两个聚合联噻吩衍生物合镉、镍配合物及其制备方法与用途转让专利

申请号 : CN202110104511.8

文献号 : CN113321791B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 钟超凡田勇王凯旋章厚鹏吴显明

申请人 : 湘潭大学

摘要 :

本发明涉及式1所示的两个聚合联噻吩衍生物合镉、镍配合物BDTT‑BTh‑Cd、BDTT‑BTh‑Ni及其制备方法与用途,它们以功能化的联噻吩衍生物作为主配体与金属配位形成的金属配合物为辅助电子配体A’,以苯并二噻吩联二噻吩(BDTT)为电子给体D,通过Heck反应合成两个聚合联噻吩衍生物合镉、镍配合物,实验基于以BDTT‑BTh‑Cd、BDTT‑BTh‑Ni为染料敏化剂的染料敏化太阳能电池的光伏性能测试表现出较好的效果:光电转化效率(PCE)分别达到10.56%、6.86%,其热分解温度均达到了302℃以上,热稳定性良好,这将在染料敏化太阳能电池的开发应用方面具有一定的前景。

权利要求 :

1.两个聚合联噻吩衍生物合镉、镍配合物BDTT‑BTh‑Cd、BDTT‑BTh‑Ni,其结构式如下:如上所述的两个聚合联噻吩衍生物合镉、镍配合物的制备方法:(1)5‑溴‑2‑噻吩甲醛的制备:

将N‑溴代琥珀酰亚胺加入到2‑噻吩甲醛的无水CHCl3溶液中,N‑溴代琥珀酰亚胺和2‑噻吩甲醛的摩尔比为0.7:1.0~1.5:1.0,将反应混合物在室温下搅拌10~18h,反应完成后冷却至室温,再用CHCl3萃取,用去离子水洗涤有机相,然后用Na2SO4干燥,过滤,在真空干燥箱中烘干得到粗产物,用CHCl3作为洗脱剂,将粗产物通过硅胶柱色谱纯化,得到的纯产物为无色油状物;

(2)5,5’‑二甲醛基‑2,2’‑联噻吩的制备:在单口烧瓶中依次加入摩尔比为8:1:20:20~15:1:20:25的正丁基溴化铵、醋酸钯、5‑溴噻吩‑2‑甲醛、N,N‑二异丙基乙胺,再加入少量甲苯,在氮气氛围中于90~120℃下回流,反应在磁力搅拌状态下进行,反应时间为3~10h,待反应结束后,停止加热至产物冷却,使用乙酸乙酯洗涤并过滤,过滤所得到的滤液用去离子水洗涤后,再使用乙酸乙酯萃取,用无水MgSO4干燥萃取所得到的有机相溶液,过滤后将溶液旋转蒸发,除掉溶剂,然后再进行重结晶,再将重结晶得到的产物放到干燥箱中烘干,得到颜色为黄棕色的固体粉末状产物;

(3)5,5’‑二乙烯基‑2,2’‑联噻吩的制备:称取摩尔比为0.7:10.0~1.4:10.0的5,5’‑二甲醛基‑2,2’‑联噻吩和甲基三苯基溴化磷到单口烧瓶中,再加入少量四氢呋喃,随后缓慢加入NaH,在氮气保护下回流反应8~16h,反应结束后冷却至室温,依次缓慢加入无水甲醇与去离子水,然后用CH2Cl2萃取,将萃取所得液体用无水硫酸镁进行干燥,过滤,再将所得滤液旋转蒸发得到粗产物,该粗产物通过硅胶柱色谱纯化,使用的洗脱剂为石油醚和乙酸乙酯,且石油醚与乙酸乙酯的体积比为2:1~

5:1,将纯化后所得液体旋转蒸发除去溶剂,得到黄色油状液体;

(4)5‑甲酰基‑8‑羟基喹啉的制备:

向三口烧瓶中加入8‑羟基喹啉,加入无水乙醇搅拌溶解,缓慢滴加少量氯仿,再向烧瓶中加入十六烷基三甲基溴化铵(CTMAB),8‑羟基喹啉与CTMAB的摩尔比为1.2:3.0~2.0:

