一种拱形结构整体提升施工方法及装置转让专利

申请号 : CN201980059054.6

文献号 : CN113454306B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王龙梁湖清魏崴蓝戊己陈臻颖温建明石开荣曹嘉利卢德辉

申请人 : 广州建筑股份有限公司广州建筑湾区智造科技有限公司广州五羊建设机械有限公司

摘要 :

本发明公开了一种拱形结构整体提升施工方法,包括以下步骤:将拱形结构分为拱形的提升结构和支座处后装构件,在地面设置胎架,在胎架上完成提升结构的拼装;在提升结构的两端穿束预应力拉索,并施加临时预应力;使用液压同步提升系统将提升结构提升至待安装的下部支撑结构处,安装支座处后装构件,将提升结构与下部支撑结构连接形成整体。本发明还公开了用于穿束预应力拉索和张拉的装配式张拉端节点和锚固端节点。本发明能够精确控制拱形结构在提升过程中的形变,保证结构提升的精确就位和安装前后的结构形态满足设计要求;同时临时预应力的施加和拆除施工方便,对原结构的影响小。

权利要求 :

1.一种拱形结构的整体提升施工方法,包括以下步骤:

(1)将拱形结构分为拱形的提升结构和支座处后装构件,在地面设置胎架,在胎架上完成提升结构的拼装;

(2)在提升结构的两端分别设置张拉端节点和锚固端节点,用于穿束预应力拉索,并向所述预应力拉索施加临时预应力,在提升结构上设置提升吊点;

所述步骤(2)中,使用计算机模拟分别以提升过程中被提升结构两端无相对位移和提升过程中被提升结构无下挠为目标进行模拟分析,确认所述提升结构所需要施加的临时预应力;

根据所述临时预应力确认预应力拉索的规格以及所述张拉端节点、锚固端节点的设计,所述预应力拉索为两束预应力拉索;

所述张拉端节点包括:

至少两个液压张拉器,用于张拉预应力拉索;

至少两个端承件,每个所述端承件用于支撑一个液压张拉器,所述端承件包括焊接连接的端板、至少一个水平加劲板和至少一个竖向加劲板,所述端板上开有穿索孔,所述水平加劲板和竖向加劲板围绕所述穿索孔设置在所述端板上,所述穿索孔用于穿过所述预应力拉索,两个端承件通过上、下连接角钢连接成整体;

至少两组剪力板,剪力板用于将最靠近提升结构的端承件与所述提升结构连接在一起;

所述剪力板与所述提升结构的下弦杆采用穿心式连接进行固定;

(3)在下部支撑结构上搭建提升架,在提升架上设置液压同步提升系统,液压同步提升系统通过提升钢绞线连接至提升吊点,为提升结构的整体提升做好准备;

(4)逐渐上调液压提升器的伸缸压力,直至达到提升所需压力,开始提升,将提升结构提升至下部支撑结构处,准备将提升结构与下部支撑结构连接;

(5)提升就位后,安装支座处拱形结构后装构件,使拱形结构与下部支撑结构连接形成整体;

(6)安装完成后,依次卸载液压提升系统的各个吊点,拆除液压提升系统和提升架,并拆除临时预应力拉索、张拉端节点和锚固端节点,使得拱形结构荷载转移至下部支撑结构上。

2.根据权利要求1所述的拱形结构的整体提升施工方法,其特征在于,所述步骤(4)包括,调试液压提升系统,检查提升结构单元以及液压同步提升的所有临时措施是否满足施工要求;

逐渐上调液压提升器的伸缸压力,依次为提升所需压力的20%,40%,60%,70%,

80%,90%,95%,直至100%;

将提升单元提升150mm后,暂停提升,微调提升单元的各个吊点的标高,使其处于水平,静置4‑12小时,并对液压提升设备系统、结构系统进行全面检查,然后再将提升结构提升至下部支撑结构处,准备将提升结构与下部支撑结构连接。

3.根据权利要求1所述的拱形结构的整体提升施工方法,其特征在于,所述锚固端节点包括:至少两个底锚,用于固定所述预应力拉索;

