一种获取碳酸岩裂隙边坡挡土墙最优体型参数的方法转让专利

申请号 : CN202110797811.9

文献号 : CN113496087B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 刘文连眭素刚李泽许汉华槐以高王帮团唐果徐鹏飞

申请人 : 中国有色金属工业昆明勘察设计研究院有限公司昆明理工大学

摘要 :

本发明公开了一种获取碳酸岩裂隙边坡挡土墙最优体型参数的方法,包括:步骤1、拟定碳酸岩裂隙边坡和挡土墙的基本参数;步骤2、计算碳酸岩裂隙边坡滑体的剩余推力;步骤3、建立求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型;步骤4、求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型。本发明以碳酸岩裂隙边坡为研究对象,通过拟定碳酸岩裂隙边坡和挡土墙的基本参数,并考虑与垂直溶蚀裂隙深度相关的碳酸岩裂隙边坡滑体的剩余推力、挡土墙的力平衡和力矩平衡,同时还考虑挡土墙底面的剪切屈服约束方程和碳酸岩裂隙边坡稳定性安全裕度,进而建立了理论严谨的求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型。

权利要求 :

1.一种获取碳酸岩裂隙边坡挡土墙最优体型参数的方法,其特征在于:包括:步骤1、拟定碳酸岩裂隙边坡和挡土墙的基本参数;

步骤2、计算碳酸岩裂隙边坡滑体的剩余推力;

步骤3、建立求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型;

步骤4、求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型,获得挡土墙的最优体型参数;

所述步骤2具体为:

步骤2.1、建立碳酸岩裂隙边坡滑体底滑面的倾角约束方程,具体为:步骤2.2、计算碳酸岩裂隙边坡滑体的自重,具体为:步骤2.3、计算碳酸岩裂隙边坡滑体的剩余推力:碳酸岩裂隙边坡滑体在竖直方向受的自重Gr和顶部集中力Fr的作用;Gr和Fr沿平行于滑体底面方向的分量产生下滑力,同时Gr和Fr沿垂直于滑体底面方向的分量与滑体底面的凝聚力共同产生抗滑力;碳酸岩裂隙边坡滑体的剩余推力等于“Gr和Fr沿平行于滑体底面方向的分量产生的下滑力”减去“Gr和Fr沿垂直于滑体底面方向的分量与滑体底面的凝聚力共同产生的抗滑力”;剩余推力具体计算为:式中:β是碳酸岩裂隙边坡滑体底滑面的倾角,Hs是碳酸岩裂隙边坡的高度,Hc是碳酸岩裂隙边坡的垂直溶蚀裂隙的深度;L是碳酸岩裂隙边坡滑体顶面的宽度;Gr是碳酸岩裂隙边坡滑体的自重,γs是碳酸岩裂隙边坡岩体的容重;Fc是碳酸岩裂隙边坡滑体的剩余推力,Fr是碳酸岩裂隙边坡滑体顶部作用的集中力, 是碳酸岩边坡岩体的内摩擦角,cs是碳酸岩边坡岩体的凝聚力,K是碳酸岩裂隙边坡的稳定性安全系数;

所述步骤3具体为:

步骤3.1、建立挡土墙最优体型目标函数:将挡土墙的顶面宽度、底面宽度设为最优体型参数变量,当碳酸岩裂隙边坡的稳定性安全裕度达到规定要求时,求解使得挡土的截面面积最小的挡土墙的顶面宽度、底面宽度的最优值,具体为:

步骤3.2、建立挡土墙的力平衡约束方程:建立挡土墙沿水平方向的力平衡约束方程:Sd‑Fccosβ=0

建立挡土墙沿竖直方向的力平衡约束方程:步骤3.3、建立挡土墙绕墙趾转动的力矩平衡约束方程:步骤3.4、建立挡土墙底面的剪切屈服约束方程:步骤3.5、建立碳酸岩裂隙边坡稳定性安全裕度的约束方程:步骤3.6、建立求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型,具体为:集成上述的挡土墙最优体型目标函数、挡土墙的力平衡约束方程、挡土墙的力矩平衡约束方程、挡土墙底面的剪切屈服约束方程和碳酸岩裂隙边坡稳定性安全裕度的约束方程,得到求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型如下:式中:Minimize表示“求最小”,Ad是挡土墙的截面面积,Du是挡土墙顶面的宽度,Dd是挡土墙底面的宽度,Dd=Du+Hs/tanθ,θ是挡土墙的临空面的倾角,Hs是碳酸岩裂隙边坡的高度;Sd是挡土墙底面的切向力,Fc是碳酸岩裂隙边坡滑体的剩余推力,β是碳酸岩裂隙边坡滑体底滑面的倾角;Nd是挡土墙底面的法向力,γw是挡土墙的容重;K是碳酸岩裂隙边坡的稳定性安全系数, 是挡土墙底面的内摩擦角,cw是挡土墙底面的凝聚力;δ是碳酸岩裂隙边坡的稳定性安全裕度;Hc是碳酸岩裂隙边坡的垂直溶蚀裂隙的深度,L是碳酸岩裂隙边坡滑体顶面的宽度,Gr是碳酸岩裂隙边坡滑体的自重,γs是碳酸岩裂隙边坡岩体的容重,Fr是碳酸岩裂隙边坡滑体顶部作用的集中力, 是碳酸岩边坡岩体的内摩擦角,cs是碳酸岩边坡岩体的凝聚力。

2.根据权利要求1所述的获取碳酸岩裂隙边坡挡土墙最优体型参数的方法,其特征在于:所述拟定碳酸岩裂隙边坡和挡土墙的基本参数,包括:确定碳酸岩裂隙边坡的几何参数;确定碳酸岩裂隙边坡的材料参数;确定碳酸岩裂隙边坡的外力参数和安全性控制参数;

确定挡土墙临空面的倾角;确定挡土墙的材料参数。

3.根据权利要求2所述的获取碳酸岩裂隙边坡挡土墙最优体型参数的方法,其特征在于:所述确定碳酸岩裂隙边坡的几何参数,具体为:碳酸岩裂隙边坡的高度Hs,碳酸岩裂隙边坡滑体顶面的宽度L,碳酸岩裂隙边坡的垂直溶蚀裂隙的深度Hc;所述确定碳酸岩裂隙边坡的材料参数,具体为:碳酸岩裂隙边坡岩体的容重γs,碳酸岩裂隙边坡岩体的凝聚力cs,碳酸岩裂隙边坡岩体的内摩擦角 所述确定碳酸岩裂隙边坡的外力参数和安全性控制参数,具体为:碳酸岩裂隙边坡滑体顶部作用的集中力Fr;碳酸岩裂隙边坡的稳定性安全裕度δ;所述确定挡土墙临空面的倾角,具体为:挡土墙的临空面的倾角θ;所述确定挡土墙的材料参数,具体为:挡土墙的容重γw,挡土墙底面的凝聚力cw,挡土墙底面的内摩擦角 其中,碳酸岩裂隙边坡具有一定高度且边坡的坡面AE为竖直状态,在坡顶有一垂直溶蚀裂隙BC,ABCD为碳酸岩裂隙边坡的滑体,AD为碳酸岩裂隙边坡滑体的底滑面,碳酸岩裂隙边坡滑体的顶面AB作用有集中力;挡土墙为重力式挡土墙,挡土墙形状为直角梯形AEFG,挡土墙的高度与碳酸岩裂隙边坡的高度相等,AG为挡土墙的顶面、EF为挡土墙的底面、FG为挡土墙临空面,F点为挡土墙的墙趾。

4.根据权利要求1所述的获取碳酸岩裂隙边坡挡土墙最优体型参数的方法,其特征在于:所述步骤4具体为:将已知参数θ、Hs、L、Hc、γs、 cs、γw、cw、 δ代入求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型,以挡土墙的截面面积Ad为目标函数,以Du、Dd、Fr、Gr、β、K、Nd、Sd为决策变量,使用“内点算法”求解该非线性数学规划模型,求解得到挡土的截面面积以及挡土墙的顶面宽度、底面宽度的最优值;其中,θ是挡土墙的临空面的倾角,Hs是碳酸岩裂隙边坡的高度,L是碳酸岩裂隙边坡滑体顶面的宽度,Hc是碳酸岩裂隙边坡的垂直溶蚀裂隙的深度,γs是碳酸岩裂隙边坡岩体的容重, 是碳酸岩边坡岩体的内摩擦角,cs是碳酸岩边坡岩体的凝聚力,γw是挡土墙的容重,cw是挡土墙底面的凝聚力, 是挡土墙底面的内摩擦角,δ是碳酸岩裂隙边坡的稳定性安全裕度,Du是挡土墙顶面的宽度,Dd是挡土墙底面的宽度,Fr是碳酸岩裂隙边坡滑体顶部作用的集中力,Gr是碳酸岩裂隙边坡滑体的自重,β是碳酸岩裂隙边坡滑体底滑面的倾角,K是碳酸岩裂隙边坡的稳定性安全系数,Nd是挡土墙底面的法向力,Sd是挡土墙底面的切向力。