3.0,然后在室温下缓慢滴加NaOH溶剂,升温回流反应8~16h,反应结束后冷却至室温,旋转蒸发除去溶剂,将一定量蒸馏水倒入经旋转蒸发后剩余的黑色粘稠固体中,用稀盐酸调pH值至弱酸性,抽滤得土黄色固体粗产物并真空干燥,干燥完毕后,将固体研磨成粉,用石油醚进行洗涤,之后用乙醇重结晶,得到橙黄色固体;

(5)2‑氰基‑3‑(8‑羟基喹啉‑5‑基)丙烯酸的制备:向三口烧瓶中加入5‑甲酰基‑8‑羟基喹啉和氰基乙酸,5‑甲酰基‑8‑羟基喹啉和氰基乙酸的摩尔比为0.7:1.1~1.5:1.1,再用乙腈溶解,随后加冰醋酸并滴加少量的哌啶,升温至

70~100℃,反应18~30h后停止加热,旋转蒸发除去部分溶液,在‑10~10℃条件下过夜;过滤,所得固体用氯仿冲洗三次,真空干燥,再用乙醇重结晶,得到金黄色固体产物;

(6)镉配合物BTh‑Cd的制备:

依次称取摩尔比为0.7:1.0~1.4:1.0的主配体5,5’‑二乙烯基‑2,2’‑联噻吩和辅助配体2‑氰基‑3‑(8‑羟基喹啉‑5‑基)丙烯酸,并加入三口圆底烧瓶中,量取少量THF并搅拌至固体溶解,等到固体全部溶解之后,用分析天平精准称量Cd(CH3COO)2·2H2O固体,用无水甲醇溶解,用恒压滴液漏斗慢慢加到反应烧瓶中,用冰醋酸调节体系pH值为弱酸性,回流反应18~30h,冷却至室温后过滤,依次用无水乙醇和去离子水洗涤,然后放入真空干燥箱干燥,干燥后得到金黄色固体产物;

(7)镍配合物BTh‑Ni的制备:

配合物BTh‑Ni参照配合物BTh‑Cd的具体合成方法,将配位用的Cd(CH3COO)2·2H2O替换为Ni(CH3COO)2·2H2O,经处理后得到黄绿色固体BTh‑Ni;

(8)聚合金属配合物BDTT‑BTh‑Cd的制备:此反应根据Heck聚合反应合成,在三口烧瓶中称取摩尔比为0.7:1.0~1.4:1.0的配合物BTh‑Cd单体和2,6‑二溴‑4,8‑二(5‑(2‑乙基辛基)噻吩‑2‑基)苯并[1,2‑b:4,5‑b']二噻吩(BDTT)给体单体,加入催化剂醋酸钯(Pd(CH3COO)2)和三(2‑甲苯基)膦,在氮气氛围中加入少量DMF与少量干燥处理后的三乙胺搅拌溶解,随后加热回流反应40~56h,反应停止后冷却、过滤,用无水乙醇洗涤三次后放入真空干燥箱干燥,取出得土黄色固体产物;

(9)聚合金属配合物BDTT‑BTh‑Ni的制备:聚合金属配合物BDTT‑BTh‑Ni的具体合成方法参照BDTT‑BTh‑Cd的合成,将BTh‑Cd替换成BTh‑Ni,经过反应处理干燥后得到墨绿色固体产物BDTT‑BTh‑Ni。

2.根据权利要求1所述的两个聚合联噻吩衍生物合镉、镍配合物BDTT‑BTh‑Cd、BDTT‑BTh‑Ni的用途,在染料敏化太阳能电池中用作染料敏化剂。

说明书 :

两个聚合联噻吩衍生物合镉、镍配合物及其制备方法与用途

技术领域

[0001] 本发明涉及两个聚合联噻吩衍生物合镉、镍配合物 BDTT‑BTh‑Cd、BDTT‑BTh‑Ni及其制备方法与应用其为染料敏化剂的用途,是对染料敏化太阳能电池(DSSCs)中光电敏化
材料的研发与应用,属于新材料中的光电材料领域。