至少两个端承件,每个端承件用于支撑一个底锚,所述端承件包括焊接在一起的端板、至少一个水平加劲板和至少一个竖向加劲板,所述端板上开有穿索孔,所述水平加劲板和竖向加劲板围绕所述穿索孔设置在所述端板上,所述穿索孔用于穿过所述预应力拉索,所述端承件通过上、下连接角钢连接成整体;

至少两组剪力板,剪力板用于将最靠近提升结构的端承件与所述提升结构连接在一起;

所述剪力板与所述提升结构的下弦杆采用穿心式连接进行固定。

4.根据权利要求1所述的拱形结构的整体提升施工方法,其特征在于,所述端承件的靠近所述提升结构的竖向加劲板上设有与所述剪力板相匹配的齿槽,所述剪力板通过齿槽稳固地扣挂在剪力板上。

5.根据权利要求1所述的拱形结构的整体提升施工方法,其特征在于,每组所述剪力板包括至少一个剪力板。

6.根据权利要求1所述的拱形结构的整体提升施工方法,其特征在于,所述预应力拉索为单束预应力拉索。

7.根据权利要求6所述的拱形结构的整体提升施工方法,其特征在于,所述张拉端节点包括:液压张拉器,用于张拉所述预应力拉索;

端承件,用于支撑所述液压张拉器,所述端承件包括焊接在一起的端板、至少一个卡板、至少一个加劲板和至少一个防滑加劲肋,所述端板上开有穿索孔,所述卡板和加劲板围绕所述穿索孔设置在所述端板上,所述防滑加劲肋设置在所述端板上,并与所述卡板焊接在一起,所述穿索孔用于穿过所述预应力拉索,所述卡板上设有卡槽,用于卡在提升结构的提升桁架的下弦杆上;

上穿孔和下穿孔,分别设置在提升结构的提升桁架的下弦杆的上翼板和下翼板上,用于穿过单束预应力拉索;

限位转向钢棒,设置在所述下弦杆的腹板上,位于所述上穿孔和下穿孔之间,用于调节所述预应力拉索的张拉方向。

8.根据权利要求6所述的拱形结构的整体提升施工方法,其特征在于,所述锚固端节点包括:连接板,设置在提升结构的提升桁架的下弦杆的下翼板上;

所述预应力拉索的端部设有锁夹,所述锁夹通过销轴连接在所述连接板上。

说明书 :

一种拱形结构整体提升施工方法及装置

技术领域

[0001] 本发明涉及一种整体提升的施工方法,特别涉及一种拱形结构的整体提升所使用的装置及施工方法。

背景技术

[0002] 随着我国经济文化的发展,我国建筑市场中出现了越来越多的高层、复杂建筑物,而高空作业安全隐患多、工期长、施工质量难以保证,且工程成本居高不下,在这种背景下,使用整体提升施工方法,将高空作业转化为地面作业,从而大大减少了高空作业量,并实现结构安装的装配化、机械化,大大提高了该类结构施工的施工效率、施工质量和施工过程的安全性。
[0003] 然而,对于需要精确控制结构的变形及形态的结构整体提升施工,例如拱形结构,还没有完善的整体提升施工方法。现有的整体提升施工方法适用于桁架等常规结构的提升施工,如果将传统的整体提升施工方法应用于拱形结构,在提升过程中,提升结构会发生较大变形,提升到位后的结构形态发生改变,导致后装杆件安装困难甚至无法安装,施工质量难以保证。
[0004] 因此,亟需一种适用于拱形结构等需要精确控制变形及形态的结构的整体提升施工方法及装置。