说明书 :

一种获取碳酸岩裂隙边坡挡土墙最优体型参数的方法

技术领域

[0001] 本发明涉及一种获取碳酸岩裂隙边坡挡土墙最优体型参数的方法,属于岩质边坡稳定性分析技术领域。

背景技术

[0002] 碳酸岩边坡在我国西南广泛分布,碳酸盐由于长期受到水和二氧化碳的侵蚀,碳酸岩边坡中存在大量溶蚀裂隙。受裂隙水的重力作用,碳酸岩边坡中的溶蚀裂隙一般沿竖
直方向发展,当裂隙深度发展到一定深度时,碳酸岩边坡会处于不稳定状态,需要对其进行
采取支护措施。
[0003] 不稳定的临空面是竖直面的碳酸岩裂隙边坡经常采用重力式挡土墙进行支护,如图1所示;碳酸岩裂隙边坡的垂直溶蚀裂隙发展到一定深度时,碳酸岩裂隙边坡的滑体的抗
滑力小于滑动力,产生剩余推力;此时在边坡临空面采用挡土墙进行支挡以平衡滑体的剩
余推力。在挡土墙的设计过程中,需要满足以下四个条件:(1)挡土墙在滑体的剩余推力的
作用下需保持力的平衡状态,保证不发生沿挡土墙底面的剪切滑动破坏;(2)挡土墙在滑体
的剩余推力的作用下需保持力的力矩平衡状态,保证不发生绕墙趾的转动倾倒破坏;(3)挡
土墙需具有一定的安全裕度;(4)挡土墙在保证不发生破坏的条件下,其体型需越小越好,
以保证挡土墙建设的经济性。因此碳酸岩裂隙边坡挡土墙的设计是一个保证挡土墙有一定
安全裕度条件下的体型最优化问题。
[0004] 要建立获取碳酸岩裂隙边坡挡土墙最优体型参数的方法,需要解决以下三个方面的问题:(1)与垂直溶蚀裂隙深度相关的碳酸岩裂隙边坡滑体的剩余推力的数学表达式;
(2)根据剩余推力建立挡土墙发生平动破坏和转动倾倒破坏的约束方程;(3)建立求解碳酸
岩裂隙边坡挡土墙最优体型参数的最优化模型。
[0005] 当前在岩土工程设计领域,还没有碳酸岩裂隙边坡挡土墙最优体型参数的方法。

