具有AIE特性的芴类衍生物、制备方法及应用转让专利

申请号 : CN202110381081.4

文献号 : CN113336622B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 闫杰黄欣桐韩莹莹田昕王嘉琪

申请人 : 辽宁师范大学

摘要 :

本发明公开了一种具有AIE特性的芴类衍生物,结构式如下:所述R=‑CHO、‑COOH、‑Br、‑I、‑NO2、‑NH2、‑OCH3、‑CH3、‑CN、‑NHCOCH3、‑CF3或‑CCl3,可作为荧光探针应用于识别生物小分子,不仅对色氨酸有高效专一性识别(检测限为1.15μM),而且还可以用于检测炸药、阴离子、金属阳离子(包括稀土金属)等小分子物质。

权利要求 :

1.一种具有AIE特性的芴类衍生物,其特征在于结构式如下:

所述R= ‑CHO。

2.一种如权利要求1所述的具有AIE特性的芴类衍生物的制备方法,其特征在于依次按照如下步骤进行:步骤1:先将芴与氯仿加入到瓶中,然后向瓶中加入无水三氯化铁,冰水浴搅拌冷却至0℃后再向瓶中滴加液溴,移去冰水浴继续搅拌2.5 3.5小时,再向反应体系滴加饱和的硫代~硫酸钠溶液至红色完全消失,之后将整体分液,用二氯甲烷萃取有机相,无水MgSO4干燥,减压旋蒸之后重结晶,得到2‑溴芴;

步骤2:将2‑溴芴与二甲基亚砜和氢氧化钾粉末放入瓶中,加热并搅拌至全部溶解,再用恒压滴液漏斗缓慢滴加碘甲烷与二甲基亚砜,反应24小时,待温度降温到室温后倒入水中,析出固体、过滤烘干后加入无水乙醇中回流,冷却之后得到9,9‑二甲基‑2‑溴芴;

步骤3:将9,9‑二甲基‑2‑溴芴、联硼酸频哪醇酯、二氯化钯及醋酸钾混合加入到瓶中,再向其中加入DMF,用氮气反复脱气后在氮气保护下100℃反应24小时,冷却至室温,用二氯甲烷萃取有机相,用无水硫酸钠干燥,最后用石油醚/二氯甲烷混合溶剂进行柱层析分离,得到9,9‑二甲基芴‑2‑硼酸频哪醇酯;

步骤4:将二氧六环与碳酸钾溶液混合后进行反复脱气并用氮气净化,再依次加入3,5‑二溴代芳烃衍生物、9,9‑二甲基芴‑2‑硼酸频哪醇酯、四三苯基膦钯,在80 100℃并在氮气~保护下回流16小时,用二氯甲烷萃取有机相,再用水和饱和食盐水清洗,用无水硫酸镁干燥,减压旋蒸后用石油醚与乙酸乙酯混合溶剂进行柱层析分离,得到化合物,所述3,5‑二溴代芳烃衍生物的结构式为 ,所述R= ‑CHO。

3.一种如权利要求1所述的具有AIE特性的芴类衍生物作为识别小分子物质荧光探针的应用,其特征在于:作为识别色氨酸荧光探针的应用。

说明书 :