背景技术

[0002] 随着石油和煤等化石能源的逐渐减少和环保的需求,人类不得不将目光转移到可再生清洁能源上,如水电、风能、核能和太阳能等,但是前几类都有自身的不足,如水电和风
能的资源受限,核能能量消耗大、产能少、并且有一定危险性等,而太阳能是公认的最理想
可再生清洁能源,对太阳能光电行业的研发与应用已成为最热门的领域趋势,染料敏化太
阳能电池是太阳能技术中最具发展潜力和大规模化应用前景的清洁和可再生光电转化技
术,而决定染料敏化太阳能电池光电转化效率等光伏性能的最关键组分材料是染料敏化
剂,因此,对高性能染料敏化剂的设计、研发与应用具有重要的理论与实际意义,本发明研
究以吸电子能力强,且通过能改变配位键强度以调节吸电子能力大小的联噻吩衍生物合金
属配合物做染料敏化剂的辅助电子受体 A’,设计与制备合成了两个聚合D‑A’‑π‑A型联噻
吩衍生物合镉、镍配合物BDTT‑BTh‑Cd、BDTT‑BTh‑Ni染料敏化剂,光伏测试结果表明它们具
有较好的吸光性能与光伏性能。

发明内容

[0003] 本发明的目的是为提供和制备以苯并噻二噻吩联二噻吩衍生物 BDTT为电子给体(D),以功能化的联噻吩衍生物为主配体与金属配位形成的配合物为辅助电子受体(A’),以
2‑氰基‑3‑(8‑羟基喹啉‑5‑ 基)丙烯酸与金属配位形成π桥、受体(A)和锚定基团,通过Heck 
反应将给体(D)和配合物受体部分(‑A’‑π‑A)连接而合成的两个聚合 D‑A’‑π‑A型联噻吩衍
生物合镉、镍配合物BDTT‑BTh‑Cd、 BDTT‑BTh‑Ni,并应用其作为染料敏化太阳能电池中的
染料敏化剂,该类金属配合物具有较好的光电转换效率(PCE)和热稳定性,基于以BDTT‑
BTh‑Cd、BDTT‑BTh‑Ni为染料敏化剂的染料敏化太阳能电池的光电转化效率分别达到了
10.56%、6.86%,其结构通式如下:
[0004]
[0005] 两个聚合联噻吩衍生物合镉、镍配合物的制备方法:
[0006] (1)5‑溴‑2‑噻吩甲醛的制备:
[0007] 将N‑溴代琥珀酰亚胺加入到2‑噻吩甲醛的无水CHCl3溶液中, N‑溴代琥珀酰亚胺和2‑噻吩甲醛的摩尔比为0.7:1.0~1.5:1.0将反应混合物在室温下搅拌10~18h,反应完
成后冷却至室温,再用CHCl3萃取,用去离子水洗涤有机相,然后用Na2SO4干燥,过滤,在真空
干燥箱中烘干得到粗产物,用CHCl3作为洗脱剂,将粗产物通过硅胶柱色谱纯化,得到的纯
产物为无色油状物;
[0008] (2)5,5’‑二甲醛基‑2,2’‑联噻吩的制备:
[0009] 在单口烧瓶中依次加入摩尔比为8:1:20:20~15:1:20:25的正丁基溴化铵、醋酸钯、5‑溴噻吩‑2‑甲醛、N,N‑二异丙基乙胺,再加入少量甲苯,在氮气氛围中于90~120℃下
回流,反应在磁力搅拌状态下进行,反应时间为3~10h,待反应结束后,停止加热至产物冷
却,使用乙酸乙酯洗涤并过滤,过滤所得到的滤液用去离子水洗涤后,再使用乙酸乙酯萃
取,用无水MgSO4干燥萃取所得到的有机相溶液,过滤后将溶液旋转蒸发,除掉溶剂,然后再
进行重结晶,再将重结晶得到的产物放到干燥箱中烘干,得到颜色为黄棕色的固体粉末状
产物;
[0010] (3)5,5’‑二乙烯基‑2,2’‑联噻吩的制备:
[0011] 称取摩尔比为0.7:10.0~1.4:10.0的5,5’‑二甲醛基‑2,2’‑联噻吩和甲基三苯基溴化磷到单口烧瓶中,再加入少量四氢呋喃,随后缓慢加入 NaH,在氮气保护下回流反应8
~16h,反应结束后冷却至室温,依次缓慢加入无水甲醇与去离子水,然后用CH2Cl2萃取,将
萃取所得液体用无水硫酸镁进行干燥,过滤,再将所得滤液旋转蒸发得到粗产物,该粗产物
通过硅胶柱色谱纯化,使用的洗脱剂为石油醚和乙酸乙酯,且石油醚:乙酸乙酯=2:1~5:1
(v:v),将纯化后所得液体旋转蒸发除去溶剂,得到黄色油状液体;
[0012] (4)5‑甲酰基‑8‑羟基喹啉的制备:
[0013] 向三口烧瓶中加入8‑羟基喹啉,加入无水乙醇搅拌溶解,缓慢滴加少量氯仿,再向烧瓶中加入十六烷基三甲基溴化铵(CTMAB), 8‑羟基喹啉与CTMAB的摩尔比为1.2:3.0~
2.0:3.0,然后在室温下缓慢滴加NaOH溶剂,升温回流反应8~16h,反应结束后冷却至室温,
旋转蒸发除去溶剂,将一定量蒸馏水倒入经旋转蒸发后剩余的黑色粘稠固体中,用稀盐酸
调pH值至弱酸性,抽滤得土黄色固体粗产物并真空干燥,干燥完毕后,将固体研磨成粉,用
石油醚进行洗涤,之后用乙醇重结晶,得到橙黄色固体;
[0014] (5)2‑氰基‑3‑(8‑羟基喹啉‑5‑基)丙烯酸的制备:
[0015] 向三口烧瓶中加入5‑甲酰基‑8羟基喹啉和氰基乙酸,5‑甲酰基 ‑8‑羟基喹啉和氰基乙酸的摩尔比为0.7:1.1~1.5:1.1,再用乙腈溶解,随后加冰醋酸并滴加少量的哌啶,升
温至70~100℃,反应18~30h 后停止加热,旋转蒸发除去部分溶液,在‑10~10℃条件下过
夜;过滤,所得固体用氯仿冲洗三次,真空干燥,再用乙醇重结晶,得到金黄色固体产物;
[0016] (6)镉配合物BTh‑Cd的制备:
[0017] 依次称取摩尔比为0.7:1.0~1.4:1.0的主配体5,5’‑二乙烯基‑2,2’‑ 联噻吩和辅助配体2‑氰基‑3‑(8‑羟基喹啉‑5‑基)丙烯酸,并加入三口圆底烧瓶中,量取少量THF并搅
拌至固体溶解,等到固体全部溶解之后,用分析天平精准称量Cd(CH3COO)2·2H2O固体,用无
水甲醇溶解,用恒压滴液漏斗慢慢加到反应烧瓶中,用冰醋酸调节体系pH值为弱酸性,回流
反应18~30h,冷却至室温后过滤,依次用无水乙醇和去离子水洗涤,然后放入真空干燥箱
干燥,干燥后得到金黄色固体产物;
[0018] (7)镍配合物BTh‑Ni的制备:
[0019] 配合物BTh‑Ni参照配合物BTh‑Cd的具体合成方法,将配位用的Cd(CH3COO)2·2H2O替换为Ni(CH3COO)2·2H2O,经处理后得到黄绿色固体BTh‑Ni;
[0020] (8)聚合金属配合物BDTT‑BTh‑Cd的制备:
[0021] 此反应根据Heck聚合反应合成,在三口烧瓶中称取摩尔比为 0.7:1.0~1.4:1.0的配合物BTh‑Cd单体和2,6‑二溴‑4,8‑二(5‑(2‑乙基辛基)噻吩‑2‑基)苯并[1,2‑b:4,5‑
b']二噻吩(BDTT)给体单体,加入催化剂醋酸钯(Pd(CH3COO)2)和三(2‑甲苯基)膦,在氮气氛
围中加入少量DMF与少量干燥处理后的三乙胺搅拌溶解,随后加热回流反应 40~56h,反应
停止后冷却、过滤,用无水乙醇洗涤三次后放入真空干燥箱干燥,取出得土黄色固体产物;
[0022] (9)聚合金属配合物BDTT‑BTh‑Ni的制备:
[0023] 聚合金属配合物BDTT‑BTh‑Ni的具体合成方法参照 BDTT‑BTh‑Cd的合成,将BTh‑Cd替换成BTh‑Ni,经过反应处理干燥后得到墨绿色固体产物BDTT‑BTh‑Ni;
[0024] 两个聚合联噻吩衍生物合镉、镍配合物BDTT‑BTh‑Cd、BDTT‑BTh‑Ni的用途:在染料敏化太阳能电池中用作吸收太阳光并产生和传输电子的染料敏化剂材料;
[0025] 此发明的主要优势在于:(1)发明了两个聚合联噻吩衍生物合镉、镍配合染料敏化剂,它们是以苯并二噻吩联二噻吩衍生物BDTT为电子给体(D),以功能化的联噻吩衍生物与
金属配位形成的配合物为辅助电子受体(A’),以2‑氰基‑3‑(8‑羟基喹啉‑5‑基)丙烯酸与金
属配位形成π桥、受体(A)和锚定基团,通过Heck反应将给体(D) 和配合物受体部分(‑A’‑π‑
A)连接而合成的两个聚合D‑A’‑π‑A型联噻吩衍生物合镉、镍配合物BDTT‑BTh‑Cd、BDTT‑
BTh‑Ni染料敏化剂,表现出优良的光伏性能和光电转化效率,制备方法简单,原材料易得; 
(2)具有良好的热性能和光稳定性,有利于实际应用;