发明内容

[0005] 本发明的目的在于,提供一种拱形结构整体提升施工方法,质量可靠、安全经济、施工效率高。
[0006] 该拱形结构的整体提升施工方法,包括以下步骤:
[0007] (1)将拱形结构分为拱形的提升结构和支座处后装构件,在地面设置胎架,在胎架上完成提升结构的拼装;
[0008] (2)在提升结构的两端分别设置装配式的张拉端节点和锚固端节点,用于穿束预应力拉索,并向所示预应力拉索施加临时预应力,在提升结构上设置提升吊点;
[0009] (3)在下部支撑结构上搭建提升架,在提升架上设置液压同步提升系统,液压同步提升系统通过提升钢绞线连接至提升吊点,为提升结构的整体提升做好准备;
[0010] (4)逐渐上调液压提升器的伸缸压力,直至达到提升所需压力,开始提升,将提升结构提升至下部支撑结构处,准备将提升结构与下部支撑结构连接;
[0011] (5)提升就位后,安装支座处拱形结构后装构件,使拱形结构与下部支撑结构连接形成整体;
[0012] (6)安装完成后,依次卸载液压提升系统的各个吊点,拆除液压提升系统和提升架,并拆除临时预应力拉索、张拉端节点和锚固端节点,使得拱形结构荷载转移至下部支撑结构上。
[0013] 其中,步骤(4)还包括
[0014] 调试检查:调试液压提升系统,检查提升结构单元以及液压同步提升的所有临时措施是否满足施工要求;
[0015] 试提升:逐渐上调液压提升器的伸缸压力,依次为提升所需压力的20%,40%,60%,70%,80%,90%,95%,直至100%;
[0016] 正式提升:将提升单元提升约150mm后,暂停提升,微调提升单元的各个吊点的标高,使其处于水平,静置4‑12小时,并对液压提升设备系统、结构系统进行全面检查,然后再将提升结构提升至下部支撑结构处。
[0017] 其中,在步骤(2)中,使用计算机模拟分别以提升过程中被提升结构两端无相对位移和提升过程中被提升结构无下挠为目标进行模拟分析,确认所述提升结构所需要施加的临时预应力。
[0018] 进一步地,根据计算机模拟所得到的临时预应力,确定将要使用的预应力拉索的规格并进行张拉端节点、锚固端节点的设计,张拉端节点、锚固端节点采用装配式设计。
[0019] 在所需要的预应力拉索多于一束预应力拉索的情况下,设置对应多束预应力拉索的张拉端节点、锚固端节点。
[0020] 应用于多束预应力拉索的张拉端节点包括:至少两个液压张拉器,每个液压张拉器用于张拉一束预应力拉索;至少两个端承件,每个端承件用于支撑一个液压张拉器,每个所述端承件包括焊接在一起的端板、至少一个水平加劲板和至少一个竖向加劲板,所述端板上开有穿索孔,所述水平加劲板和竖向加劲板围绕所述穿索孔设置在所述端板上,所述穿索孔用于穿过所述预应力拉索,靠近提升结构的端承件支承在与提升结构下弦穿心式连接的两组剪力板上,并通过上、下连接角钢连接成整体。
[0021] 应用于多束预应力拉索的锚固端节点包括:至少两个底锚,用于固定所述预应力拉索;至少两个端承件,每个端承件分别用于支撑一个底锚,所述端承件包括焊接在一起的端板、至少一个水平加劲板和至少一个竖向加劲板,所述端板上开有穿索孔,所述水平加劲板和竖向加劲板围绕所述穿索孔设置在所述端板上,所述穿索孔用于穿过所述预应力拉索,两个端承件支承在与提升结构下弦穿心式连接的两组剪力板上,并通过上、下连接角钢连接成整体;
[0022] 端承件在其靠近提升结构的竖向加劲板上设有与所述剪力板相匹配的齿槽,剪力板通过齿槽稳固地扣挂在剪力板上。
[0023] 每组剪力板包括至少一个剪力板。
[0024] 当所采用的预应力拉索大于两束时,剪力板还包括用于将位于提升结构同侧的相邻的两个端承件加固连接的剪力板。
[0025] 张拉端节点和锚固端节点采用装配式设计,均为现场组装装配,安装、拆卸灵活方便,对原结构及外观的影响小,避免了常规方法操作困难、对原结构及外观影响较大,修复困难的缺点。
[0026] 在所需要的预应力拉索为单束预应力拉索的情况下,设置对应单束预应力拉索的张拉端节点、锚固端节点。
[0027] 应用于单束预应力拉索的张拉端节点包括:液压张拉器,用于张拉所述预应力拉索;端承件,用于支撑所述液压张拉器,所述端承件包括焊接在一起的端板、两个卡板、两个加劲板和一个防滑加劲肋,所述端板上开有穿索孔,所述卡板和加劲板围绕所述穿索孔设置在所述端板上,所述防滑加劲肋设置在所述端板上,并与一个所述卡板焊接在一起,所述穿索孔用于穿过所述预应力拉索,所述卡板上设有卡槽,用于卡在提升结构的提升桁架的下弦杆上;上穿孔和下穿孔,分别设置在提升结构的提升桁架的下弦杆的上翼板和下翼板上,用于穿过单束预应力拉索;限位转向钢棒,设置在所述下弦杆的腹板上,位于所述上穿孔和下穿孔之间,用于调节所述预应力拉索的张拉方向。
[0028] 应用于单束预应力拉索的锚固端节点包括:连接板,设置在提升结构的提升桁架的下弦杆的下翼板上;所述预应力拉索的端部设有锁夹,所述锁夹通过销轴连接在所述连接板上。
[0029] 当使用单束预应力拉索时,所需的张拉端节点、锚固端节点的结构更加简单,便于现场安装和拆卸。
[0030] 使用根据本发明的拱形结构整体提升施工方法,能够精确控制拱形结构在提升过程中的形变,保证结构提升的精确就位和安装前后的结构形态满足设计要求,改变了传统上拱形结构因支座安装固定前后刚度突变、变形大,整体提升施工难以实施的局面,将大量的高空作业转化为地面作业;临时预应力的施加和拆除施工方便,对原结构的影响小。这种施工方法改善了人工作业的环境条件,减少了危险源,工期短,质量高,施工过程安全可靠,从而从总体上节约了施工工期和成本。