发明内容

[0006] 本发明提供了一种获取碳酸岩裂隙边坡挡土墙最优体型参数的方法,以获得碳酸岩裂隙边坡挡土墙的最优体型参数,为碳酸岩裂隙边坡的稳定性支护设计提供新方法。
[0007] 本发明的技术方案是:一种获取碳酸岩裂隙边坡挡土墙最优体型参数的方法,包括:
[0008] 步骤1、拟定碳酸岩裂隙边坡和挡土墙的基本参数;
[0009] 步骤2、计算碳酸岩裂隙边坡滑体的剩余推力;
[0010] 步骤3、建立求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型;
[0011] 步骤4、求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型,获得挡土墙的最优体型参数。
[0012] 所述拟定碳酸岩裂隙边坡和挡土墙的基本参数,包括:确定碳酸岩裂隙边坡的几何参数;确定碳酸岩裂隙边坡的材料参数;确定碳酸岩裂隙边坡的外力参数和安全性控制
参数;确定挡土墙临空面的倾角;确定挡土墙的材料参数。
[0013] 所述确定碳酸岩裂隙边坡的几何参数,具体为:碳酸岩裂隙边坡的高度Hs,碳酸岩裂隙边坡滑体顶面的宽度L,碳酸岩裂隙边坡的垂直溶蚀裂隙的深度Hc;所述确定碳酸岩裂
隙边坡的材料参数,具体为:碳酸岩裂隙边坡岩体的容重γs,碳酸岩裂隙边坡岩体的凝聚
力cs,碳酸岩裂隙边坡岩体的内摩擦角 所述确定碳酸岩裂隙边坡的外力参数和安全性
控制参数,具体为:碳酸岩裂隙边坡滑体顶部作用的集中力Fr;碳酸岩裂隙边坡的稳定性安
全裕度δ;所述确定挡土墙临空面的倾角,具体为:挡土墙的临空面的倾角θ;所述确定挡土
墙的材料参数,具体为:挡土墙的容重γw,挡土墙底面的凝聚力cw,挡土墙底面的内摩擦角
其中,碳酸岩裂隙边坡具有一定高度且边坡的坡面AE为竖直状态,在坡顶有一垂直溶
蚀裂隙BC,ABCD为碳酸岩裂隙边坡的滑体,AD为碳酸岩裂隙边坡滑体的底滑面,碳酸岩裂隙
边坡滑体的顶面AB作用有集中力;挡土墙为重力式挡土墙,挡土墙形状为直角梯形AEFG,挡
土墙的高度与碳酸岩裂隙边坡的高度相等,AG为挡土墙的顶面、EF为挡土墙的底面、FG为挡
土墙临空面,F点为挡土墙的墙趾。
[0014] 所述步骤2具体为:
[0015] 步骤2.1、建立碳酸岩裂隙边坡滑体底滑面的倾角约束方程,具体为:
[0016]
[0017] 步骤2.2、计算碳酸岩裂隙边坡滑体的自重,具体为:
[0018]
[0019] 步骤2.3、计算碳酸岩裂隙边坡滑体的剩余推力:碳酸岩裂隙边坡滑体在竖直方向受的自重Gr和顶部集中力Fr的作用;Gr和Fr沿平行于滑体底面方向的分量产生下滑力,同时
Gr和Fr沿垂直于滑体底面方向的分量与滑体底面的凝聚力共同产生抗滑力;碳酸岩裂隙边
坡滑体的剩余推力等于“Gr和Fr沿平行于滑体底面方向的分量产生的下滑力”减去“Gr和Fr
沿垂直于滑体底面方向的分量与滑体底面的凝聚力共同产生的抗滑力”;剩余推力具体计
算为:
[0020]
[0021] 式中:β是碳酸岩裂隙边坡滑体底滑面的倾角,Hs是碳酸岩裂隙边坡的高度,Hc是碳酸岩裂隙边坡的垂直溶蚀裂隙的深度;L是碳酸岩裂隙边坡滑体顶面的宽度;Gr是碳酸岩裂
隙边坡滑体的自重,γs是碳酸岩裂隙边坡岩体的容重;Fc是碳酸岩裂隙边坡滑体的剩余推
力,Fr是碳酸岩裂隙边坡滑体顶部作用的集中力, 是碳酸岩边坡岩体的内摩擦角,cs是碳
酸岩边坡岩体的凝聚力,K是碳酸岩裂隙边坡的稳定性安全系数。
[0022] 所述步骤3具体为:
[0023] 步骤3.1、建立挡土墙最优体型目标函数:
[0024] 将挡土墙的顶面宽度、底面宽度设为最优体型参数变量,当碳酸岩裂隙边坡的稳定性安全裕度达到规定要求时,求解使得挡土的截面面积最小的挡土墙的顶面宽度、底面
