一种Mn-Zn铁氧体材料及其制备方法转让专利

申请号 : CN202110842324.X

文献号 : CN113443906B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 朱勇王朝明张政

申请人 : 横店集团东磁股份有限公司

摘要 :

本发明提供了一种Mn‑Zn铁氧体材料及其制备方法。所述Mn‑Zn铁氧体材料包括主成分和辅助成分,所述主成分包括Fe2O3、ZnO和MnO;所述辅助成分包括CaCO3、Bi2O3和CoO;按占主成分总重量计,CoO的含量为1000‑5000ppm。所述制备方法包括:(1)将主成分的各组分混合后预烧,得到预烧后的混合物;(2)向预烧后的混合物中加入辅助成分的各组分,混合后得到铁氧体浆料;(3)对铁氧体浆料造粒,造粒后压制成型得到锰锌铁氧体毛坯;(4)将锰锌铁氧体毛坯进行烧结,降温,得到所述Mn‑Zn铁氧体材料。本发明提供的Mn‑Zn铁氧体材料是一种高磁导率低温度系数材料。

权利要求 :

1.一种Mn‑Zn铁氧体材料,其特征在于,所述Mn‑Zn铁氧体材料包括主成分和辅助成分,所述主成分为Fe2O3、ZnO和MnO;所述辅助成分为CaCO3、Bi2O3、CoO和MoO3;

按占主成分总重量计,辅助成分各组分含量为:CaCO3为200‑1000ppm,Bi2O3为200‑

1000ppm,MoO3为100‑500ppm,CoO为2000‑3000ppm;

所述Mn‑Zn铁氧体材料中,主成分各组分的摩尔百分含量为:Fe2O3为52‑53mol%,ZnO为

18.1‑19mol%,其余为MnO;

‑6

所述Mn‑Zn铁氧体材料在‑55℃至120℃的温度范围内的比温度系数为0.5×10 ‑2×‑6

10 ,居里温度>160℃;

所述Mn‑Zn铁氧体材料采用如下制备方法得到,所述制备方法包括以下步骤:(1)将主成分的各组分混合后预烧,得到预烧后的混合物;

(2)向步骤(1)所述预烧后的混合物中加入辅助成分的各组分,混合后得到铁氧体浆料;

(3)对步骤(2)所述铁氧体浆料造粒,造粒后压制成型得到锰锌铁氧体毛坯;

(4)将步骤(3)所述的锰锌铁氧体毛坯进行烧结,在平衡氧分压下进行降温,得到所述Mn‑Zn铁氧体材料;

步骤(4)所述烧结的方法包括:在氮气气氛控制氧含量为19‑21 vol%的条件下于1300‑

1400℃下烧结6‑8h,然后在氮气气氛控制氧含量为3‑5 vol%的条件下于1300‑1400℃下烧结1‑2h。

2.一种如权利要求1所述Mn‑Zn铁氧体材料的制备方法,其特征在于,所述制备方法包括以下步骤:(1)将主成分的各组分混合后预烧,得到预烧后的混合物;

(2)向步骤(1)所述预烧后的混合物中加入辅助成分的各组分,混合后得到铁氧体浆料;

(3)对步骤(2)所述铁氧体浆料造粒,造粒后压制成型得到锰锌铁氧体毛坯;

(4)将步骤(3)所述的锰锌铁氧体毛坯进行烧结,在平衡氧分压下进行降温,得到所述Mn‑Zn铁氧体材料;