附图说明

[0026] 图1本发明实施例合成的中间体5‑溴‑2‑噻吩甲醛的核磁共振氢谱(1HNMR)(400MHz,CDCl3,ppm);
[0027] 图2本发明实施例合成的中间体5,5’‑二甲醛基‑2,2’‑联噻吩的 1H‑NMR谱1
(HNMR)(400MHz,CDCl3,ppm);
[0028] 图3本发明实施例合成的主配体5,5’‑二乙烯基‑2,2’‑联噻吩的核磁共振氢谱1
(HNMR)(400MHz,CDCl3,ppm);
[0029] 图4本发明实施例合成的中间体5‑甲酰基‑8‑羟基喹啉的核磁共振氢谱(1HNMR)(400MHz,CDCl3,ppm);
[0030] 图5本发明实施例合成的辅配体2‑氰基‑3‑(8‑羟基喹啉‑5‑基)丙烯酸的核磁共振1
氢谱(HNMR)(400MHz,CDCl3,ppm);
[0031] 图6本发明实施例合成的配合物BTh‑Cd、BTh‑Ni的红外光谱 (FTIR)(KBr,cm‑1);
[0032] 图7本发明实施例合成的聚合配合物BDTT‑BTh‑Cd、 BDTT‑BTh‑Ni的红外光谱‑1
(FTIR)(KBr,cm );
[0033] 图8本发明实施例合成的聚合配合物BDTT‑BTh‑Cd、 BDTT‑BTh‑Ni的热重分析曲线(TGA);
[0034] 图9本发明实施例合成的聚合配合物BDTT‑BTh‑Cd、 BDTT‑BTh‑Ni的紫外‑可见吸收光谱(UV‑vis);
[0035] 图10本发明实施例合成的聚合配合物BDTT‑BTh‑Cd、 BDTT‑BTh‑Ni作染料敏化剂的染料敏化太阳能电池的电流密度‑电压 (J‑V)曲线;
[0036] 图11本发明实施例合成的聚合配合物BDTT‑BTh‑Cd、 BDTT‑BTh‑Ni作染料敏化剂的染料敏化太阳能电池的外量子效率 (IPCE)曲线;

