一种酪氨酸酶突变体及其应用转让专利

申请号 : CN202110868261.5

文献号 : CN113373123B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 周晶辉刘仲华张盛刘昌伟赵士敏刘亚赵强许岗

申请人 : 湖南福来格生物技术有限公司湖南农业大学

摘要 :

本发明属于酶工程技术领域,涉及一种酪氨酸酶突变体及应用。所述的酪氨酸酶突变体在SEQ ID NO.1所示氨基酸序列的野生型酪氨酸酶中突变多个氨基酸位点。利用本发明的酪氨酸酶突变体及其制备茶黄素的方法,能够使得突变体较野生型酪氨酸酶具有更高的比活力,并在催化制备茶黄素时具有更高的产率。

权利要求 :

1.一种酪氨酸酶突变体,其特征在于:是对SEQ ID NO.1所示的氨基酸序列进行突变,突变方式包括以下5种中任一种:D166E; N205D和D166E; N205D和D166E和D167G;N205D和D166E和V285I;N205D和 D166E和D167G和V285I。

2.一种编码权利要求1所述的酪氨酸酶突变体的核苷酸。

3.权利要求1所述的酪氨酸酶突变体的应用,其特征在于,以儿茶素类为底物,在有氧的条件下,催化合成茶黄素类产物;

具体是表儿茶素没食子酸酯+表没食子儿茶素没食子酸酯生成茶黄素双没食子酸酯TF3。

4.根据权利要求3所述的应用,其特征在于:所述的反应体系中,所述的酪氨酸酶突变体活力为200‑500U/L, EGCG 均为10‑100mM, ECG为2‑10mM。

5.根据权利要求3所述的应用,其特征在于:反应温度为25‑35℃,反应pH为4.0‑6.0,反应搅拌转速为150‑200r/min,反应时间为10‑60min。

6.根据权利要求3所述的应用,其特征在于:所述的酪氨酸酶突变体是固定化的酪氨酸酶突变体。

说明书 :