步骤(4)所述烧结的方法包括:在氮气气氛控制氧含量为19‑21 vol%的条件下于1300‑

1400℃下烧结6‑8h,然后在氮气气氛控制氧含量为3‑5 vol%的条件下于1300‑1400℃下烧结1‑2h。

3.根据权利要求2所述的制备方法,其特征在于,步骤(1)所述混合为湿式球磨混合。

4.根据权利要求2所述的制备方法,其特征在于,步骤(1)所述预烧的温度为800‑900℃。

5.根据权利要求2所述的制备方法,其特征在于,步骤(1)所述预烧的时间为2‑3h。

6.根据权利要求2所述的制备方法,其特征在于,步骤(2)所述混合的方法为湿式砂磨混合。

7.根据权利要求2所述的制备方法,其特征在于,步骤(2)所述混合的时间为100‑

140min。

8.根据权利要求2所述的制备方法,其特征在于,步骤(3)所述造粒为喷雾造粒。

9.根据权利要求2所述的制备方法,其特征在于,步骤(3)还包括:在所述造粒前,先向步骤(2)所述铁氧体浆料中加入粘结剂并进行混合。

10.根据权利要求9所述的制备方法,其特征在于,所述粘结剂包括聚乙烯醇和/或聚乙烯醇缩丁醛酯。

11.根据权利要求9所述的制备方法,其特征在于,所述粘结剂的含量为主成分和辅助成分总重量的1‑2wt%。

12.根据权利要求2所述的制备方法,其特征在于,所述方法包括以下步骤:(1)将主成分的各组分湿式球磨混合后800‑900℃预烧2‑3h,得到预烧后的混合物;

(2)向步骤(1)所述预烧后的混合物中加入辅助成分的各组分,湿式砂磨混合100‑

140min后得到铁氧体浆料;

(3)向步骤(2)所述铁氧体浆料中加入粘结剂并进行混合,喷雾造粒得到铁氧体颗粒;

喷雾造粒后压制成型得到锰锌铁氧体毛坯;

(4)将步骤(3)所述锰锌铁氧体毛坯烧结,所述烧结的方法包括:在氮气气氛控制氧含量为19‑21 vol%的条件下于1300‑1400℃下烧结6‑8h,然后在氮气气氛控制氧含量为3‑5 vol%的条件下于1300‑1400℃下烧结1‑2h,之后在平衡氧分压下进行降温,得到所述Mn‑Zn铁氧体材料。

说明书 :

一种Mn‑Zn铁氧体材料及其制备方法

技术领域

[0001] 本发明属于磁性材料技术领域,涉及一种Mn‑Zn铁氧体材料及其制备方法。

背景技术

[0002] 近年来,高磁导率锰锌铁氧体被广泛应用于信号传输及其抗电磁干扰技术中。作为这些应用的锰锌铁氧体材料,还必须使其满足在较宽的温度范围内保持稳定的磁导率,以保证电子器件在较宽的温度范围内正常工作,一般要求稳定工作的温度范围在‑40~85℃,但对于军工电子产品和环境极端的民用电子产品,则要求在‑55~120℃温度范围内能够稳定工作。为了在较宽的温度范围内得到稳定磁导率的锰锌铁氧体材料,大多数通过对主成分配方的限制、添加剂的加入以及烧结工艺参数的控制以实现磁导率的低温度系数尤其是低温磁导率的提升。
[0003] CN101560091A公开了一种宽温、低温度系数、高居里温度锰锌铁氧体材料,通过把氧化铁的含量限制在52.5~55mol%、氧化锌的含量限制在10~18mol%,实现了锰锌铁氧体材料在‑25~150℃的磁导率具有较低的温度系数,但是更低的温度下磁导率是否能满足需求尚未可知;
[0004] CN101863657A公开了一种宽温高磁导率锰锌铁氧体材料,通过把氧化铁的含量限制在51~56mol%、氧化锌的含量限制在16~26mol%,实现了锰锌铁氧体材料在‑60℃~130℃的磁导率在5000以上,但是在该温度范围内磁导率的温度系数较高;
[0005] CN103588471A公开了一种宽温高磁导率锰锌铁氧体材料,通过把氧化铁的含量限制在54~55mol%、氧化锌的含量限制在14~15.9mol%,实现了锰锌铁氧体材料在‑55℃~125℃的磁导率在5000以上,但是在该温度范围内磁导率随温度的变化较大。

