一组GH10家族耐高温木聚糖酶突变体及其应用转让专利

申请号 : CN202110854745.4

文献号 : CN113444707B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 游帅陈忠立庄愉储呈平葛研王俊

申请人 : 江苏科技大学

摘要 :

一组GH10家族耐高温木聚糖酶突变体及其应用,所述突变体为HwXyl10A‑G363R、HwXyl10A‑T324V、HwXyl10A‑N318W和HwXyl10A‑N318W/G363R/T324V突变体;四种突变体在75℃下的半衰期较野生型分别延长了12min、20min、24min和38min。这样一种在动物体温下催化活力高、热稳定性优良的木聚糖酶,在饲料添加及生物质降解中有着极大的应用潜力。

权利要求 :

1.一组GH10家族耐高温木聚糖酶突变体,其特征在于,所述突变体为HwXyl10A‑T324V、HwXyl10A‑N318W和HwXyl10A‑N318W/G363R/T324V;所述HwXyl10A‑T324V编码蛋白 的核苷酸序列如SEQ ID NO.2所示;HwXyl10A‑N318W编码蛋白 的核苷酸序列如SEQ ID NO.3所示;

HwXyl10A‑N318W/G363R/T324V编码蛋白 的核苷酸序列如SEQ ID NO.4所示。

2.根据权利要求1所述一组GH10家族耐高温木聚糖酶突变体,其特征在于, HwXyl10A‑T324V的氨基酸序列如SEQ ID NO.6所示;HwXyl10A‑N318W的氨基酸序列如SEQ ID NO.7所示;HwXyl10A‑N318W/G363R/T324V的氨基酸序列如SEQ ID NO.8所示。

3.一种重组载体,含有权利要求1所示的任一核苷酸序列。

4.一种重组菌株,含有权利要求3所述的重组载体。

5.权利要求1或2所述GH10家族耐高温木聚糖酶突变体在制备饲料添加剂中的应用。

6.权利要求4所述重组菌株在制备饲料添加剂中的应用。

说明书 :

一组GH10家族耐高温木聚糖酶突变体及其应用

技术领域

[0001] 本发明属于生物工程领域,具体涉及一组GH10家族耐高温木聚糖酶突变体及其应用。

背景技术

[0002] 现有的饲料一般以玉米、麸皮、小麦或稻谷等作为主要原料,其中含有相当量的非淀粉类多糖,其中包括纤维素、半纤维素、果胶等。纤维素是由D‑吡喃式葡萄糖以β‑1,4糖苷键连接而成的大分子聚合物,也是植物细胞壁的主要成分。半纤维素一般指自然界植物细胞壁中除果胶和纤维素类成分之外的其他聚糖类物质,主要包括木聚糖、半乳甘露聚糖和半乳葡甘露聚糖。木聚糖的结构非常复杂,主链由吡喃木糖通过β‑1,4‑D‑木糖苷键连接而成,聚合度在150‑200之间,侧链含有多种形式的取代基或取代基团,常见的取代基包括阿拉伯糖、葡萄糖酸、半乳糖、阿魏酸、乙酸以及香豆酸等(Kulkarni et al.,1999;Liab et al.,2000;Squina et al.,2009)。但是由于非反刍类动物缺少降解非淀粉类多糖的酶类,其自身极难消化半纤维素而容易形成糜状积食,影响动物肠道的内环境。一方面,导致动物肠道微生物种群类型的改变,另一方面,糜状积食会影响动物对饲料的吸收,使得饲料利用率大幅降低,增加了投喂饲料的成本。
[0003] 在饲料中添加合适的木聚糖酶,可以破碎植物细胞的细胞壁,造成半纤维素的水解,释放细胞内容物,从而达到降低食糜粘度的目的,极大的提高饲料利用率,降低饲料成本。而木聚糖的水解产物为寡糖,其中的木二糖具有卓越的保健功能:1)抗龋齿;2)降血脂、降血压、降血糖;3)促进矿物质吸收;4)增殖双歧杆菌,双歧杆菌具有抑菌、增强免疫和改善维生素代谢的作用。
[0004] 然而,在工业生产制备饲料的过程中,其工作环境温度较高,并且在饲料高压制粒过程中,伴随着瞬时高温,因此需要木聚糖酶具备优良的热稳定性,在极端高温的环境下仍具备活性。尽管木聚糖酶在自然界中分布极广,但具备耐高温特性的木聚糖酶并不多。其中微生物来源的木聚糖酶是目前实际应用和研究中最常用的材料。但它们大都无法兼顾热稳定性和催化活力,并且由于天然微生物的特性,它们往往无法大量表达木聚糖酶。
[0005] 针对自然来源木聚糖酶的筛选难、性质差等问题,对自然界的酶采取理性、半理性或随机定向进化、突变、区段重组、构建杂合体以及活性位点突变技术等方法进行研究,并且构建高表达工程菌株,是当下改造并获得优良木聚糖酶的主要途径。