一种酪氨酸酶突变体及其应用

技术领域

[0001] 本发明属于酶工程领域,涉及一种酪氨酸酶突变体及利用其合成茶黄素的应用。

背景技术

[0002] 在中国,茶作为国饮,有着悠久的文化历史渊源。根据茶的制作和性质不同可分为红茶、绿茶、青茶、黄茶、黑茶、白茶六大茶类,而红茶作为我国的第二大茶类,生产地域较广泛,包括福建、广东、云南、台湾等十多个省份,云南和福建为其主要的种植区域。红茶区别于其它茶类最明显的特征是具有红茶、红汤、红叶、香甜味醇等特点,深受广大消费者喜爱。近年来研究表明,红茶具有许多有利健康的生理功能,如具有抑制肥胖、调血脂降血压、降血糖、抗菌抗病毒、抗癌症等功效,而这其中红茶起关键作用的是红茶中的有效功能成分——茶黄素。茶黄素最早于1957年被Roberts从红茶中提取得到,是红茶在发酵过程中形成的一类易溶于乙酸乙酯,颜色呈现橙黄色,含有苯骈卓酚酮结构的化合物(图1),其形成机理是在红茶制备过程中,细胞内的茶多酚类物质在多酚氧化酶和过氧化物酶作用下,发生氧化反应后,自聚合形成。目前,已经发现并被分析和鉴定的茶黄素种类共有二十余种,其中最为主要的为四种(图1),分别为:茶黄素(Theaflavin,TF1),茶黄素‑3‑没食子酸酯(Theaflavin 3‑O‑gallate,TF2a),茶黄素‑3’‑没食子酸酯(Theaflavin 3’‑O‑gallate,TF2b)和茶黄素双没食子酸酯(Theaflavin 3’3‑di‑O‑gallate,TF3)。不同种类的茶黄素是由于不同的底物儿茶酚在氧化酶的作用下,通过氧化自聚合形成。随着不同种类茶黄素结构阐明,其功能研究也日益深入,尤其是在保健和药理功能方面,研究表明茶黄素具有降血脂、抵抗衰老、抗氧化、抗癌症、预防心脑血管疾病等功能。基于此,许多茶黄素类保健品也已上市,如美国life extension公司开发了茶黄素提取物系列产品,应用于保健品等领域,随着市场不断拓展和人们对健康日益重视,茶黄素相关产品的开发在未来将具有极大的市场前景。
[0003] 目前工业化生产制备茶黄素的方法主要是植物提取法和酶促氧化。采用从植物中进行分离提取方法制备茶黄素,由于茶黄素在茶叶中含量低(0.2%‑2%),同时该方法存在成本高、提纯工艺较复杂、产品纯度低、收率不高等缺陷,显然不够经济,产品成本和质量也难以达到人们预期水平因此无法满足大规模工业化生产需求。
[0004] 采用多酚氧化酶促氧化的方法,将植物来源(茶叶、梨等)的叶片或者其它组织细胞破碎后投入含有茶多酚的反应釜中,设置反应参数并通入氧气进行反应,利用植物中本身存在的多酚氧化酶催化茶多酚合成茶黄素,但是植物来源的茶多酚氧化酶的含量毕竟有限,同时植物组织中存在的其它成分会干扰催化反应导致后续分离纯化难度大、成本高、因此也会对茶黄素产品的质量和纯度造成影响。
[0005] 目前普遍认为的涉及到茶黄素酶促合成途径中的酶为多酚氧化酶类(EC 1.10.3.1,polyphenol oxidase,PPO,)。多酚氧化酶又称为儿茶酚氧化酶,按照其底物的偏好性不同可以分为三大类,分别为儿茶酚酶(EC1.10.3.1,Catechol Oxidase),漆酶(EC 
1.10.3.2,Laccase),酪氨酸酶(EC 1.14.18.1,Tyrosinase)。在前期的工作中,对酪氨酸酶的研究主要集中在抗氧化以及抑制黑色素形成等医药保健和精细化工领域:如研究茶中有效成分对酪氨酸酶的抑制作用,开发美白护肤产品等。目前已商业化的酪氨酸酶,其酶源来自蘑菇等真菌微生物,对于应用酪氨酸酶氧化制备茶黄素相关研究也有报道。本发明首次选择巨大芽孢杆菌(Bacillus megaterium)来源的酪氨酸酶基因,利用基因工程技术手段通过定向进化高通量筛选获得催化活力高、底物耐受好的突变体酶,应用于高效定向合成茶黄素或其单体具有非常重要的产业化价值和意义。