发明内容

[0006] 针对现有技术存在的不足,本发明的目的在于提供一种Mn‑Zn铁氧体材料及其制备方法。本发明提供的Mn‑Zn铁氧体材料是一种高磁导率低温度系数Mn‑Zn铁氧体材料。
[0007] 为达此目的,本发明采用以下技术方案:
[0008] 第一方面,本发明提供一种Mn‑Zn铁氧体材料,所述Mn‑Zn铁氧体材料包括主成分和辅助成分,所述主成分包括Fe2O3、ZnO和MnO;所述辅助成分包括CaCO3、Bi2O3和CoO;按占主成分总重量计,CoO的含量为1000‑5000ppm,例如1000ppm、2000ppm、3000ppm、4000ppm或5000ppm等。
[0009] 本发明提供的Mn‑Zn铁氧体材料在‑55~120℃温度范围内,磁导率具有较低的温‑6 ‑6度系数,其比温度系数αμ/μi范围为0.5×10 ~2×10 。并且本发明提供的Mn‑Zn铁氧体材料具有较高的居里温度,其居里温度大于160℃。
[0010] 本发明提供的Mn‑Zn铁氧体材料中,主成分和辅助成份的相互作用,对于取得上述效果起到了重要作用,辅助成分中的CoO尤为重要。一般尖晶石铁氧体的各向异性常数K1为2+ 2+
负值,而CoO各向异性常数K1>0,Co 加入后,Co 贡献的K1值随温度的升高而急剧下降,因而有可能在低于居里温度的温度范围内存在K1=0的抵消点,产生μi‑T曲线的第二峰。发明人研究发现:CoO辅助成分的加入,并配合其他辅助成分协同作用,与主成分配合,有利于实现锰锌铁氧体材料的高初始磁导率和低温度系数。
[0011] 本发明提供的Mn‑Zn铁氧体材料的辅助成分中,CaCO3的作用为CaCO3的作用为增进晶界电阻率,降低损耗,提高Q值。Bi2O3的熔点低,可作为助熔剂,降低烧结温度,促进晶粒尺寸长大,提高初始磁导率。
[0012] 本发明提供的Mn‑Zn铁氧体材料的的主成分中,Fe2O3和MnO形成单组分锰铁氧体2+
MnFe2O4;其中Zn 离子为非磁性离子,占A位,与MnFe2O4复合使其总磁矩增大,有利于提高初始磁导率。
[0013] 本发明中,如果CoO的含量过高,会导致μi‑T曲线的二峰位置往低温移动,从而导致磁导率的温度系数变高;如果CoO含量过低,会导致μi‑T曲线的二峰位置往高温移动,从而导致磁导率的温度系数变高。
[0014] 作为本发明优选的技术方案,所述辅助成分中,按占主成分
[0015] 总重量计,CaCO3的含量为200‑2000ppm,例如200ppm、500ppm、1000ppm、1500ppm或2000ppm等,Bi2O3的含量为200‑2000ppm,例如200ppm、500ppm、1000ppm、1500ppm或2000ppm等。
[0016] 优选地,所述Mn‑Zn铁氧体材料的辅助成分中还包括MoO3。MoO3的添加使得毛坯收缩速率变慢,气孔更加容易排出,有利于提高烧结密度。
[0017] 优选地,按占主成分总重量计,所述MoO3的含量为0‑1000ppm,例如0、100ppm、300ppm、500ppm、700ppm、900ppm或1000ppm等。
[0018] 优选地,所述Mn‑Zn铁氧体材料中,按占主成分总重量计,辅助成分各组分含量为:CaCO3为200‑1000ppm,Bi2O3为200‑1000ppm,MoO3为100‑500ppm,CoO为2000‑4000ppm。
[0019] 作为本发明优选的技术方案,所述Mn‑Zn铁氧体材料中,主成分各组分的摩尔百分含量为:Fe2O3为51‑54mol%,例如51mol%、52mol%、53mol%或54mol%等,ZnO为18.1‑26mol%,例如18.1mol%、20mol%、22mol%、24mol%或26mol%等,其余为MnO。
[0020] 优选地,所述Mn‑Zn铁氧体材料中,主成分各组分的摩尔百分含量为:Fe2O3为52‑53mol%,ZnO为18.1‑19mol%,其余为MnO。
[0021] 第二方面,本发明提供一种如第一方面所述Mn‑Zn铁氧体材料的制备方法,所述方法包括以下步骤:
[0022] (1)将主成分的各组分混合后预烧,得到预烧后的混合物;
[0023] (2)向步骤(1)所述预烧后的混合物中加入辅助成分的各组分,混合后得到铁氧体浆料;
[0024] (3)对步骤(2)所述铁氧体浆料造粒,造粒后压制成型得到锰锌铁氧体毛坯;
[0025] (4)将步骤(3)所述的锰锌铁氧体毛坯进行烧结,降温,得到所述Mn‑Zn铁氧体材料。