附图说明

[0031] 图1为根据本发明的实施例一的拱形屋面结构的安装示意图;
[0032] 图2为根据本发明的实施例一的提升结构在地面进行拼装的拼装示意图;
[0033] 图3为根据本发明的实施例一的提升结构在提升就位后的安装示意图;
[0034] 图4为根据本发明的实施例一的拱形屋面结构安装完成的示意图;
[0035] 图5为根据本发明的实施例一的双索张拉端节点构造示意图;
[0036] 图6为根据本发明的实施例一的双索张拉端节点中端承件构造示意图;
[0037] 图7为根据本发明的实施例一的双索锚固端节点构造示意图;
[0038] 图8为根据本发明的实施例二的单索张拉端节点构造示意图;
[0039] 图9为根据本发明的实施例二的单索张拉端节点的剖面图;
[0040] 图10为根据本发明的实施例二的单索张拉端节点中端承件构造示意图;
[0041] 图11为根据本发明的实施例二的单索锚固端节点构造示意图。

具体实施方式

[0042] 为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式作进一步说明。
[0043] 实施例一
[0044] 如图1所示,需要进行整体提升施工的拱形结构为拱形屋面结构2,拱形屋面结构2需要安装在下部支撑结构1上,拱形屋面结构2包括拱形的提升结构2‑1和支座处后装构件2‑2,安装时提升结构2‑1在地面进行拼装,拼装后提升至下部支撑结构1,然后再进行支座处后装构件2‑2的安装,将提升结构2‑1安装在下部支撑结构1上。
[0045] 如图2至图4所示,在进行整体提升施工时,包括以下步骤。
[0046] (1)如图2所示,在地面设置胎架4,在胎架4上完成拱形提升结构2‑1的拼装。
[0047] (2)拼装完成后,在提升结构2‑1的两端穿束预应力拉索3,并施加临时预应力,将临时预应力拉索3张拉至控制值,并在提升结构2‑1上设置提升吊点8。
[0048] (3)在下部支撑结构1上搭建提升架5,在提升架5上设置液压同步提升系统6,液压同步提升系统6通过提升钢绞线7连接至提升吊点8,为提升结构2‑1的整体提升做好准备。
[0049] (4)提升时,首先调试液压提升系统,检查提升结构单元以及液压同步提升的所有临时措施是否满足施工要求。确认无误后,开始试提升,液压提升器伸缸压力逐渐上调,依次为所需压力的20%,40%,在一切正常情况下,继续加载到60%,70%,80%,90%,95%,100%。提升单元提升约150mm后,暂停提升,微调提升单元的各个吊点的标高,使其处于水平,静置4‑12小时,再次对液压提升设备系统、结构系统进行全面检查;确认无误后,将提升结构2‑1提升就位,如图3所示。
[0050] (5)如图3所示,提升就位后,安装支座处拱形结构后装构件2‑2,使拱形结构与下部支撑结构1连接形成整体。
[0051] (6)如图4所示,依次卸载液压提升系统的各个吊点,拆除液压提升系统6、提升架5,并通过控制预应力张拉器9‑1拆除临时预应力拉索3,然后拆除张拉端节点9和锚固端节点10,使得拱形结构荷载转移至下部支撑结构1上,达到设计状态。至此,完成拱形屋面结构
2的提升安装。
[0052] 在步骤(2)中,需要计算所需的临时预应力,从而确认需要的预应力拉索设置。