具体实施方式

[0037] 本发明的两个聚合联噻吩衍生物合镉、镍配合物BDTT‑BTh‑Cd、 BDTT‑BTh‑Ni的合成路线如式1‑1;
[0038] 下面结合具体实施例对本发明做进一步的说明
[0039] 实施例1:
[0040] 两个聚合联噻吩衍生物合镉、镍配合物BDTT‑BTh‑Cd、 BDTT‑BTh‑Ni的分子结构式如式1‑2;
[0041] 上述两个聚合联噻吩衍生物合镉、镍配合物BDTT‑BTh‑Cd、 BDTT‑BTh‑Ni的制备方法:
[0042] A.5‑溴‑2‑噻吩甲醛的制备:将10.90g(61.5mmol)N‑溴代琥珀酰亚胺缓慢加入到6.25g(56.0mmol)2‑噻吩甲醛的无水CHCl3(125 mL)溶液中,将反应混合物在室温下搅拌
14h,反应后混合物用CHCl3萃取,用去离子水洗涤有机相,然后用Na2SO4干燥,过滤,在真空
[0043]
[0044] 干燥箱中烘干得到粗产物,将粗产物通过硅胶柱色谱纯化,用CHCl3作为洗脱剂,1
得到呈纯产物,为无色油状物6.0g,产率58.2%,核磁共振氢谱见附图1,H‑NMR(CDCl3,
1 1 1 13
ppm):9.78(s,H,‑CHO),7.53(d,  H,Ar‑H),7.20(d,H,Ar‑H). C‑NMR(CDCl3,δ,ppm):
182.4,138.9, 132.1,146.0,124.2;
[0045] B.5,5’‑二甲醛基‑2,2’‑联噻吩的制备:在100mL单口烧瓶中依次加入正丁基溴化铵6.40g(20.0mmol)、醋酸钯0.448g(2.0mmol)、
[0046]
[0047] 5‑溴噻吩‑2‑甲醛7.65g(40.0mmol)、N,N‑二异丙基乙胺5.15g(40.0 mmol),再加入25.0mL甲苯,在稀有气体的保护下于105℃下回流,在磁力搅拌状态下进行反应,反应时
间为6h,待反应结束后,停止加热,将产物冷却后,使用乙酸乙酯洗涤并过滤,过滤所得到的
滤液用去离子水洗涤后,再使用乙酸乙酯萃取,用无水MgSO4干燥萃取所得到的有机相溶
液,过滤后将溶液旋转蒸发,除掉溶剂,然后再进行重结晶,再将重结晶得到的产物放到干
燥箱中烘干,得到颜色为黄棕色的固体粉末状产物3.04g,产率68.4%,熔点为217~218℃,
1 2 2
核磁共振氢谱见附图2,H‑NMR(CDCl3,ppm):9.91(d,H,‑CH=O),7.73 (d,H,Ar‑H),7.43
2 13
(d,H,Ar‑H). C‑NMR(CDCl3,δ,ppm):182.4,143.4, 141.1,138.2,123.4;
[0048] C.5,5’‑二乙烯基‑2,2’‑联噻吩的制备:称取1.93g(0.87mmol) 5,5’‑二甲醛基‑2,2’‑联噻吩和3.58g(10.0mmol)甲基三苯基溴化磷到500mL单口烧瓶中,再加入100mL四氢
呋喃,随后缓慢加入NaH 0.79g(33.0mmol),在氮气保护下回流反应12h,停止反应后冷却至
室温,依次缓慢加入100mL无水甲醇与100mL去离子水,然后用CH2Cl2萃取,将萃取所得液体
用无水硫酸镁进行干燥,过滤,再将所得滤液旋转蒸发得到粗产物,所得到的粗产物通过石
油醚:乙酸乙酯=4:1(v:v)的配比溶液进行硅胶柱色谱纯化,将通过硅胶柱色谱纯化后所
得液体旋转蒸发除去溶剂,得到黄色油状液体1.19g,产率62.8%,核磁共振氢谱见附图3,
1 2 2 2 2
H‑NMR(CDCl3,ppm):7.02(d,H, Ar‑H),6.87(d,H,Ar‑H),6.75(q,H,‑CH=),5.54(d,H,
2 13
=CH2),5.15(d,  H,=CH2). C‑NMR(CDCl3,ppm):142.08,137.47,130.49,126.12, 
123.84,113.43;
[0049] D.5‑甲酰基‑8‑羟基喹啉的制备:向250mL三口烧瓶中加入25.0g (0.17mol)8‑羟基喹啉,加入100mL无水乙醇搅拌溶解,缓慢滴加 25mL氯仿,再向烧瓶中加入0.100g
(0.30mol)十六烷基三甲基溴化铵(CTMAB)搅拌,室温下缓慢滴加NaOH溶剂,滴加完将体系
升温回流,反应12h,反应结束后冷却至室温,旋转蒸发除去溶剂后转移到1L的烧瓶中,再将