发明内容

[0006] 解决的技术问题:本发明提供一组GH10家族耐高温木聚糖酶突变体及其应用。该组突变体来源于真菌Hortaea werneckii的木聚糖酶HwXyl10a,通过同源序列比对和结构分析,理性设计定向改良木聚糖酶HwXyl10A的热稳定性,使其适用于工业生产。
[0007] 技术方案:一组GH10家族耐高温木聚糖酶突变体,所述突变体为HwXyl10A‑G363R、HwXyl10A‑T324V、HwXyl10A‑N318W和HwXyl10A‑N318W/G363R/T324V突变体;所述HwXyl10A‑G363R的核苷酸序列如SEQ ID NO.1所示;HwXyl10A‑T324V的核苷酸序列如SEQ ID NO.2所示;HwXyl10A‑N318W的核苷酸序列如SEQ ID NO.3所示;HwXyl10A‑N318W/G363R/T324V的核苷酸序列如SEQ ID NO.4所示。
[0008] 上述HwXyl10A‑G363R的氨基酸序列如SEQ ID NO.5所示;HwXyl10A‑T324V的氨基酸序列如SEQ ID NO.6所示;HwXyl10A‑N318W的氨基酸序列如SEQ ID NO.7所示;HwXyl10A‑N318W/G363R/T324V的氨基酸序列如SEQ ID NO.8所示。
[0009] 一种重组载体,含有上述任一核苷酸序列。
[0010] 一种重组菌株,含有上述的重组载体。
[0011] 上述GH10家族耐高温木聚糖酶突变体在制备饲料添加剂中的应用。
[0012] 上述重组菌株在制备饲料添加剂中的应用。
[0013] 耐高温木聚糖酶突变体的构建方法,包括以下步骤:选择HwXyl10A为出发材料,通过多序列比对和结构分析设计单点突变,初步筛选出可能影响其热稳定性的关键氨基酸位点;针对筛选得到的关键位点,设计定向突变引物;采用over‑lap PCR的方法将各突变位点进行组合;将木聚糖酶突变体序列片段克隆到表达载体pPIC9r的EcoR I和Not I限制性酶切位点之间,获得重组质粒;将突变体重组质粒转化毕赤酵母GS115感受态,诱导表达,获得重组菌。培养重组菌,并诱导表达木聚糖酶突变体,回收并纯化木聚糖酶突变体。
[0014] 有益效果:本发明提供一组热稳定性优良的、适合于饲料添加的木聚糖酶突变体。该组木聚糖酶突变体的最适pH值在3.5‑5.5之间,与野生型相比变化不大,且pH稳定性也与野生型类似,在pH2‑9的范围内均保持高酶活力。该组木聚糖酶突变体的最适温度为75℃,且75℃下的热稳定性均比野生酶有不同程度的提高,主要体现在:突变体HwXyl10A‑G363R的半衰期较野生型延长了12min;HwXyl10A‑T324V的半衰期较野生型延长了20min;
HwXyl10A‑N318W的半衰期较野生型延长了24min;HwXyl10A‑N318W/G363R/T324V的半衰期较野生型延长了38min。在饲料制粒过程中有一段瞬时高温过程(80‑90℃,3‑5s),酶的热稳定性提高,有利于酶抵抗高温制粒过程,最后不至于失活;这样一种在酸性pH环境和动物体温条件下有较高酶活力且在高温条件下稳定的木聚糖酶被认为是饲料行业中性质优良的饲料添加用酶,有着非常广阔的应用前景。