具有AIE特性的芴类衍生物、制备方法及应用

技术领域

[0001] 本发明涉及一种聚集诱导发光(AIE)材料,尤其涉及一种具有AIE特性的芴类衍生物、制备方法及应用。

背景技术

[0002] 聚集诱导发光(AIE)材料在溶解时表现出微弱的发射甚至非发射,但在聚集或固体状态下表现出强烈的发射。传统的AIE分子大多数以六苯基噻咯(HPS)、四苯乙烯(TPE)或二苯乙烯基蒽(DSA)为母体,但是HPS及其衍生物的合成工艺繁琐,TPE、DSA及其衍生物具有潜在的光漂白和光氧化作用等。荧光探针能够与目标分子或者离子发生特异性结合,促使
反应体系的荧光信号在作用后发生改变。目前,已有以聚集诱导发光(AIE)材料为荧光探针的相关报道,但常应用于核酸(DNA或RNA)、蛋白质或其他大分子结构的检测。
[0003] 氨基酸是蛋白质的组成成分,与生物体的活动息息相关,不同种类的氨基酸在生命体中有着不同的作用。色氨酸(Trp)又称β‑吲哚基丙氨酸,是人体的必需氨基酸之一和重要的神经递质‑5羟色胺的前体,缺乏色氨酸会使人精神情绪产生不良反应,容易抑郁、激动、失眠以及从梦中惊醒等症状。目前已有多种测定色氨酸的方法,如电化学技术、高效液相色谱(HPLC)、气相色谱(GC)、发光光谱及毛细管电泳(CE)等等。然而,现有方法通常需要专门而昂贵的实验室设备且测量时间长。尽管荧光探针检测具有相对简单、成本低、响应时间短、灵敏度高及专一性强等优势,但是,由于色氨酸为生物小分子,迄今未见使用AIE型荧光探针对其检测的相关报道。

发明内容

[0004] 本发明是为了解决现有技术所存在的上述技术问题,提供一种具有AIE特性的芴类衍生物、制备方法及应用。
[0005] 本发明的技术解决方案是:一种具有AIE特性的芴类衍生物,结构式如下:
[0006]
[0007] 所述R= ‑CHO、‑COOH、‑Br、‑I、‑NO2、‑NH2、‑OCH3、‑CH3、‑CN、‑NHCOCH3、‑CF3或‑CCl3。
[0008] 一种上述具有AIE特性的芴类衍生物的制备方法,合成路线如下:
[0009]
[0010]
[0011] 依次按照如下步骤进行:
[0012] 步骤1:先将芴与氯仿加入到瓶中,然后向瓶中加入无水三氯化铁,冰水浴搅拌冷却至0℃后再向瓶中滴加液溴,移去冰水浴继续搅拌2.5 3.5小时,再向反应体系滴加饱和
~
的硫代硫酸钠溶液至红色完全消失,之后将整体分液,用二氯甲烷萃取有机相,无水MgSO4干燥,减压旋蒸之后重结晶得到2‑溴芴;
[0013] 步骤2:将2‑溴芴与二甲基亚砜和氢氧化钾粉末放入瓶中,加热并搅拌至全部溶解,再用恒压滴液漏斗缓慢滴加碘甲烷与二甲基亚砜,反应24小时,待温度降温到室温后倒入水中,析出固体、过滤烘干后加入无水乙醇中回流,冷却之后得到9,9‑二甲基‑2‑溴芴;
[0014] 步骤3:将9,9‑二甲基‑2‑溴芴、联硼酸频哪醇酯、二氯化钯及醋酸钾混合加入到瓶中,再向其中加入DMF,用氮气反复脱气后在氮气保护下100℃反应24小时,冷却至室温,用二氯甲烷萃取有机相,用无水硫酸钠干燥,最后用石油醚/二氯甲烷混合溶剂进行柱层析分离,得到9,9‑二甲基芴‑2‑硼酸频哪醇酯;
[0015] 步骤4:将二氧六环与碳酸钾溶液混合后进行反复脱气并用氮气净化,再依次加入3,5‑二溴代芳烃衍生物、9,9‑二甲基芴‑2‑硼酸频哪醇酯、四三苯基膦钯,在80 100℃并在~
氮气保护下回流16小时,用二氯甲烷萃取有机相,再用水和饱和食盐水清洗,用无水硫酸镁干燥,减压旋蒸后用石油醚与乙酸乙酯混合溶剂进行柱层析分离,得到化合物,所述3,5‑二溴代芳烃衍生物的结构式为 ,所述R= ‑CHO、‑COOH、‑Br、‑I、‑NO2、‑NH2、‑
OCH3、‑CH3、‑CN、‑NHCOCH3、‑CF3或‑CCl3。
[0016] 上述的具有AIE特性的芴类衍生物作为识别小分子物质荧光探针的应用,尤其是作为识别色氨酸荧光探针的应用。
[0017] 本发明所制备的芴类衍生物具有聚集诱导发光(AIE)特性,可作为荧光探针应用于识别生物小分子,不仅对色氨酸有高效专一性识别(检测限为1.15μM),而且还可以用于检测炸药、阴离子、金属阳离子(包括稀土金属)等小分子物质。