发明内容

[0006] 本发明的首要目的是提供一种可高效合成茶黄素和其单体的酪氨酸酶突变体,该突变体较野生型的酪氨酸酶具有更高的比活力,更高的产物转化率。
[0007] 为实现此目的,在基础的实施方案中,本发明提供一种酪氨酸酶突变体,所述的突变体在SEQ ID NO.1所示氨基酸序列的野生型酪氨酸酶中突变多个氨基酸位点,突变的多个氨基酸位点包括N205D,D166E,D167G,V285I中的一个或多个。
[0008] 在一种优选的实施方案中,本发明突变体的突变方式包括以下10种中任一种:
[0009] N205D;D166E;D167G;V285I;N205D和D166E;N205D和D167G;N205D和V285I;N205D和D166E和D167G;N205D和D166E和V285I;N205D和D166E和D167G和V285I。
[0010] 进一步地:突变方式包括以下7种中任一种:
[0011] N205D;N205D和D166E;N205D和D167G;N205D和V285I;N205D和D166E和D167G;N205D和D166E和V285I;N205D和D166E和D167G和V285I。
[0012] 更进一步地,其中所述的突变体的氨基酸序列N205D;D166E;D167G;V285I;N205D和D166E;N205D和D167G;N205D和V285I;N205D和D166E和D167G;N205D和D166E和V285I;N205D和D166E和D167G和V285I;依次如SEQ ID NO.2‑11所示。
[0013] 本发明的第二个目的是提供编码前述酪氨酸酶突变体的多核苷酸,以能够使编码的酪氨酸酶突变体较野生型酪氨酸酶具有更高的比活力,并能在催化制备茶黄素时具有更高的产物收率和更高的底物浓度耐受性。
[0014] 为实现此目的,在基础的实施方案中,本发明提供编码前述酪氨酸酶突变体的多核苷酸。
[0015] 本发明的第三个目的是提供所述的酪氨酸酶突变体的应用,以能够更好的制备茶黄素。
[0016] 为实现此目的,在基础的实施方案中,本发明所述的酪氨酸酶突变体的应用是在反应体系中,用前述酪氨酸酶突变体催化儿茶素反应,制备茶黄素。
[0017] 在一种优选的实施方案中,本发明提供所述的酪氨酸酶突变体的应用,以儿茶素类为底物,在有氧的条件下,催化合成茶黄素类产物。
[0018] 儿茶素类主要底物包括:表儿茶素(epicatechin,EC)、表没食子儿茶素(epigallocatechin,EGC)、表儿茶素没食子酸酯(epicatechin gallate,ECG)、表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG),反应底物与合成产物如下任一种:
[0019] 表儿茶素+表没食子儿茶素生成茶黄素(Theaflavin,TF1);
[0020] 表儿茶素+表没食子儿茶素没食子酸酯生成茶黄素‑3‑没食子酸酯(Theaflavin 3‑O‑gallate,TF2a);
[0021] 表儿茶素没食子酸酯+表没食子儿茶素生成茶黄素‑3’‑没食子酸酯(Theaflavin 3’‑O‑gallate,TF2b);
[0022] 表儿茶素没食子酸酯+表没食子儿茶素没食子酸酯生成茶黄素双没食子酸酯(Theaflavin 3’3‑di‑O‑gallate,TF3)。
[0023] 在一种优选的实施方案中,本发明所述的反应体系中,所述的酪氨酸酶突变体活力为200‑500U/L,EC、EGC、EGCG均为10‑100mM,ECG为2‑10mM。
[0024] 在一种优选的实施方案中,本发明的反应温度为25‑30℃,反应pH为4.0‑6.0,反应搅拌转速为150‑200r/min,反应时间为10‑60min。
[0025] 在一种优选的实施方案中,本发明所述的酪氨酸酶突变体是固定化的酪氨酸酶突变体。
[0026] 本发明的有益效果在于,利用本发明的酪氨酸酶突变体,较野生型酪氨酸酶具有更高的比活力,并能在催化制备茶黄素时具有更高的产物收率。
[0027] 本发明选择Bacillus megaterium来源的酪氨酸酶Bmtyrc作为出发点,其相比其它来源的多酚氧化酶有以下优势:异源表达效率高、稳定性好、对儿茶素为底物催化效率高。在此基础上,本发明通过基因工程及酶工程技术手段,对Bmtyrc进行突变,所获得的酪氨酸酶突变体较Bmtyrc具有酶比活力、催化效率和转化收率更高,底物耐受性更高等优点,因此更适用于茶黄素的合成。

