‑丙醇、乙醇、庚烷等在行星式球磨机中混合粉碎,由于
cBN的硬度高,所以优选使用超硬合金制球。作为所述混合浆料的干燥方法,例如可举出Ar
等惰性气体、N2气体、H2/Ar混合气体等惰性气体气氛下的静置干燥、减压干燥、真空干燥等。
静置干燥的情况下,为了充分干燥,优选在70~100℃的温度下进行5小时以上。
[0095] <工序(2)>
[0096] 工序(2)中,将工序(1)中得到的充分干燥后的原料混合物在500~800℃的温度下进行热处理从而脱气,得到热处理粉末。
[0097] 从有效地进行脱气处理的观点出发,所述热处理优选在真空气氛下进行,更优选‑3
在压力1.0×10 Pa以下。
[0098] cBN烧结体的制造工序中的烧成前的脱气处理通常在1000℃以上进行,但在本发明中,从黏结相的反应烧结均匀进行和烧结体致密化的观点出发,所述热处理的温度为800
℃以下。
[0099] 另外,从充分除去有机物等杂质成分,使烧结体致密化的观点出发,将所述热处理的温度设为500℃以上。
[0100] 用于脱气的所述热处理的温度更优选为550~750℃,进一步优选为600~700℃。
[0101] 所述热处理的时间根据处理的原料混合物的量和工序(1)中使用的分散介质的种类等适当设定,但通常优选为0.1~10小时,更优选为1~3小时。
[0102] <工序(3)>
[0103] 工序(3)中,在惰性气体气氛下、3.0GPa以上的压力且1200~1500℃的温度下对工序(2)中得到的热处理粉末进行加压加热处理,得到cBN烧结体。
[0104] 这样,通过对所述热处理粉末进行超高压高温烧成,可以合适地得到本实施方式的cBN烧结体。
[0105] 从cBN烧结体致密化的观点出发,加压加热处理中的最高压力优选为3.5GPa以上,更优选为4.0GPa以上。从同样的观点出发,加压加热处理中的最高温度优选为1250~1500
℃,更优选为1300℃~1500℃。
[0106] 从所述热处理粉末在加压加热处理时不发生氧化,制造所希望的cBN烧结体的观点出发,该热处理粉末的处理时及加压加热处理时的气氛优选为惰性气体气氛。作为惰性
气体,例如可举出Ar气体、N2气体等。这些气体可以单独使用1种,也可以并用2种以上。
[0107] [工具]
[0108] 本实施方式的工具包含本发明的cBN烧结体作为构成材料。
[0109] 如上所述,本发明的cBN烧结体的硬度高、且耐磨损性和耐缺损性优异,因此是适合于工具、特别是切削和磨削用工具的材料。即,作为CBN工具,可发挥如上所述的优异特
性。
[0110] 在高硬度钢等难切削材料的磨削和切削中,为了赋予优异的耐磨损性和耐缺损性,在用耐热性优异的陶瓷被覆膜覆盖cBN烧结体表面的CBN工具(被覆工具)中,本发明的
cBN烧结体的表面与陶瓷被覆膜(被膜)的密合性优异,能够使被膜难以剥离。
[0111] 因此,本发明的cBN烧结体即使适用于高硬度钢的齿轮端面或针孔等断续部的切削或磨削时,陶瓷被覆膜也难以剥离,能够实现被覆工具的长寿命化。
[0112] 作为所述陶瓷被覆膜的材质,例如可举出TiN、TiAlN、TiCN、CrAlN等。其中,从耐氧化性等观点出发,优选TiAlN、CrAlN,从成本等方面考虑,优选TiAlN。
[0113] 实施例
[0114] 以下,基于实施例说明本发明的实施方式,但本发明并不限定于下述实施例。
[0115] [cBN烧结体的制造]
[0116]
[0117] 将cBN粒子(“BN‑V”、昭和电工株式会社制)微粉碎,采用离心法和沉降法分级,调制以下所示的cBN(1)~(3),作为下述实施例及比较例中的cBN烧结体的制造中的cBN粉末
原料使用。
[0118] ·cBN(1):D50为2.8μm、圆形度为0.943、圆形度(1个粒子)0.900以下的粒子数的比例为15.2%
[0119] ·cBN(2):D50为3.6μm、圆形度为0.936、圆形度(1个粒子)0.900以下的粒子数的比例为16.1%
[0120] ·cBN(3):D50为3.1μm、圆形度为0.928、圆形度(1个粒子)0.900以下的粒子数的比例为16.3%