[0026] 本发明提供的制备方法与产品配方相配合,实现了高磁导率低温度系数锰锌铁氧体材料的制备。
[0027] 本发明中,步骤(1)预烧的作用在于使原料初步发生固相反应,为粉料多提供一次固相反应的机会,同时预烧可以减少产品的收缩率,便于控制产品尺寸精度。步骤(4)烧结的作用在于促进氧化铁、氧化锰和氧化锌进行固相反应,形成尖晶石相。
[0028] 作为本发明优选的技术方案,步骤(1)所述混合为湿式混合。
[0029] 优选地,步骤(1)所述预烧的温度为800‑900℃,例如800℃、820℃、840℃、860℃、880℃或900℃等。
[0030] 优选地,步骤(1)所述预烧的时间为2‑3h,例如2h、2.2h、2.4h、2.6h、2.8h或3h等。
[0031] 作为本发明优选的技术方案,步骤(2)所述混合的方法为湿式砂磨混合。
[0032] 优选地,步骤(2)所述混合的时间为100‑140min,例如100min、110min、120min、130min或140min等。
[0033] 作为本发明优选的技术方案,步骤(3)所述造粒为喷雾造粒。
[0034] 优选地,步骤(3)还包括:在所述造粒前,先向步骤(2)所述铁氧体浆料中加入粘结剂并进行混合。
[0035] 优选地,所述粘结剂包括聚乙烯醇(PVA)。
[0036] 优选地,所述粘结剂的含量为主成分和辅助成分总重量的1‑2wt%,例如1wt%、1.2wt%、1.4wt%、1.6wt%、1.8wt%或2wt%等。本发明中,如果粘结剂过多,会导致毛胚在排胶烧结的过程中开裂;如果粘结剂过少,会导致铁氧体颗粒料在压制成型的过程中开裂。
[0037] 作为本发明优选的技术方案,步骤(4)所述烧结的温度为1300‑1400℃,例如1300℃、1350℃或1400℃等。
[0038] 优选地,步骤(4)所述烧结的时间为4‑10h,例如4h、5h、6h、7h、8h、9h或10h等。
[0039] 优选地,步骤(4)所述烧结控制氧含量为3‑21vol%,例如3vol%、4vol%、5vol%、6vol%、7vol%、8vol%、9vol%、10vol%、11vol%、12vol%、13vol%、14vol%、15vol%、
16vol%、17vol%、18vol%、19vol%或20vol%等。控制氧含量的方法可以为充入氮气或惰性气体。
[0040] 作为本发明优选的技术方案,步骤(4)所述烧结的方法包括:在氮气气氛控制氧含量为19‑21vol%的条件下于1300‑1400℃下烧结6‑8h,然后在氮气气氛控制氧含量为3‑5vol%的条件下于1300‑1400℃下烧结1‑2h。本发明中,采用这种烧结方法,其目的在于(1)抑制氧化锌的挥发;(2)只有在平衡氧分压中烧结才能生成单相多晶尖晶石结构的锰锌铁氧体材料。
[0041] 优选地,步骤(4)所述降温在平衡氧分压下进行。本发明中,所述不同温度的平衡氧分压按照以下公式的计算:lgPO2=a‑b/T,其中,PO2为氧分压的大小,a取3~8,b为常数,取14000~15000,T为热力学温度。
[0042] 作为本发明所述制备方法的进一步优选技术方案,所述方法包括以下步骤:
[0043] (1)将主成分的各组分湿式混合后800‑900℃预烧2‑3h,得到预烧后的混合物;
[0044] (2)向步骤(1)所述预烧后的混合物中加入辅助成分的各组分,湿式砂磨混合100‑140min后得到铁氧体浆料;
[0045] (3)向步骤(2)所述铁氧体浆料中加入粘结剂并进行混合,喷雾造粒得到铁氧体颗粒,喷雾造粒后压制成型得到锰锌铁氧体毛坯;
[0046] (4)将步骤(3)所述锰锌铁氧体毛坯烧结,所述烧结的方法包括:在氮气气氛控制氧含量为19‑21vol%的条件下于1300‑1400℃下烧结6‑8h,然后在氮气气氛控制氧含量为3‑5vol%的条件下于1300‑1400℃下烧结1‑2h,之后在平衡氧分压下进行降温,得到所述Mn‑Zn铁氧体材料。
[0047] 与现有技术相比,本发明具有以下有益效果:
[0048] (1)本发明提供的Mn‑Zn铁氧体材料在‑55~120℃温度范围内,磁导率具有较低的‑6 ‑6温度系数,其比温度系数αμ/μi范围为0.5×10 ~2×10 。并且本发明提供的Mn‑Zn铁氧体材料具有较高的居里温度,其居里温度大于160℃。
[0049] (2)本发明通过控制主成分和辅助成分的组成及其加入量,并配合相应的制备方法,实现了高磁导率低温度系数锰锌铁氧体材料的制备。