附图说明

[0028] 图1为不同底物儿茶素催化的合成茶黄素原理图。

具体实施方式

[0029] 以下结合实施例和附图对本发明的具体实施方式作出进一步的说明。
[0030] 酪氨酸酶及其突变体酶活力测定方法如下:
[0031] 配制10mM的底物多酚溶液(EC、EGC、ECG或EGCG):精确称取相应重量的茶多酚,加0.1mol/L pH 5.0柠檬酸‑磷酸缓冲液90mL溶解,预热至30℃后加缓冲液定容至100mL;
[0032] 0.01mol/L硫酸铜溶液:精确称取0.249g CuSO4·5H2O,加100mL水溶解。
[0033] 在1cm规格的石英比色皿中,依次加入已预热至30℃的0.01mol/L的多酚溶液4mL、0.01mol/L硫酸铜溶液0.1mL、混合均匀后,于波长420nm处校零,再加入酶液100μL(或者直接加入固定化酶0.1g),快速混合一下开始测定,每隔10秒记录吸光度A420。
[0034] 酶活力单位:在30℃,pH5.0的条件下,在每分钟使得OD420nm变化数值为0.001时所需酶量定义为一个单位(1U)。
[0035] HPLC分析采用Agilent液相色谱仪,色谱柱:5C18‑AR‑II(250mm×4.6mm,5μm);柱温:40℃;进样量:20μL;检测波长:280nm;流动相:A:50mmol/L磷酸;B:乙腈‑乙酸乙酯(7∶1,V/V);流速:1.0mL/min;洗脱程序:0‑25min,82%‑68%A相。
[0036] 实施例1:Bacillus megaterium来源的酪氨酸酶Bmtyrc原核表达菌株的构建[0037] 下载GenBank中Bacillus megaterium来源的酪氨酸酶的氨基酸序列(本文SEQ ID NO.1,对应GenBank登陆号:ACC86108.1),氨基酸序列提交至北京擎科生物技术有限公司进行全基因序列合成(采用大肠杆菌优选密码子)。合成基因C‑端带有His标签,构建至原核表达载体pET30a(+)中,原核表达载体酶切位点:5’端Nde I,3’端Xho I。将构建好的质粒pET30a(+)‑Bmtyrc通过CaCl2热激转化法转化至大肠杆菌表达菌株BL21(DE3)中,涂布于含有50μg/ml Kanamycin的LB固体培养基平板,37℃过夜培养,平板上生长出的菌落即为酪氨酸酶原核表达重组菌株E.coli BL21(DE3)/pET30a(+)‑Bmtyrc。
[0038] 用灭菌枪头在上述LB固体培养基平板中小心挑取酪氨酸酶原核表达重组菌株单菌落,接种至含有20mL的LB液体培养基的三角瓶中,37℃,200r/min,振荡过夜培养。次日按照1%的接种量将摇瓶菌液接种至含有100mLTB液体培养基的三角瓶中,37℃,220r/min,振荡培养,并每隔1h测定培养液的OD值,待培养液OD值=1.5时,补加终浓度为1%(m/v)的乳糖,25℃,220rpm继续培养4h‑6h,停止培养。
[0039] 实施例2:酪氨酸酶(Bmtyrc)的纯化与固定化
[0040] 利用Bmtyrc重组蛋白中所携带His标签,采用已活化的IDA树脂(购买于安诺伦(北京)生物科技有限公司,具体型号:His.Bind Resin,Ni‑charged),所采用的具体方法和步骤如下:4℃,10000r/min,离心发酵液10min,弃上清,收集菌体,菌体用磷酸盐缓冲液(pH 8.0、0.1mol/L)反复洗涤两次,离心后将菌体浓缩5倍重悬于20mL磷酸盐缓冲液(pH 8.0、
0.1mol/L)中。将上述处理后的菌液置于冰水中进行超声破碎直至澄清,超声破碎条件为:
工作2s,间隔5s,超声功率500W。将上述破碎后的裂解液置于低温高速离心机中离心(12000rpm、4℃、20min),收集上清,得到粗蛋白。将粗蛋白上样到已活化的树脂上,用咪唑溶液(200mM‑500mM)进行梯度洗脱,利用蛋白层析系统(Bio‑Rad)进行实时监控,收集出现的稳定的蛋白峰,即为Bmtyrc重组蛋白纯化蛋白,用于固定化酶制备。
[0041] 将纯化的Bmtyrc重组蛋白用于固定化酶的制备,具体方法为:
[0042] (1)固定化载体活化:准确量取60%(m/v)的戊二醛30mL,同磷酸氢二钾(K2HPO4·3H2O)4.76g加入600mL去离子水中,溶解后用去离子水定容至1000mL,并用磷酸溶液调节其pH为8.0。将环氧基载体ECEP(意大利ResindionS.r.l公司)250g投入到上述溶液中,并于25℃低速搅拌活化2h,过滤收集载体,并用无菌去离子水冲洗2‑3次后真空滤干备用。