[0121] 再者,cBN(1)~(3)、以及cBN烧结体的制造中使用的其他原料粉末的D50,根据由粒度分析测定装置(“Microtrac(注册商标)MT3300”、日机装株式会社制造)测定出的粒度
分布求出。
[0122] 另外,cBN(1)~(3)的圆形度使用流动式粒子像分析装置(“FPIA‑3000”、Sysmex公司制),通过约1000个(1000个以上)粒子的图像分析来测定。
[0123] 另外,圆形度(1个粒子)0.900以下的粒子数的比例,是对于由所述图像分析测定了圆形度的约1000个粒子,在以各粒子的圆形度为横轴并以累积粒子数为纵轴示出的圆形
度分布坐标图中,圆形度为0.900的累积粒子数的比例。
[0124] (实施例1~15、比较例1、2及5~8)
[0125] 将预定的cBN粉末原料、以3:1的质量比将TiN(D50为1.2μm)和TiAl3(D50为19.8μm)预先混合而调制的配合原料(1)、以及所述配合原料(1)以外的其他配合原料(WC(D50:
0.5μm)、Co(D50:2.8μm)、Ni(D50:0.4μm)、B(D50:0.4μm),按下述表1所示的各配合组成进行
配合,使用丙酮作为分散介质,用行星球磨机(超硬合金(主要构成成分:WC约90质量%、Co
约10质量%)制球)进行混合粉碎,使其变均匀,得到了原料混合物的浆料。
[0126] 将所述浆料在N2气体气氛且70℃下静置干燥5小时,然后在1.0×10‑3Pa以下的真空气氛下,在650℃下热处理0.5小时进行脱气,得到了热处理粉末。
[0127] 在N2气体气氛下,将所述热处理粉末层叠于超硬合金制支承板上,然后在4.5GPa且1500℃下加压加热处理1小时,制作了cBN烧结体(直径约60mm、厚度约4mm)。用#400金刚
石磨石磨削cBN烧结体的上表面(与超硬合金制支承板的接触面为下表面),得到了评价用
的烧结体试料。
[0128] (比较例3及9)
[0129] 原料混合物的各配合组成如下述表1所示,另外,使原料混合物的浆料干燥后的脱气时的热处理温度为1000℃,除此以外与实施例1同样地得到了热处理粉末后,得到cBN烧
结体,制作了各烧结体试料。
[0130] (比较例4)
[0131] 在比较例2中,在使原料混合物的浆料干燥后的脱气时不进行热处理,将干燥粉末与比较例2同样地进行了加压加热处理,但无法得到平板状的cBN烧结体。
[0132] [cBN烧结体的评价测定]
[0133] 对上述实施例和比较例中得到的各烧结体试料,进行了以下各种评价测定。将这些评价测定结果汇总示于表1。再者,作为比较例10,一并示出对市售品的cBN烧结体(平均
粒径3μm(标称值)的cBN粉末、以及使用TiN粘合剂)的评价测定结果。
[0134]
[0135] 对烧结体试料进行镜面研磨,用SEM(“S‑5500”、日立高新技术株式会社制),以2000倍的倍率拍摄了反射电子像。在拍摄图像中,有黑色部、白色部和灰色部,对各部分进
行能量分散型X射线能谱分析(EDX)后,确认到黑色部为cBN、白色部及灰色部为黏结相。通
过图像处理软件对拍摄图像进行二值化处理,确认表示cBN粒子的黑色部和表示黏结相的
白色部,求出黑色部在二值化处理图像的整个视场区域中所占的面积比例,将3视场的算术
平均值视为cBN粒子的体积比例。
[0136] 作为代表例,对于实施例1的烧结体试料,在图4A表示SEM的摄影图像,在图4B表示其二值化处理像。再者,1视场的尺寸为宽64.0μm、长44.6μm,3视场的合计面积为8563.2μ
2
m。
[0137] <周长包络度>
[0138] 采用与所述的测定同样的方法,以10000倍的倍率拍摄反射电子像,在二值化处理后的图像中,测定任意100处黑色部(cBN粒子100个)的周长LA及包络周长LB,计
算LB/LA,将它们的算术平均值作为周长包络度。
[0139] <烧结体组成>
[0140] 用X射线衍射装置(“X’pert PRO”、Panalytical公司制)进行了XRD测定。测定在CuKα射线、输出电压40kV、输出电流40mA、采样幅度0.0167°、扫描速度0.4178°/s且测定范
围2θ=10~80°的条件下进行。