500mL蒸馏水倒入旋转蒸发后剩余的黑色粘稠固体中,用10%的稀盐酸调pH值至弱酸性,抽
滤得土黄色固体粗产物并真空干燥,干燥完毕后,将固体研磨成粉,用石油醚进行洗涤,之
后用乙醇重结晶,得到橙黄色固体3.65g,产率12%,熔点为172~173℃,核磁共振氢谱见附
1 1 1 1
图4,H‑NMR(CDCl3,ppm):10.14 (d,H,‑CHO),9.67(d,H,Ar‑H),8.87(d,H,Ar‑H),8.00(d
1 1 13
,H,Ar‑H),7.65 (q,H,Ar‑H). C‑NMR(CDCl3,ppm):192.04,157.86,148.74,140.45, 
137.85,134.76,126.59,124.72,123.56,109.02;
[0050] E.2‑氰基‑3‑(8‑羟基喹啉‑5‑基)丙烯酸的制备:向干燥的250mL 三口烧瓶中依次加入5‑甲酰基‑8羟基喹啉1.74g(10.0mmol)和氰基乙酸1.39g(11.0mmol),然后加入100mL
乙腈,搅拌使固体溶解,随后加入10mL冰醋酸,最后用滴管滴加40滴哌啶,加热回流反应
24h,停止反应后冷却至室温,旋转蒸发至析出沉淀,将固体干燥得到粗产物,用25%乙醇重
1
结晶三次,得到橘黄色固体产物1.026g,产率64%,核磁共振氢谱见附图5,H‑NMR(DMSO‑
1 1 1 1
d6,ppm):8.96(s,  H,Ar‑H),8.91(s,H,Ar‑H),8.62(d,H,Ar‑H),8.42(d,H,Ar‑H),7.71 
1 1
(d,H,Ar‑H),7.26(d,H,Ar‑H).羟基和羧基上的活泼氢在核磁氢谱中无法表征出,但可通
‑1
过以下表征证明目标产物成功合成,FTIR(KBr, cm ):3447(‑OH),2221(C≡N),1580(C=
13
C),1530(C=N). C‑NMR (DMSO‑d6,ppm):164.19,159.11,150.01,149.44,138.67,132.67, 
131.15,128.71,123.93,118.86,117.29,112.16,102.97..Anal.Calcd.for [C13H8N2O3]:C,
65.00;H,3.36;N,11.66%.Found:C,64.74;H,3.44;N, 11.46%;
[0051] F.镉配合物BTh‑Cd的制备:以5,5’‑二乙烯基‑2,2’‑联噻吩为主配体的配合物参照文献合成,依次称取主配体2.18g(10.0mmol)、辅助配体2.40g(10.0mmol)加入1L三口圆
底烧瓶中,量取300mL THF,搅拌至固体溶解,等到固体全部溶解掉之后,用分析电子天平精
准的称量好Cd(CH3COO)2·2H2O 2.68g(10.5mmol),用150mL 无水甲醇溶解,用恒压滴液漏
斗慢慢加到反应烧瓶中,用三乙胺或者冰醋酸调节体系pH值为弱酸性,回流反应24h,冷却
至室温后过滤,依次用无水乙醇和去离子水洗涤,然后放到真空干燥箱中,干燥完之后就得
‑1
到了金黄色固体产物3.04g,产率58%,红外谱图(FTIR)见附图6,FTIR(KBr,cm ):3414(‑
OH),2208(C≡N),1673(C=O),1610 (C=N),1562(C=C),1092(C‑O‑Cd),493(N‑Cd),423
(S‑Cd).Anal. Calcd.for[C25H17CdN2O3S2]:C,52.69;S,11.43;H,2.98;N,4.92%. Found:
C,52.72;S,11;25;H,2.99;N,9.92%;
[0052] G.镍配合物BTh‑Ni的制备:此反应参照BTh‑Cd的合成方法,将Cd(CH3COO)2·2H2O替换为2.14g(10.5mmol)Ni(CH3COO)2·2H2O,经处理得到黄绿色固体产物3.06g,产率64%,
‑1
熔点在300℃以上,红外谱图(FTIR)见附图6,FTIR(KBr,cm ):3423(‑OH),2215(C≡N), 
1615(C=C),1569(C=N),1113(C‑O‑Ni),511(N‑Ni),442(S‑Ni).Anal. Calcd.for