[0043] (2)Bmtyrc重组蛋白的固定化:取一定量上述纯化后的Bmtyrc重组蛋白,用磷酸盐缓冲液(pH 8.0、0.1mol/L)稀释,然后加入50g经活化处理后的载体,于25℃、120rpm条件下固定化48h,所得固定化酶用去离子水清洗3‑5次,真空滤干后即得固定化酶终品。
[0044] 实施例3:Bmtyrc原核表达菌株E.coli BL21(DE3)/pET30a(+)‑Bmtyrc易错突变文库的构建
[0045] 以pET30a(+)‑Bmtyrc重组质粒作为PCR模板,常规的T7F/R作为通用引物(引物序列:T7F:5’‑TAATACGACTCACTATAGGG‑3’,T7R:GCTAGTTATTGCTCAGCGG见SEQ ID NO.12和13)2+ 2+
对Bmtyrc基因进行易错PCR扩增,调整PCR扩增反应体系中Mg 、Mn 、dCTP和dTTP寡核苷酸浓度,使该突变体文库的碱基错配率仅为千分之二,即保证一个突变体仅有1到2个氨基酸发生突变。
[0046] 易错PCR反应体系:
[0047]
[0048] 易错PCR反应条件:先95℃预变性5min;然后94℃变性30s,56℃退火1min,72℃延伸1.5min,共25个循环;最后72℃延伸10min。
[0049] 将上述易错PCR产物取样2μL进行琼脂糖凝胶电泳检测,检测无误后用PCR产物纯化试剂盒进行纯化处理。在37℃条件下,用Nde I和Xho I限制性内切酶分别对PCR纯化产物和原核表达载体pET30a(+)进行双酶切,酶切产物切胶回收(其中回收PCR纯化产物片段大小约为1200bp,回收载体pET30a(+)片段大小约为5400bp)后按照易错PCR产物:原核表达载体pET30a(+)为3:1的摩尔比进行混合,加入T4 DNA ligase于16℃过夜连接。第二天,通过电击转化的方法将连接产物转入大肠杆菌BL21(DE3)中构建工程菌,即可得到一个库容量大的随机突变体文库。
[0050] 实施例4:Bmtyrc原核表达菌株E.coli BL21(DE3)/pET30a(+)‑Bmtyrc易错突变文库的筛选
[0051] 由于多酚类底物,在氧气的参与下,会被酪氨酸酶氧化后会形成醌类物质,一方面醌类物质会有明显的颜色变化,另一方面醌类物质氧化自聚合后形成的茶黄素类物质会在400‑500nm处有特异性吸收峰(本实验采用420nm检测),基于此,可以建立相应的高通量筛选方法,反应体系中酶的性质越好,催化效率越高,所生成的氧化产物就会越多,颜色也就会越深,通过肉眼判断结合酶标仪测量即可筛选获得阳性目的克隆。高通量筛选所采用的具体方法如下:
[0052] 用高温灭菌后的牙签,小心挑取突变体文库的单菌落(每根牙签挑取1个单菌落),分别接种于96孔细胞培养板的不同孔中(每孔中已加入含50μg/ml卡那霉素的LB液体培养基)。将96孔细胞培养板置于恒温摇床中37℃,700rpm培养6小时,然后用8通道移液器取50μL于新的96孔板中作为种子液保存,然后在每孔加入终浓度为1%(m/v)的乳糖,25℃,250rpm诱导培养8小时。诱导培养完毕后,将96孔细胞培养板放入‑86℃的超低温冰箱中冷冻2小时,取出放置于室温半小时,后4000r/min,4℃离心20分钟并每孔取上清50μL。在每孔上清50μL中,分别加入100μL反应液(底物茶多酚浓度:3‑5mg/mL,pH 5.0的柠檬酸‑磷酸盐缓冲液),于30℃温育20‑60min。观察颜色变化,并用酶标仪(检测波长420nm)进行检测分析,选择吸光值高的孔用于进一步分析验证。
[0053] 通过反复大量筛选验证(约200000个克隆子)、测序分析及酶活力测定,获得了3个对底物EGCG和ECG活力明显要高于野生型Bmtyrc的突变体的表达菌株,即Bmtyrc‑1、Bmtyrc‑2、Bmtyrc‑3的表达菌株,总结如下表1。
[0054] 表1:易错突变文库筛选获得的Bmtyrc突变体的表达菌株
[0055]
[0056] 从表1可以明显看出,在筛选获得的阳性突变体酶中,Bmtyrc‑1突变体相比野生型酶,其对四种多酚类底物EC、EGC、ECGC和ECG底物的催化活力提升明显,其中对多酚底物EC的活力提高2.16倍,对EGC的活力提高1.31倍,对EGCG的活力提高1.59倍,对ECG的活力提高3.05倍.由此说明氨基酸第N205位点起着关键作用。此外突变体Bmtyrc‑2和Bmtyrc‑3相比野生型酶,其对底物的活力也有提升,突变体Bmtyrc‑4则对活力的提升不如Bmtyrc‑1、‑2、‑