[0053] 在本实施例中,所使用的拱形屋面的拱形结构跨度为60米,每榀主桁架间距6米,主桁架截面高度2.5米,矢跨比为1/10,上下弦杆采用方管□170×5,腹杆采用方管□110×5,材质均为Q345B,屋面板采用50mm厚夹芯彩钢板。取拱形屋面结构中部的一榀桁架,分别进行是否施加临时预应力情况下的整体提升计算机模拟计算分析,分别以提升过程中被提升结构两端无相对位移和提升过程中被提升结构无下挠为目标进行模拟分析,对比分析结果见下表。
[0054]
[0055]
[0056] 根据分析可知,当提升结构2‑1不采取措施直接提升时,由于提升状态与设计状态相比结构刚度发生较大的变化,导致跨中挠度较大,达374mm,结构两端产生较大水平变形,相对伸长240mm,整体提升难以精确就位安装。
[0057] 通过设置临时预应力拉索3施加预应力,可以有效控制提升结构2‑1的刚度,调整、控制提升结构2‑1提升过程中的变形和形态。在本实施例中,对提升结构2‑1施加239kN的初始张力,当预应力张拉完成时,提升结构2‑1两端相对收缩14mm;临时预应力拉索3锚固完成,提升结构2‑1整体提升过程中两端相对伸长14mm。提升就位时提升结构2‑1两端的相对变形为零,跨中挠度25mm,符合安装精度要求和设计要求。
[0058] 当对提升结构2‑1施加267kN的初始张力时,预应力张拉完成时,提升结构2‑1刚好脱离胎架,提升过程中的跨中挠度为零,结构两端也不再产生相对变形,提升就位时提升结构2‑1两端的相对收缩17mm,满足安装精度要求和设计要求。
[0059] 根据计算分析结果,临时预应力拉索宜选用2束 的高强低松弛预应力钢绞线,应力比0.47~0.52。
[0060] 因此,在本实施例中,选用2束 的高强低松弛预应力钢绞线作为临时预应力拉索,采用装配式设计的张拉端节点9和锚固端节点10进行预应力拉索的穿束。
[0061] 为了方便临时预应力的施加与卸载,临时预应力拉索3的张拉和锚固采用液压张拉器进行。张拉端节点9的构造如图5所示,用于张拉两束预应力拉索3的液压张拉器9‑1支撑于端承件9‑2上,两个端承件9‑2通过上、下连接角钢9‑41和9‑42连接成整体,并支承在剪力板9‑3上,剪力板9‑3采用穿心式连接与提升结构2‑1的下弦杆9‑6焊接连接在一起,剪力板9‑3的尺寸通过计算确定。两个端承件9‑2与上、下连接角钢9‑41和9‑42通过高强螺栓连接。
[0062] 所述的端承件9‑2由端板9‑21、水平加劲板9‑22、竖向加劲板9‑23和9‑24焊接组装而成,如图6所示。其中,所述端板9‑21上开有穿索孔9‑25,并在适当位置设置连接螺栓孔9‑26。所述端承件9‑2靠近提升结构下弦杆9‑6腹板的竖向加劲板9‑24上设置与剪力板9‑3相匹配的齿槽,可稳固地扣挂在剪力板9‑3。
[0063] 锚固端节点10的构造如图7所示,临时预应力拉索3通过底锚10‑1锚固固定,底锚10‑1支撑在端承件10‑2上,两个端承件10‑2通过上、下连接角钢10‑41和10‑42连接成整体,并支承在剪力板10‑3上。所述的端承件10‑2、上、下连接角钢10‑41和10‑42,剪力板10‑3的规格和连接方式与端承件9‑2、上、下连接角钢9‑41和9‑42,剪力板9‑3相同。
[0064] 实施例二