附图说明

[0015] 图1为耐高温木聚糖酶突变体与野生型的蛋白纯化;
[0016] 图2为耐高温木聚糖酶突变体与野生型的最适pH;
[0017] 图3为耐高温木聚糖酶突变体与野生型的pH稳定性;
[0018] 图4为耐高温木聚糖酶突变体与野生型的最适温度;
[0019] 图5为75℃下耐高温木聚糖酶酶突变体与野生型的热稳定性;
[0020] 图6为耐高温木聚糖酶酶突变体与野生型的T50值。

具体实施方式

[0021] 下面结合附图和具体实施例对本发明作进一步描述。
[0022] 1、菌株及载体:表达宿主Pichia pastoris GS115,表达质粒载体pPIC9r实验室自备;
[0023] 2、酶类及其它生化试剂:Pfu酶购自全式金公司,内切酶购自Fermentas公司,连接酶购自Promaga公司,榉木木聚糖购自Sigma公司;其它都为国产分析纯试剂(均从国药集团购买);
[0024] 3、培养基:
[0025] (1)LB培养基:0.5%酵母提取物,1%蛋白胨,1%NaCl,pH 7.0;
[0026] (2)YPD培养基:1%酵母提取物,2%蛋白胨,2%葡萄糖;
[0027] (3)MD固体培养基:2%葡萄糖,1.5%琼脂糖,1.34%YNB,0.00004%Biotin;
[0028] (4)MM固体培养基:1.5%琼脂糖,1.34%YNB,0.00004%Biotin,0.5%甲醇;
[0029] (5)BMGY培养基:1%酵母提取物,2%蛋白胨,1%甘油(V/V),1.34%YNB,0.00004%Biotin;
[0030] (6)BMMY培养基:1%酵母提取物,2%蛋白胨,1.34%YNB,0.00004%Biotin,0.5%甲醇(V/V)。
[0031] 实施例1耐高温木聚糖酶突变体编码基因的克隆
[0032] 以来源于GH10家族耐高温木聚糖酶基因HwXyl10A为母本,在木聚糖酶的loop区域处设计突变引物,采用over‑lap PCR的方法扩增高催化效率木聚糖酶突变体编码基因SEQ ID NO.1(HwXyl10a‑G363R),SEQ ID NO.2(HwXyl10a‑T324V),SEQ ID NO.3(HwXyl10a‑N318W),SEQ ID NO.4(HwXyl10a‑N318W/G363R/T324V),突变方法以及克隆方法参考文献(You,et al.,2016)。
[0033] 所用引物序列如表1所示:
[0034] 表1引物合成清单
[0035]
[0036] 实施例2耐高温木聚糖酶突变体的制备
[0037] 将表达载体pPIC9r进行双酶切(EcoR I+Not I),同时将编码耐高温木聚糖酶突变体的基因双酶切(EcoR I+Not I),再将酶切后编码成熟耐高温木聚糖酶突变体的基因片段与表达载体pPIC9r连接,获得含有耐高温木聚糖酶突变体基因的重组质粒并转化毕赤酵母GS115,获得重组酵母菌株。
[0038] 取含有重组质粒的GS115菌株,接种于300mL BMGY培养基的1L三角瓶中,置于30℃,220rpm摇床培养48h;后将培养液3000g离心5min,弃上清,沉淀用100mL含有0.5%甲醇的BMMY培养基重悬,并再次置于30℃,220rpm条件下诱导培养。每隔12h补加0.5mL甲醇,使菌液中的甲醇浓度保持在0.5%,同时取上清用于酶活检测。
[0039] 实施例3耐高温木聚糖酶突变体和野生型的活性分析
[0040] 一、DNS法:具体方法如下:在给定的pH、温度条件下,1mL的反应体系包括100μL酶液,900μL底物,反应10min,加入1.5mL DNS终止反应,沸水煮5min。冷却后540nm测定OD值。1个酶活单位(U)定义为在给定的条件下,每分钟分解木聚糖生成1μmol还原糖所需的酶量。
[0041] 二、重组耐高温木聚糖酶突变体和野生型的性质测定