[C25H17NiN2O3S2]:C,58.12;S,12.51;H,3.29;N,5.39%. Found:C,58.15;S,12.43;H,3.32;
N,5.43%;
[0053] H.聚合金属配合物BDTT‑BTh‑Cd的制备:此反应根据Heck聚合反应合成,在250mL三口烧瓶中称取1.71g(3.0mmol)配合物 BTh‑Cd单体,2.30g(3.0mmol)2,6‑二溴‑4,8‑二
(5‑(2‑乙基辛基)噻吩 ‑2‑基)苯并[1,2‑b:4,5‑b']二噻吩(BDTT)给体单体,加入0.042g
(0.19 mmol)催化剂醋酸钯(Pd(CH3COO)2)和0.275g(0.90mmol)三(2‑ 甲苯基)膦,在氮气氛
围中加入80mL精制的DMF与30mL干燥处理后的三乙胺搅拌溶解,随后加热回流反应48h,反
应停止后冷却,过滤,用无水乙醇洗涤数次后放入真空干燥箱干燥,取出得土黄色固体产物
‑1
3.4g,产率58%,红外谱图(FTIR)见附图7,FTIR(KBr,cm ): 3407(‑OH),2920,2854(C‑H),
2206(C≡N),1604(C=C),1557(C=N), 1090(C‑O‑Cd),491(N‑Cd),422(S‑Cd)
.Anal.Calcd.for [C64H66N2O5S6Cd]:C,61.63;H,5.30;N,2.25;S,15.41.Found:C,59.02; 
3
H,4.692;N,2.88;S,14.70%.Mn=8.21×10g/mol,PDI=2.22;
[0054] I.聚合金属配合物BDTT‑BTh‑Ni的制备:此反应参照 BDTT‑BTh‑Cd的合成方法,将1.71g(3.0mmol)Cd(II)配合物BTh–Cd 换成1.55g(3.0mmol)Ni(II)配合物BTh‑Ni,与给体
单体BDTT 2.30 g(3.0mmol)反应,最后得到了墨绿色固体2.93g,产率56%,红外谱图
‑1
(FTIR)见附图7,FTIR(KBr,cm ):3420(‑OH),2934.2861 (C‑H),2213(C≡N),1615(C=C),
1577(C=N),1112(C‑O‑Ni),510 (N‑Ni),435(S‑Ni).Anal.Calcd.for[C64H66N2O5S6Cu]:C,
64.38;H,5.53; N,2.35;S,16.09%.Found:C,64.47;H,5.43;N,2.39;S,16.99%. Mn=
3
9.13×10g/mol,PDI=1.85。
[0055] 实施例2:
[0056] 测定两个聚合联噻吩衍生物合镉、镍配合物染料敏化剂 BDTT‑BTh‑Cd、BDTT‑BTh‑Ni的热重分析(TGA)曲线,方法:SDTQ600 的热重分析仪,N2保护下以20℃/min的升温速度
进行测试,测试结果如图8。
[0057] 实施例3:
[0058] 测定两个聚合联噻吩衍生物合镉、镍配合物BDTT‑BTh‑Cd、 BDTT‑BTh‑Ni的分子量,方法为凝胶渗透色谱(GPC):使用Waters‑1515型号的凝胶渗透色谱仪,分离柱为waters 
styragel columns (103,104, ),柱温箱温度80℃,以DMF为流动相,聚苯乙烯溶液作
参比,流速为1.00mL/min进行测试,测试结果如表1。
[0059] 表1两个聚合联噻吩衍生物合镉、镍配合物的分子量测试数据
[0060]
[0061] 实施例4:
[0062] J‑V曲线测试光源为氙灯模拟的光强100mW/cm2的AM  1.5G的太阳光,通过Keithley 2400数字源表改变电压并记录电流随电压的变化值;IPCE测试由Oriel 
Cornerstone单色仪提供光源,在短路条件下测得,波长的测试间隔为10nm,DSSC的有效工
2
作面积为0.25cm;
[0063] 表2两个聚合联噻吩衍生物合镉、镍配合物的光伏性能测试数据
[0064]
[0065] 测定以两个聚合联噻吩衍生物合镉、镍配合物BDTT‑BTh‑Cd、 BDTT‑BTh‑Ni为染料敏化剂的染料敏化太阳能电池的性能参数和光电转换效率,其电池电流密度‑电压(J‑V)曲
线如图10,电池外量子效率(IPCE)曲线如图11;表2是它们的光伏性能和光电转换效率测试
结果。