具体实施方式

[0050] 为更好地说明本发明,便于理解本发明的技术方案,下面对本发明进一步详细说明。但下述的实施例仅仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明保护范围以权利要求书为准。
[0051] 以下为本发明典型但非限制性实施例:
[0052] 实施例1
[0053] 本实施例提供的Mn‑Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe2O3:52.0mol%、MnO:29.9mol%、ZnO:18.1mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO3:400ppm、Bi2O3:400ppm、MoO3:200ppm、CoO:3000ppm。
[0054] 本实施例按照如下方法制备所述Mn‑Zn铁氧体材料:
[0055] 将主成分组分称量后,经过球磨机混合均匀,在850℃下预烧2.5小时得到预烧料,在预烧料中添加配方量的各辅助成分组分,在砂磨机中球磨120min,然后通过喷雾造粒得到铁氧体颗粒料。铁氧体颗粒料经过压制成H25×15×8的毛坯样品,在N2控制氧含量为21vol%的条件下于1360℃下烧结7小时,然后在N2控制氧含量为4vol%的条件下于1360℃下烧结1.5小时,降温阶段在平衡氧分压下进行,即可得到磁芯(该磁芯即为所述Mn‑Zn铁氧体材料)。
[0056] 实施例2
[0057] 本实施例提供的Mn‑Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe2O3:52.5mol%、MnO:29.0mol%、ZnO:18.5mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO3:400ppm、Bi2O3:600ppm、MoO3:200ppm、CoO:2000ppm。
[0058] 本实施例按照如下方法制备所述Mn‑Zn铁氧体材料:
[0059] 将主成分组分称量后,经过球磨机混合均匀,在800~900℃下预烧2~3小时得到预烧料,在预烧料中添加配方量的各辅助成分组分,在砂磨机中球磨140min,然后通过喷雾造粒得到铁氧体颗粒料。铁氧体颗粒料经过压制成H25×15×8的毛坯样品,在N2控制氧含量为21vol%的条件下于1340℃下烧结8小时,然后在N2控制氧含量为3vol%的条件下于1340℃下烧结2小时,降温阶段在平衡氧分压下进行,即可得到磁芯(该磁芯即为所述Mn‑Zn铁氧体材料)。
[0060] 实施例3
[0061] 本实施例提供的Mn‑Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe2O3:53.0mol%、MnO:28.0mol%、ZnO:19.0mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO3:200ppm、Bi2O3:600ppm、MoO3:200ppm、CoO:1000ppm。
[0062] 本实施例按照如下方法制备所述Mn‑Zn铁氧体材料:
[0063] 将主成分组分称量后,经过球磨机混合均匀,在900℃下预烧2小时得到预烧料,在预烧料中添加配方量的各辅助成分组分,在砂磨机中球磨100min,然后通过喷雾造粒得到铁氧体颗粒料。铁氧体颗粒料经过压制成H25×15×8的毛坯样品,在N2控制氧含量为21vol%的条件下于1380℃下烧结6小时,然后在N2控制氧含量为5vol%的条件下于1380℃下烧结1小时,降温阶段在平衡氧分压下进行,即可得到磁芯(该磁芯即为所述Mn‑Zn铁氧体材料)。
[0064] 实施例4
[0065] 本实施例提供的Mn‑Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe2O3:52.0mol%、MnO:29.9mol%、ZnO:18.1mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO3:700ppm、Bi2O3:200ppm、MoO3:100ppm、CoO:4000ppm。
[0066] 本实施例的Mn‑Zn铁氧体材料制备方法参照实施例1。
[0067] 实施例5
[0068] 本实施例提供的Mn‑Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe2O3:52.0mol%、MnO:29.9mol%、ZnO:18.1mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO3:2000ppm、Bi2O3:1000ppm、MoO3:500ppm、CoO:4000ppm。
[0069] 本实施例的Mn‑Zn铁氧体材料制备方法参照实施例1。
[0070] 实施例6