3明显。因此,可以考虑以Bmtyrc‑1突变体基因为出发点,在此基础上进行其它有利氨基酸的的叠加突变,进一步提升对底物的催化活性。
[0057] 实施例5:不同叠加突变体菌株的构建与筛选
[0058] 将表1中Bmtyrc‑1表达菌株进行扩大培养,用质粒试剂盒(OMEGA)提取质粒,以质粒pET30a(+)‑Bmtyrc‑1为模板,将所获得的突变位点进行叠加突变,选择Bmtyrc氨基酸序列第166位、167位、285位,分别设计定点突变引物,进行全质粒PCR反应,全质粒PCR产物经DpnI消化后转化至表达菌株BL21(DE3)中,经测序验证无误,即获得在Bmtyrc‑1突变体基础上的各叠加突变体的表达菌株,所表达与筛选的Bmtyrc突变体的具体情况见表2。
[0059] 表2 Bmtyrc及其突变体的突变位点和活力
[0060]
[0061]
[0062] 从表2可以看出,各叠加突变体较Bmtyrc‑1活力有明显提高。其中Bmtyrc‑3A突变体相比其它叠加突变体,表现出对四种儿茶酚底物最高的活力,Bmtyrc‑4A突变体在Bmtyrc‑3A基础上叠加V285I后活力不如Bmtyrc‑3A。为了进一步验证各酶的催化性能及合成茶黄素的能力,选择将Bmtyrc(SEQ ID NO.1)、Bmtyrc‑1(SEQ ID NO.2)、Bmtyrc‑2A(SEQ ID NO.6)、Bmtytc‑2B(SEQ ID NO.7)、Bmtyrc‑2C(SEQ ID NO.8)、Bmtyrc‑3A(SEQ ID NO.9)、Bmtyrc‑3B(SEQ ID NO.10)、Bmtyrc‑4A(SEQ ID NO.11)的表达菌株进行发酵培养,分别将目的蛋白进行分离纯化并进行固定化后用于催化合成茶黄素(TF3)反应。
[0063] 实施例6:不同Bmtyrc突变体的发酵、纯化
[0064] 采用与Bmtyrc基本相同的方法进行Bmtyrc‑1、Bmtyrc‑2A、Bmtyrc‑2B、Bmtyrc‑2C、Bmtyrc‑3A、Bmtyrc‑3B、Bmtyrc‑4A的发酵与纯化,所得蛋白纯化样品连同实施例2得到的Bmtyrc纯化样一起进行SDS‑PAGE电泳纯度检测(电泳条件:分离胶浓度10%,电压100V,电流50mA,电泳时间120min),结果纯度均在95%以上。
[0065] 实施例7:各固定化酶催化合成茶黄素(TF3)
[0066] 将Bmtyrc、Bmtyrc‑1、Bmtyrc‑2A、Bmtyrc‑2B、Bmtyrc‑2C、Bmtyrc‑3A、Bmtyrc‑3B、Bmtyrc‑4A分别制备固定化酶后(方法同实施例2)催化合成茶黄素反应,在前期科学研究者的大量研究工作表明,底物多酚类物质和茶黄素在高pH值条件下非常不稳定,高温茶黄素容易降解且反应时间过长也会导致茶黄素量的减少,因此茶黄素合成实验中,反应时间确定为20min,固定化酶的投量确定为4g/L(相当于200‑500U/L);其它参数值设定为:pH值4.0、5.0、6.0,反应温度25℃、30℃、35℃,搅拌转速150r/min、175r/min、200r/min,反应条件及反应结果见表3‑4。
[0067] 表3各固定化酶催化茶黄素(TF3)合成反应的反应条件
[0068]
[0069]
[0070] 表4各固定化酶催化茶黄素(TF3)反应结果
[0071]
[0072]
[0073]
[0074] 注: 反应生成TF3的量,b:反应中加入ECG的量。
[0075] 由表4的催化反应结果可以看出,各Bmtyrc突变体较野生型Bmtyrc,以及各叠加突变体较Bmtyrc‑1,产物浓度、产物收率、均有明显提高,突变体最好的为Bmtyrc‑3A,该突变体在催化合成茶黄素时,其产率能达到13.45%,是野生型的3.28倍。由上述数据也可以推断出,该突变体应用于其它茶黄素合成(TF1、TF2a、TF2b等)也会有优于野生型酶实际效果。
[0076] 显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。上述实施例或实施方式只是对本发明的举例说明,本发明也可以以其它的特定方式或其它的特定形式实施,而不偏离本发明的要旨或本质特征。因此,描述的实施方式从任何方面来看均应视为说明性而非限定性的。本发明的范围应由附加的权利要求说明,任何与权利要求的意图和范围等效的变化也应包含在本发明的范围内。