[0141] 对于测定出的XRD图,与无机材料数据库(使用软件“X’pert High Score Plus”)进行对照。
[0142] 另外,还参照感应耦合等离子体发射能谱分析(ICP‑AES)元素分析的结果,基于XRD分析结果确定了烧结体组成。
[0143] 再者,下述表1所示烧结体组成是通过XRD分析检测出的成分。对于实施例和比较例的任意烧结体试料(除了比较例4以外),确认到烧结体组成中包含cBN、TiN、TiCN、TiB2、
AlN和Al2O3。除此以外确认到的成分如表1所示。
[0144] 另外,对于化合物A,根据XRD图中的峰位移量和晶格常数、以及ICP‑AES元素分析结果,求出Ni量和Co量,确定了x的值。
[0145] <峰强度比>
[0146] 在所述<烧结体组成>项中的XRD图中,测定2θ=43.00°附近的W2NixCo(1‑x)B2(化合物A)的(112)面的衍射峰强度IA、2θ=43.30°附近的cBN(111)面的衍射峰强度IB、以及2θ=
44.36°附近的TiB2(101)面的衍射峰强度IC,算出IA/IB和IC/IB的各比。
[0147] 作为代表例,对于实施例14和比较例10,将测定出的XRD图的2θ=42.5°~45.0°的放大图分别示于图1和图2。
[0148] <维氏硬度>
[0149] 对于镜面研磨后的烧结体试料,采用依据JIS Z 2244:2009的方法,在载荷9.8N且保持时间15秒的条件下测定了维氏硬度。
[0150] <电阻率>
[0151] 用放电加工机将评价用的烧结体切取成35mm×20mm,再将与超硬合金制支承基板的接触面(下表面)侧除去100μm以上的厚度后,进行磨削加工,制作了测定试料(35mm×
20mm、厚度0.80mm、表面粗糙度Rz为0.4以下)。
[0152] 对于测定试料,用电阻率计(“Loresta‑GX”、三菱化学分析科技株式会社制、PSP探针),在室温(25℃)下,采用4探针法测定了电阻值。
[0153] <切削评价>
[0154] 由评价用的烧结体制作ISO标准CNGA120408的切削工具,采用PVD法形成TiAlN被覆膜(被膜),制作了被覆切削工具。再者,被膜的膜厚通过SEM的截面观察测定。
[0155] 使用该被膜切削工具,对以下的(试验1)或(试验2)所示被切削材料进行了外周车削加工(切削速度150m/min、切入量0.20mm、进给量0.10mm/rev)。用数字显微镜(“VHX‑
5500”、株式会社基恩士制)观察加工后的工具刀尖,确认损伤状态(有无被膜剥离及缺损),
另外,测定工具后隙面的最大磨损幅度,将其作为后隙面磨损量(参照JIS B 0170:1993)。
[0156] (试验1)
[0157] 作为被切削材料,使用在高碳铬轴承钢(JIS标准SUJ2;硬度(HRC)60~64)的直径45mm、长度200mm的圆棒的外周面上,在圆周方向等间隔地形成3个、在长度方向等间隔地形
成8个的共计24个直径5mm、深度10mm的针孔的被切削材料,加工时间为10分钟。
[0158] (试验2)
[0159] 作为被切削材料,使用冷模用合金工具钢(JIS标准SKD11;硬度HRC60~64)的直径70mm、长度300mm的圆棒,加工时间为15分钟。
[0160] 再者,(试验2)仅对实施例11~15和比较例6~10进行。
[0161] 表1
[0162]
[0163] 如表1所示,确认到实施例1~15的cBN烧结体生成了含有TiB2和W2NixCo(1‑x)B2(化合物A)的黏结相。另外,维氏硬度大,保持低的电阻率,即使在采用PVD法形成被膜时施加高
的偏置电压,也可得到被膜的密合性高的被覆工具。认为这是因为通过如上所述的黏结相
的生成,促进了烧结体的致密化,并且,cBN粒子不会脱落而被牢固地保持的缘故。
[0164] 根据如上所述的实施例的被覆工具,即使对在周面设有针孔的高硬度钢进行切削加工的情况下,被膜也不会剥离,而且也不产生工具缺损,可得到优异的耐磨损性。
[0165] 与此相对,比较例1~10的cBN烧结体均在黏结相中不含化合物A,即使cBN含量相同,维氏硬度也比实施例差。另外,这些比较例的被覆工具中,被膜容易剥离,有容易磨损的
倾向。