附图说明

[0018] 图1是本发明实施例所制备的化合物的1H NMR谱图。
[0019] 图2是本发明实施例所制备的化合物在THF/H2O混合物中的荧光光谱和荧光变化趋势图。
[0020] 图3是本发明实施例所制备的化合物在THF/无水乙醇混合物中的荧光光谱和荧光变化趋势图。
[0021] 图4是本发明实施例所制备的化合物作为荧光探针与不同氨基酸相互作用的荧光光谱图。
[0022] 图5为本发明实施例所制备的化合物作为荧光探针与不同浓度梯度的色氨酸相互作用的UV图。
[0023] 图6为本发明实施例所制备的化合物作为荧光探针对氨基酸的竞争性实验荧光光谱图。

具体实施方式

[0024] 实施例:
[0025] 本发明的具有AIE特性的芴类衍生物,制备方法依次按照如下步骤进行:
[0026] 步骤1:先将5.0g芴与150 mL氯仿加入到瓶中,然后向瓶中加入75mg无水三氯化铁,冰水浴搅拌冷却至0℃后再向瓶中滴加1.6 mL液溴,移去冰水浴继续搅拌3小时,再向反应体系滴加100 mL饱和的硫代硫酸钠溶液至红色完全消失,之后将整体分液,用二氯甲烷
萃取有机相3‑4次,无水MgSO4干燥,在减压旋蒸之后,得到黄色固体,将固体溶解于80 mL无水乙醇中,冷却析出晶体,即得到2‑溴芴;
[0027] 步骤2:将7.5 g 2‑溴芴与30 mL二甲基亚砜和5.0 g氢氧化钾粉末放入瓶中,加热并搅拌至全部溶解,再将6.3 g碘甲烷与30 mL二甲基亚砜加入到恒压滴液漏斗中,用恒压滴液漏斗缓慢滴加碘甲烷与二甲基亚砜,反应24小时停止反应,待温度降温到室温后倒入
150 mL水中,析出固体、过滤烘干后加入80 mL无水乙醇中回流,冷却之后得到9,9‑二甲基‑
2‑溴芴;
[0028] 步骤3:将5.0 g 9,9‑二甲基‑2‑溴芴、4.8 g联硼酸频哪醇酯、0.2 g二氯化钯(dppf)及4.0 g醋酸钾混合加入到瓶中,再向其中加入80 mL DMF,用氮气反复脱气后在氮气保护下100℃反应24小时,冷却至室温,用二氯甲烷萃取有机相3‑4次,用无水硫酸钠干燥,最后用石油醚/二氯甲烷(5/1,v/ v)混合溶剂进行柱层析分离,得到9,9‑二甲基芴‑2‑硼酸频哪醇酯;
[0029] 步骤4:将60 mL二氧六环与20 ml碳酸钾(2 mol/L)溶液混合后进行反复脱气并用氮气净化,再依次加入1.5 g 3,5‑二溴苯甲醛、3.64 g 9,9‑二甲基芴‑2‑硼酸频哪醇酯、0.2 g四三苯基膦钯,在85℃并在氮气保护下回流16小时,用二氯甲烷萃取有机相3‑4次,再用水和饱和食盐水清洗3‑4次后,用无水硫酸镁干燥,减压旋蒸之后,用石油醚与乙酸乙酯(20/1,v/v)混合溶剂进行柱层析分离,得到化合物。
[0030] 所制备化合物的1H NMR谱图如图1所示,结构式如下:
[0031] 。
[0032] 实验:
[0033] 实验1:实施例所制备的化合物(以下简称化合物)的AIE性能实验
