在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜及其制备转让专利

申请号 : CN202110586628.4

文献号 : CN113322511B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 闻利杰杨永杰芦增星汪志明郝险峰郭媛媛

申请人 : 中国科学院宁波材料技术与工程研究所燕山大学辽宁科技大学

摘要 :

本发明公开了一种在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜及其制备方法,包括:在晶向为[001]、[110]或[111]的衬底上依次制备可溶性牺牲层薄膜、SrRuO3单晶薄膜和柔性材料,然后溶解掉可溶性牺牲层薄膜进行柔性转移,得到在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜。该方法为堆垛制备出不同晶向、且具有垂直磁各向异性的柔性氧化物异质结构,提供了一种可行的方法,对柔性钙钛矿氧化物薄膜在器件上的应用有着重要的意义。

权利要求 :

1.一种在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜的制备方法,其特征在于,包括:在晶向为[001]、[110]和[111]的衬底上依次制备可溶性牺牲层薄膜、SrRuO3单晶薄膜和柔性材料,然后溶解掉所述可溶性牺牲层薄膜进行柔性转移,得到所述在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜;

所述衬底的晶格常数与可溶性牺牲层薄膜晶格常数相匹配;

所述可溶性牺牲层薄膜为Ca3‑xSrxAl2O6,0≤x<3。

2.根据权利要求1所述的制备方法,其特征在于,所述衬底在使用前先进行表面预处理,所述表面预处理包括酸腐蚀、氩离子轰击、加热退火中的至少一种。

3.根据权利要求1所述的制备方法,其特征在于,制备可溶性牺牲层薄膜、SrRuO3单晶薄膜的方法包括脉冲激光沉积、磁控溅射、分子束外延中的至少一种。

4.根据权利要求1所述的制备方法,其特征在于,所述柔性材料包括聚酰亚胺胶带、布基胶带、聚对苯二甲酸乙二醇酯胶带、聚二甲基硅氧烷、聚甲基丙烯酸甲酯中的至少一种;

制备柔性材料的方法为粘贴或涂覆。

5.根据权利要求1所述的制备方法,其特征在于,采用可溶解所述可溶性牺牲层薄膜的溶剂溶解掉所述可溶性牺牲层薄膜,所述溶剂不溶解所述衬底、SrRuO3单晶薄膜、柔性材料,也不与所述衬底、SrRuO3单晶薄膜、柔性材料反应;

所述溶剂为去离子水。

6.根据权利要求1~5任一权利要求所述的制备方法制备得到的在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜。

说明书 :

在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧

化物单晶薄膜及其制备

技术领域

[0001] 本发明涉及柔性薄膜领域,具体涉及一种在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜及其制备方法。

背景技术

[0002] 磁各向异性作为磁性材料的重要参量之一,在宏观上表现为磁化轴的择优取向,在不同方向上有“难”、“易”之分。当易磁化轴与材料的表面相垂直时,材料具有垂直磁各向异性(Perpendicular Magnetic Anisotropy,PMA)。在技术应用领域,PMA有助于制备高存储密度、高稳定性、低功耗的高性能磁存储器和逻辑器件;在基础研究方面,PMA可与诸多物理机制竞争,产生新奇的现象,比如与Dzyaloshinskii‑Moriya相互作用(DMI)之间的协同效应可诱发具有拓扑保护的独特自旋结构等。
[0003] 随着物联网时代的到来,在学术界和产业界兴起了一门新的学科,即柔性电子学,其中的一项重要研究内容是柔性磁电器件。制备和发展具有PMA的柔性磁性材料对于发展柔性存储器件、柔性磁传感器等柔性自旋电子器件有重要意义。
[0004] 钙钛矿氧化物具有丰富的物理性质和稳定的化学性质,是下一代功能材料的重要候选材料之一。晶向,作为晶体薄膜的一项固有属性,对钙钛矿氧化物的物性有着重要意义。在钙钛矿氧化物中存在着很多与晶向相关的性质,例如BiFeO3薄膜中与晶向相关的铁电极化、磁交换偏置效应等。而且通过对薄膜晶向调控,可能对其结构的对称性、极性、氧八面体耦合等产生微小的影响,从而可能导致诸如金属绝缘体相变、二维电子气等性质。因此,可通过对具有PMA的柔性薄膜进行不同晶向的调控,进而调控其其他物性,这不但能够丰富材料的物理性质,还能够有效的扩展并提高柔性钙钛矿薄膜在自旋电子学器件中的应用,为柔性钙钛矿薄膜带来更加广泛的发展前景。