[0071] 本实施例提供的Mn‑Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe2O3:50.5mol%、MnO:34.5mol%、ZnO:15.0mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO3:400ppm、Bi2O3:400ppm、MoO3:200ppm、CoO:2000ppm。
[0072] 本实施例的Mn‑Zn铁氧体材料制备方法参照实施例1。
[0073] 实施例7
[0074] 本实施例提供的Mn‑Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe2O3:53.1mol%、MnO:29.9mol%、ZnO:17.0mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO3:400ppm、Bi2O3:400ppm、MoO3:200ppm、CoO:1000ppm。
[0075] 本实施例的Mn‑Zn铁氧体材料制备方法参照实施例1。
[0076] 对比例1
[0077] 本实施例提供的Mn‑Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe2O3:54mol%、MnO:26.5mol%、ZnO:19.5mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO3:400ppm、Bi2O3:400ppm、MoO3:200ppm。
[0078] 本实施例的Mn‑Zn铁氧体材料制备方法参照实施例1。
[0079] 对比例2
[0080] 本对比例提供的Mn‑Zn铁氧体材料与实施例1区别仅在于:按占主成分总重量计,辅助成分中CoO为5500ppm。
[0081] 对比例3
[0082] 本对比例提供的Mn‑Zn铁氧体材料与实施例1区别仅在于:按占主成分总重量计,辅助成分中CoO为500ppm。
[0083] 测试方法
[0084] 对各实施例和对比例提供的Mn‑Zn铁氧体材料进行如下测试:
[0085] 在频率f=10KHz、电压U=0.25V的条件下,在‑55~120℃温度范围内,选取不同的温度点测试初始磁导率μi;
[0086] 在频率f=10KHz、电压U=0.25V的条件下,测试比温度系数αμ/μT1(×10‑6);其中温度系数αμ=(μT2‑μT1)/μT1/(T2‑T1)
[0087] 在H=1194A/m、频率f=50Hz的条件下,测试25℃和100℃下的饱和磁通密度Bs;
[0088] 在频率f=10KHz、电压U=0.25V的条件下,测试居里温度Tc。
[0089] 表1不同温度下的初始磁导率μi数值
[0090]  ‑55℃ ‑25℃ 0℃ 25℃ 55℃ 85℃ 120℃
实施例1 5320 5899 6092 6151 5917 6145 6526
实施例2 5568 6223 6297 6188 5839 6142 6522
实施例3 5148 5528 5605 5726 5640 6000 6420
实施例4 5058 5592 5777 5622 5623 5913 6320
实施例5 4689 5102 5262 5321 5075 5494 5867
实施例6 3197 3005 2936 3050 3488 3466 5355
实施例7 6430 7307 5424 4420 4247 4267 5000
对比例1 5128 5976 4988 4381 4367 4602 4508
对比例2 5917 5463 4415 3675 3977 4215 4724
对比例3 4122 5051 5651 6145 7060 6822 7991
[0091] 表2
[0092]
[0093] 综合上述实施例和对比例可知,本发明提供的Mn‑Zn铁氧体材料通过控制主成分和辅助成分的组成及其加入量,并配合相应的制备方法,实现了高磁导率低温度系数锰锌铁氧体材料的制备。
[0094] 实施例6因为主成分中Fe2O3的含量略低,导致室温下的初始磁导率偏低,低于5000,并且导致25~120℃温度范围内的的比温度系数较大。
[0095] 实施例7因为主成分中ZnO的含量略低,导致室温下的初始磁导率降低,并且使得25~120℃范围内的初始磁导率低于5000;
[0096] 对比例1因为辅助成分没有使用CoO,导致0~120℃范围内的初始磁导率低于5000,并且使得‑55‑120℃范围内的初始磁导率随温度变化较大。
[0097] 对比例2因为辅助成分中CoO过多,导致μi‑T曲线二峰位置向低温移动,从而导致‑55~25℃温度范围内初始磁导率随温度的增加而下降的较快;
[0098] 对比例3因为辅助成分中CoO过少,导致μi‑T曲线二峰位置向高温移动,从而导致‑55~55℃初始磁导率随温度的增加而增加的较快。
[0099] 申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。