宽度的最优值,具体为:
[0025]
[0026] 步骤3.2、建立挡土墙的力平衡约束方程:
[0027] 建立挡土墙沿水平方向的力平衡约束方程:
[0028] Sd‑Fc cosβ=0
[0029] 建立挡土墙沿竖直方向的力平衡约束方程:
[0030]
[0031] 步骤3.3、建立挡土墙绕墙趾转动的力矩平衡约束方程:
[0032]
[0033] 步骤3.4、建立挡土墙底面的剪切屈服约束方程:
[0034]
[0035] 步骤3.5、建立碳酸岩裂隙边坡稳定性安全裕度的约束方程:
[0036]
[0037] 步骤3.6、建立求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型,具体为:集成上述的挡土墙最优体型目标函数、挡土墙的力平衡约束方程、挡土墙的力矩平衡约
束方程、挡土墙底面的剪切屈服约束方程和碳酸岩裂隙边坡稳定性安全裕度的约束方程,
得到求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型如下:
[0038]
[0039] 式中:Minimize表示“求最小”,Ad是挡土墙的截面面积,Du是挡土墙顶面的宽度,Dd是挡土墙底面的宽度,Dd=Du+Hs/tanθ,θ是挡土墙的临空面的倾角,Hs是碳酸岩裂隙边坡的
高度;Sd是挡土墙底面的切向力,Fc是碳酸岩裂隙边坡滑体的剩余推力,β是碳酸岩裂隙边坡
滑体底滑面的倾角;Nd是挡土墙底面的法向力,γw是挡土墙的容重;K是碳酸岩裂隙边坡的
稳定性安全系数, 是挡土墙底面的内摩擦角,cw是挡土墙底面的凝聚力;δ是碳酸岩裂隙
边坡的稳定性安全裕度;Hc是碳酸岩裂隙边坡的垂直溶蚀裂隙的深度,L是碳酸岩裂隙边坡
滑体顶面的宽度,Gr是碳酸岩裂隙边坡滑体的自重,γs是碳酸岩裂隙边坡岩体的容重,Fr是
碳酸岩裂隙边坡滑体顶部作用的集中力, 是碳酸岩边坡岩体的内摩擦角,cs是碳酸岩边
坡岩体的凝聚力。
[0040] 所述步骤4具体为:将已知参数θ、Hs、L、Hc、γs、 cs、γw、cw、 δ代入求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型,以挡土墙的截面面积Ad为目标函数,以
Du、Dd、Fr、Gr、β、K、Nd、Sd为决策变量,使用“内点算法”求解该非线性数学规划模型,求解得到
挡土的截面面积以及挡土墙的顶面宽度、底面宽度的最优值;其中,θ是挡土墙的临空面的
倾角,Hs是碳酸岩裂隙边坡的高度,L是碳酸岩裂隙边坡滑体顶面的宽度,Hc是碳酸岩裂隙边
坡的垂直溶蚀裂隙的深度,γs是碳酸岩裂隙边坡岩体的容重, 是碳酸岩边坡岩体的内摩
擦角,cs是碳酸岩边坡岩体的凝聚力,γw是挡土墙的容重,cw是挡土墙底面的凝聚力, 是
挡土墙底面的内摩擦角,δ是碳酸岩裂隙边坡的稳定性安全裕度,Du是挡土墙顶面的宽度,Dd
是挡土墙底面的宽度,Fr是碳酸岩裂隙边坡滑体顶部作用的集中力,Gr是碳酸岩裂隙边坡滑
体的自重,β是碳酸岩裂隙边坡滑体底滑面的倾角,K是碳酸岩裂隙边坡的稳定性安全系数,
Nd是挡土墙底面的法向力,Sd是挡土墙底面的切向力。
[0041] 本发明的有益效果是:本发明以碳酸岩裂隙边坡为研究对象,通过拟定碳酸岩裂隙边坡和挡土墙的基本参数,并考虑与垂直溶蚀裂隙深度相关的碳酸岩裂隙边坡滑体的剩
余推力、挡土墙的力平衡和力矩平衡,同时还考虑挡土墙底面的剪切屈服约束方程和碳酸
岩裂隙边坡稳定性安全裕度,进而建立了理论严谨的求解碳酸岩裂隙边坡挡土墙最优体型
参数的数学规划模型,并进一步采用非线性规划算法求解挡土墙沿底面发生剪切滑动破坏
和绕墙趾发生转动破坏时的最优体型参数,该发明方法计算精度高,为碳酸岩裂隙边坡的
支护设计提供了一种新方法。