[0042] 1、重组耐高温木聚糖酶突变体和野生型的最适pH测定如下:
[0043] 将实施例2纯化的重组耐高温木聚糖酶突变体和野生型在不同的pH下进行酶促反应以测定其最适pH。用不同pH的0.1mol/L柠檬酸‑磷酸氢二钠缓冲液稀释底物(榉木木聚糖)并在75℃下进行木聚糖酶活力测定。
[0044] 结果(图2)表明,重组耐高温木聚糖酶突变体和野生型的最适反应pH值在3.5‑5.5之间,且在pH2.0‑9.0的范围内有相同的作用趋势(图3)。符合不改变最适pH而提高酶热稳定性的目的。
[0045] 2、重组耐高温木聚糖酶突变体和野生型的最适温度测定如下:
[0046] 重组耐高温木聚糖酶突变体和野生型的最适温度测定为在0.1mol/L柠檬酸‑磷酸氢二钠缓冲液(pH 3.5)缓冲液体系及不同温度下进行酶促反应。酶促反应最适温度测定结果(图4)表明,重组耐高温木聚糖酶突变体与野生型的最适温度在70‑80℃之间,彼此相差并不明显。
[0047] 3、重组耐高温木聚糖酶突变体和野生型在75℃的热稳定性测定如下:
[0048] 将耐高温木聚糖酶突变体和野生型在75℃下分别处理一定时间,另外保证处理时所有突变体和野生型的浓度为100μg/mL,体积为100μL,在不同时间点取样后迅速置于冰上,并在75℃、pH 4.0的条件下测定酶活性,用来衡量突变体和野生型的热稳定性情况。
[0049] 所有突变体的热稳定性均优于野生型,70℃下处理26min后,野生型木聚糖酶的剩余酶活降低至50%(如图5);继续处理至38min时,突变体G363R的剩余酶活降低至50%;而在相同条件下,突变体T324V的半衰期比野生型延长了20min,为46min;所有突变体中,在热稳定性方面表现最好的是组合突变N318W/G363R/T324V,达到了64分钟。
[0050] 4、重组耐高温木聚糖酶突变体和野生型T50值的测定如下:
[0051] 除了75℃下的热稳定性可以表征酶的热抗性外,T50值也可以反映出酶对热的抗性好坏。将四种突变体及野生型在不同温度(60℃‑85℃)下处理30min后,拟合得到野生型酶的T50值为74℃;而G363R的T50值为76℃;T324V的T50值达到了77.5℃;N318W的T50值上升更高,为78.5℃;T50值最高的则是组合突变体N318W/G363R/T324V,为80℃。
[0052] 实施例4耐高温木聚糖酶突变体和野生型的动力学分析
[0053] 在最适条件下,用榉木木聚糖底物测定四种木聚糖酶突变体及野生型的动力学参数和比活力,结果分别如表2所示。
[0054] 表2 HwXyl10A及其突变体在最适条件下对榉木木聚糖的动力学和比活[0055]
[0056] 四种木聚糖酶突变体及野生型的Km值分别为0.88mg/mL、1.03mg/mL、0.96mg/mL、‑1 ‑11.27mg/mL和1.04mg/mL;而四种木聚糖酶突变体及野生型的kcat值分别为2100s 、2300s 、‑1 ‑1 ‑1
1900s 、2700s 和2400s ;四种木聚糖酶突变体及野生型的催化效率(kcat/Km)分别是
2400mL/s·mg、2200mL/s·mg、2000mL/s·mg、2100mL/s·mg和1700mL/s·mg;四种木聚糖酶突变体的比活相较野生型酶而言,略有不同程度上的提高:G363R较野生型提高至1.32倍,T324V较野生型提高至1.06倍,N318W较野生型提高至1.5倍,比活提升最为明显,而组合突变较野生型提高至1.21倍。
[0057] 综合来看,四种突变体在突变后的酶活力并未损失,且热稳定性较野生型有大幅提高,更能抵抗饲料制粒时的瞬时高温,除此之外,在不损失酶活、稳定性提升的情况下,意味着该组耐高温木聚糖酶突变体,能够在更长的时间里保持活性,催化半纤维素的水解,是工业应用的良好材料。