[0034] 将化合物溶解于THF溶液中,按照H2O体积分数从0%‑90%配制成不同浓度的THF‑H2O溶液,收集它们的发射光谱,其荧光光谱(A)和荧光变化趋势图(B)如图2所示。从图2可以看出,化合物在稀溶液中几乎不发光,当加入水时荧光强度明显增强,当含水量达到70%时,不溶性颗粒被分离出来,荧光强度达到最大值,比原始值高8.14倍。将化合物溶解于THF溶液中,按照乙醇体积分数从0%‑90%配制了不同浓度的THF‑无水乙醇溶液,收集它们的发射光谱,其荧光光谱(A)和荧光变化趋势图(B)如图3所示。从图3可以看出,化合物在无水乙醇中也不溶解,随着无水乙醇的增多,溶液从无荧光变成了浅绿色的荧光,当无水乙醇达到90%时,荧光强度比原始值高679.9倍。图3中有两段发射波长,第一段发射波长由375.2nm蓝移到352.2nm,第二段波长由449.8nm红移到467.4nm。
[0035] 实验2:化合物作为荧光探针与不同氨基酸相互作用实验
[0036] 通过紫外光谱测试结果将化合物的最大吸收波长(λmax=300nm)作为荧光光谱测试的激发波长,使用DMF作为配置化合物的荧光分析溶液,分别在其中加入色氨酸(Trp)、白氨酸(Leu),丝氨酸(Ser)、甲硫氨基酸(Met),丙氨酸(Ala),异亮氨酸(Ile)、苏氨酸(Thr)、脯氨酸(Pro)、精氨酸(Arg)、赖氨酸(Lys)、天冬氨酸(Asp)、谷氨酸(Glu)、酪氨酸(Tyr)、苯丙氨酸(Phe)、缬氨酸(Val)、半胱氨酸(Cys),组氨酸(His)、甘氨酸(Gly),进行荧光发射光谱测定,荧光光谱图如图4所示。结果表明:只有在加入了色氨酸时,荧光强度才显著增强,而相同条件下加入其它氨基酸时,没有观察到显著的荧光响应。
[0037] 实验3:化合物作为荧光探针与不同浓度梯度的色氨酸相互作用实验
[0038] 在化合物中加入不同浓度(0,10,20,……100μM)色氨酸(Trp)进行了吸收滴定实验,其UV图如图5所示。
[0039] 结果表明随着Trp的逐渐加入,294nm处吸收强度增强,同时裂分成了两个峰,说明化合物对Trp具有选择性,检测限为1.15μM。
[0040] 实施例4:化合物作为荧光探针对氨基酸的竞争性实验
[0041] 为了确定化合物是否对色氨酸进行特异选择性识别,分别研究了白氨酸(Leu),丝氨酸(Ser)、甲硫氨基酸(Met),丙氨酸(Ala),异亮氨酸(Ile)、苏氨酸(Thr)、脯氨酸(Pro)、精氨酸(Arg)、赖氨酸(Lys)、天冬氨酸(Asp)、谷氨酸(Glu)、酪氨酸(Tyr)、苯丙氨酸(Phe)、缬氨酸(Val)、半胱氨酸(Cys),组氨酸(His)、甘氨酸(Gly)以及色氨酸(Trp)与上述氨基酸共同存在下的荧光光谱,如图6所示。
[0042] 结果表明:在Trp的存在下,混合物的发射强度增强,而在没有Trp、只有其它氨基酸的情况下发射峰强度几乎没有改变。说明即使在其他氨基酸的存在下,化合物的荧光强度也在Trp的加入下显著提高,说明对Trp有很高的选择性,可以高效、专一的检测色氨酸。
其原理是当荧光探针中加入Trp后,具有电子给予能力的Trp与荧光探针结合后,降低了Trp的给电子能力,抑制了PET过程,荧光基团中被光激发的电子可以直接跃迁回到原基态轨
道,从而增强了荧光基团的荧光发射。