发明内容

[0005] 针对本领域存在的不足之处,本发明提供了一种在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜的制备方法,具有简单易行,衬底可回收利用,对功能层无损害等优点。
[0006] 一种在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜的制备方法,包括:在晶向为[001]、[110]或[111]的衬底上依次制备可溶性牺牲层薄膜、SrRuO3单晶薄膜和柔性材料,然后溶解掉所述可溶性牺牲层薄膜进行柔性转移,得到所述在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜;
[0007] 所述衬底的晶格常数与可溶性牺牲层薄膜晶格常数相匹配。
[0008] 所述衬底的材料不限,可以是SrTiO3(STO)、Nb‑SrTiO3、LaAlO3、SrLaGaO4、SrLaAlO4、DyScO3、GdScO3、BaTiO3、LiNbO3、MgO、PMN‑PT(铌镁钛酸铅)等。
[0009] 作为优选,本发明衬底选择使用具有良好化学稳定性并且能与各种氧化物薄膜材料的晶格常数良好匹配的SrTiO3。
[0010] 作为优选,为了更好地生长高质量外延的钙钛矿氧化物单晶薄膜,衬底需具有平坦的、单一截止原子面,将所述衬底在使用前先进行表面预处理,所述衬底表面预处理的方式不限,包括酸腐蚀(如氢氟酸腐蚀、盐酸腐蚀等)、氩离子轰击、加热退火等中的至少一种。
[0011] 所述可溶性牺牲层薄膜可为钙钛矿氧化物和/或类钙钛矿氧化物,包括但不限于Sr3Al2O6(SAO)、Ca3‑xSrxAl2O6(CSAO)、La1‑ySryMnO3(LSMO)等中的至少一种,0≤x≤3,0≤y≤1;
[0012] 作为优选,本发明为方便制备且能够达到目标而选择的可溶性牺牲层为(Ca0.5Sr0.5)3Al2O6,其可与衬底SrTiO3有较好的晶格匹配。
[0013] 所述的制备方法,制备可溶性牺牲层薄膜、SrRuO3单晶薄膜的方法不限,可包括脉冲激光沉积(Pulsed Laser Deposition,PLD)、磁控溅射(Sputtering)、分子束外延(Molecular Beam Epitaxy,MBE)等中的至少一种。
[0014] 作为优选,本发明选择有沉积速率高,结晶质量高,应用范围广,系统污染少,能够精确控制生长温度、气压、脉冲激光能量的脉冲激光沉积(PLD)方法,制备高质量生长的薄膜。
[0015] 所述柔性材料包括但不限于聚酰亚胺(PI)胶带、布基胶带、聚对苯二甲酸乙二醇酯(PET)胶带、聚二甲基硅氧烷(PDMS)、聚甲基丙烯酸甲酯(PMMA)等中的至少一种。
[0016] 制备柔性材料的方法可以为粘贴或涂覆。
[0017] 作为优选,由于聚二甲基硅氧烷(PDMS)在高温下黏性降低甚至失效(90℃),更加方便制备自支撑薄膜,因此本发明选用聚二甲基硅氧烷(PDMS)作为转移支撑的柔性材料。
[0018] 所述的制备方法,可采用可溶解所述可溶性牺牲层薄膜的溶剂溶解掉所述可溶性牺牲层薄膜,所述溶剂不溶解所述衬底、SrRuO3单晶薄膜、柔性材料,也不与所述衬底、SrRuO3单晶薄膜、柔性材料反应。
[0019] 所述溶剂优选为去离子水。
[0020] 柔性转移获取SrRuO3单晶薄膜的方法不限,包括溶解柔性材料、加热释放等方法的一种或几种。
[0021] 作为优选,根据柔性材料的性质选用加热释放的方法获得自支撑SrRuO3单晶薄膜。
[0022] 本发明还提供了所述的制备方法制备得到的在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜。
[0023] 与现有技术相比,本发明以可溶性类钙钛矿或钙钛矿氧化物薄膜作为牺牲层,直接在牺牲层表面制备具有垂直磁各向异性的钙钛矿氧化物功能层薄膜,然后利用溶剂溶解牺牲层,进而得到柔性自支撑钙钛矿氧化物单晶薄膜,具有如下增益效果:
[0024] 1、该方法在衬底和钙钛矿氧化物单晶薄膜之间引入可溶性类钙钛矿或钙钛矿氧化物薄膜作为牺牲层,能够制备自支撑钙钛矿氧化物单晶薄膜。
[0025] 2、该方法具有简单、快捷、环保,衬底可回收利用对柔性钙钛矿氧化物功能层损伤,适合制备柔性功能性钙钛矿氧化物薄膜。
[0026] 3、该方法可以保证在不损害超薄钙钛矿氧化物单晶薄膜的情况下,将其柔性化,从而可以研究柔性化的钙钛矿氧化物单晶薄膜的磁学性质。
[0027] 4、该方法可以制备具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜,堆垛不同晶向自支撑单晶薄膜,进而制备不同晶向柔性自支撑钙钛矿氧化物异质结构薄膜,对于调控柔性钙钛矿氧化物薄膜的新奇物性具有重要意义,并且提供了一种制备新兴功能器件的可行方案。