[0065] 如图1所示,需要进行整体提升施工的拱形结构为拱形屋面结构2,拱形屋面结构2需要安装在下部支撑结构1上,拱形屋面结构2包括拱形的提升结构2‑1和支座处后装构件2‑2,安装时提升结构2‑1在地面进行拼装,拼装后提升至下部支撑结构1,然后再进行支座处后装构件2‑2的安装,将提升结构2‑1安装在下部支撑结构1上。
[0066] 如图2至图4所示,在进行整体提升施工时,包括以下步骤。
[0067] (1)如图2所示,在地面设置胎架4,在胎架4上完成拱形提升结构2‑1的拼装。
[0068] (2)拼装完成后,在提升结构2‑1的两端穿束预应力拉索3,并施加临时预应力,将临时预应力拉索3张拉至控制值,并在提升结构2‑1上设置提升吊点8。
[0069] (3)在下部支撑结构1上搭建提升架5,在提升架5上设置液压同步提升系统6,液压同步提升系统6通过提升钢绞线7连接至提升吊点8,为提升结构2‑1的整体提升做好准备。
[0070] (4)提升时,首先调试液压提升系统,检查提升结构单元以及液压同步提升的所有临时措施是否满足施工要求。确认无误后,开始试提升,液压提升器伸缸压力逐渐上调,依次为所需压力的20%,40%,在一切正常情况下,继续加载到60%,70%,80%,90%,95%,100%。提升单元提升约150mm后,暂停提升,微调提升单元的各个吊点的标高,使其处于水平,静置4‑12小时,再次对液压提升设备系统、结构系统进行全面检查;确认无误后,将提升结构2‑1提升就位,如图3所示。
[0071] (5)如图3所示,提升就位后,安装支座处拱形结构后装构件2‑2,使拱形结构与下部支撑结构1连接形成整体。
[0072] (6)如图4所示,依次卸载液压提升系统的各个吊点,拆除液压提升系统6、提升架5,并通过控制预应力张拉器9‑1拆除临时预应力拉索3,然后拆除张拉端节点9和锚固端节点10,使得拱形结构荷载转移至下部支撑结构1上,达到设计状态。至此,完成拱形屋面结构
2的提升安装。
[0073] 在步骤(2),计算所需的临时预应力,如果所需临时预应力较小,只需使用单束预应力钢绞线,则进行相应的张拉端节点9’和锚固端节点10’的设计。
[0074] 如图8‑9所示,使用单索进行预应力张拉时,在提升结构的提升桁架的下弦杆9‑6的上翼板和下翼板的适当位置分别开有用作临时预应力拉索3穿束的上穿孔9‑61和下穿孔9‑62,两侧腹板上固定有限位转向钢棒9’‑3,以调整临时预应力拉索3的张拉方向,以及减小摩擦力,用于张拉预应力拉索3的液压张拉器9‑1支撑于端承件9’‑2上,端承件9’‑2卡支在所述提升桁架的下弦杆9‑6上。
[0075] 所述的端承件9’‑2由端板9’‑21,卡板9’‑22、9’‑23和加劲板9’‑24,防滑加劲肋9’‑25焊接组装而成,如图10所示。其中端板9’‑21上开孔以便临时辅助预应力拉索3穿过,卡板9’‑22、9’‑23的端部设置有与所述提升桁架的下弦杆9‑6相匹配的凹型卡槽。
[0076] 单索临时辅助预应力拉索3的锚固端节点如图11所示。临时辅助预应力拉索3利用端部设置的锁夹10’‑1通过销轴与设置在所述提升桁架下弦底部的连接板10’‑2上。
[0077] 根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。