附图说明

[0028] 图1为本发明中实施例1中[001]晶向SrRuO3单晶薄膜柔性化前后的表面形貌和反射高能电子衍射图;
[0029] 图2为本发明中实施例1中[001]晶向SrRuO3单晶薄膜柔性化前后的X‑射线衍射图谱;
[0030] 图3为本发明中实施例1中[001]晶向SrRuO3单晶薄膜柔性化前后的磁化强度随温度变化曲线;
[0031] 图4为本发明中实施例2中[110]晶向SrRuO3单晶薄膜柔性化前后的表面形貌和反射高能电子衍射图;
[0032] 图5为本发明中实施例2中[110]晶向SrRuO3单晶薄膜柔性化前后的X‑射线衍射图谱;
[0033] 图6为本发明中实施例2中[110]晶向SrRuO3单晶薄膜柔性化前后的磁化强度随温度变化曲线;
[0034] 图7为本发明中实施例3中[111]晶向SrRuO3单晶薄膜柔性化前后的表面形貌和反射高能电子衍射图;
[0035] 图8为本发明中实施例3中[111]晶向SrRuO3单晶薄膜柔性化前后的X‑射线衍射图谱;
[0036] 图9为本发明中实施例3中[111]晶向SrRuO3单晶薄膜柔性化前后的磁化强度随温度变化曲线。

具体实施方式

[0037] 下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
[0038] 以下各实施例选用(Ca0.5Sr0.5)3Al2O6(CSAO)作为牺牲层,因为它是一种类钙钛矿氧化物,具有立方结构且晶格常数为 约为SrTiO3(STO)晶格常数( 立方结构)的四倍,即一个CSAO单胞晶面匹配4×4个STO单胞,能够很好地外延生长;并且CSAO易溶于水,是作为牺牲层的优选材料。
[0039] 实施例1
[0040] 本实施例中,[001]晶向的柔性自支撑CSAO单晶薄膜制备方法如下:
[0041] (1)选择[001]晶向的STO基片作为衬底,在该衬底上制备可溶性物质薄膜作为牺牲层,具体如下:
[0042] (1‑1)[001]晶向STO衬底的面积为4.4×4.4mm2,厚度为0.5mm;
[0043] (1‑2)利用氢氟酸缓冲液腐蚀[001]晶向STO基片,获得台阶笔直且宽度为200nm左右的表面;
[0044] (1‑3)在[001]晶向STO衬底上制备厚度为10unit cell(u.c.)的CSAO薄膜,每个单胞厚度所需脉冲数为90,利用脉冲激光沉积系统制备CSAO薄膜时的衬底温度为700℃,氧气‑3 2气压为2×10 mbar,脉冲激光能量密度为1.3J/cm,脉冲激光频率为2Hz;
[0045] (2)在以上CSAO薄膜上制备SrRuO3(SRO)单晶薄膜,然后进行柔性转移,具体如下:
[0046] (2‑1)在以上CSAO薄膜上制备厚度为40u.c.的SRO单晶薄膜,每个单胞厚度所需脉‑1冲数为47,沉积SRO薄膜步骤中衬底温度为700℃,氧气气压为1×10 mbar,脉冲激光能量密
2
度为1.3J/cm ,脉冲激光频率为2Hz,薄膜具有良好的表面形貌(图1左图)和结晶质量(图
2)。
[0047] (2‑2)将聚二甲基硅氧烷(PDMS)平整粘贴在干净的单晶硅片上,然后将制备的STO/CSAO/SRO异质结构薄膜表面朝下贴在PDMS表面,最终结构为PDMS/SRO/CSAO/STO。
[0048] (3)将以上得到的异质结构薄膜浸没在去离子水中3小时,水解CSAO牺牲层,然后用镊子取出粘附在PDMS上的柔性SRO单晶薄膜(图1右图)。同时薄膜柔性化后,晶格常数c变小,接近于体相晶格常数,说明来自于衬底和牺牲层的应力被释放(图2)。
[0049] 利用磁学测量系统(MPMS)测试CSAO牺牲层上SRO单晶薄膜(Strained)和剥离后的柔性自支撑SRO单晶薄膜(Freestanding)的磁学性质,从图3中可以看出其性质并没有明显变化。
[0050] 实施例2
[0051] 本实施例中,[110]晶向的柔性自支撑SRO单晶薄膜制备方法中,选择[110]晶向的STO基片作为衬底,其他方法步骤与实施案例1相同。
[0052] 实施例3
[0053] 本实施例中,[111]晶向的柔性自支撑SRO单晶薄膜制备方法中,选择[111]晶向的STO基片作为衬底,其他方法步骤与实施案例1相同。
[0054] 此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。