附图说明

[0042] 图1为本发明技术流程图;
[0043] 图2为碳酸岩裂隙边坡挡土墙示意图;
[0044] 图3为碳酸岩裂隙边坡滑体示意图;
[0045] 图4为挡土墙示意图。

具体实施方式

[0046] 下面结合附图和实施例,对发明作进一步的说明,但本发明的内容并不限于所述范围。
[0047] 实施例1:如图1‑4所示,一种获取碳酸岩裂隙边坡挡土墙最优体型参数的方法,包括:
[0048] 步骤1、拟定碳酸岩裂隙边坡和挡土墙的基本参数;
[0049] 步骤2、计算碳酸岩裂隙边坡滑体的剩余推力;
[0050] 步骤3、建立求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型;
[0051] 步骤4、求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型,获得挡土墙的最优体型参数。
[0052] 进一步地,可以设置所述拟定碳酸岩裂隙边坡和挡土墙的基本参数,包括:确定碳酸岩裂隙边坡的几何参数;确定碳酸岩裂隙边坡的材料参数;确定碳酸岩裂隙边坡的外力
参数和安全性控制参数;确定挡土墙临空面的倾角;确定挡土墙的材料参数。
[0053] 进一步地,可以设置所述确定碳酸岩裂隙边坡的几何参数,具体为:碳酸岩裂隙边坡的高度Hs,碳酸岩裂隙边坡滑体顶面的宽度L,碳酸岩裂隙边坡的垂直溶蚀裂隙的深度Hc;
所述确定碳酸岩裂隙边坡的材料参数,具体为:碳酸岩裂隙边坡岩体的容重γs,碳酸岩裂
隙边坡岩体的凝聚力cs,碳酸岩裂隙边坡岩体的内摩擦角 所述确定碳酸岩裂隙边坡的
外力参数和安全性控制参数,具体为:碳酸岩裂隙边坡滑体顶部作用的集中力Fr;碳酸岩裂
隙边坡的稳定性安全裕度δ;所述确定挡土墙临空面的倾角,具体为:挡土墙的临空面的倾
角θ;所述确定挡土墙的材料参数,具体为:挡土墙的容重γw,挡土墙底面的凝聚力cw,挡土
墙底面的内摩擦角 其中,碳酸岩裂隙边坡具有一定高度且边坡的坡面AE为竖直状态,在
坡顶有一垂直溶蚀裂隙BC,ABCD为碳酸岩裂隙边坡的滑体,AD为碳酸岩裂隙边坡滑体的底
滑面,碳酸岩裂隙边坡滑体的顶面AB作用有集中力;挡土墙为重力式挡土墙,挡土墙形状为
直角梯形AEFG,挡土墙的高度与碳酸岩裂隙边坡的高度相等,AG为挡土墙的顶面、EF为挡土
墙的底面、FG为挡土墙临空面,F点为挡土墙的墙趾,挡土墙的材料可以是砌石体或毛石混
凝土。
[0054] 进一步地,可以设置所述步骤2具体为:
[0055] 步骤2.1、建立碳酸岩裂隙边坡滑体底滑面的倾角约束方程,具体为:
[0056]
[0057] 步骤2.2、计算碳酸岩裂隙边坡滑体的自重,具体为:
[0058]
[0059] 步骤2.3、计算碳酸岩裂隙边坡滑体的剩余推力:碳酸岩裂隙边坡滑体在竖直方向受的自重Gr和顶部集中力Fr的作用;Gr和Fr沿平行于滑体底面方向的分量产生下滑力,同时
Gr和Fr沿垂直于滑体底面方向的分量与滑体底面的凝聚力共同产生抗滑力;碳酸岩裂隙边
坡滑体的剩余推力等于“Gr和Fr沿平行于滑体底面方向的分量产生的下滑力”减去“Gr和Fr
沿垂直于滑体底面方向的分量与滑体底面的凝聚力共同产生的抗滑力”;剩余推力具体计
算为:
[0060]
[0061] 式中:β是碳酸岩裂隙边坡滑体底滑面的倾角,Hs是碳酸岩裂隙边坡的高度,Hc是碳酸岩裂隙边坡的垂直溶蚀裂隙的深度;L是碳酸岩裂隙边坡滑体顶面的宽度;Gr是碳酸岩裂
隙边坡滑体的自重,γs是碳酸岩裂隙边坡岩体的容重;Fc是碳酸岩裂隙边坡滑体的剩余推
力,Fr是碳酸岩裂隙边坡滑体顶部作用的集中力, 是碳酸岩边坡岩体的内摩擦角,cs是碳
酸岩边坡岩体的凝聚力,K是碳酸岩裂隙边坡的稳定性安全系数。
[0062] 进一步地,可以设置所述步骤3具体为:
[0063] 步骤3.1、建立挡土墙最优体型目标函数:
[0064] 将挡土墙的顶面宽度、底面宽度设为最优体型参数变量,当碳酸岩裂隙边坡的稳定性安全裕度达到规定要求时,求解使得挡土的截面面积最小的挡土墙的顶面宽度、底面
宽度的最优值,具体为:
[0065]
[0066] 式中:Du是挡土墙顶面的宽度;Dd是挡土墙底面的宽度,Dd=Du+Hs/tanθ,θ是挡土墙的临空面的倾角;Ad是挡土墙的截面面积;Hs是碳酸岩裂隙边坡的高度;Minimize表示“求最
小”;
[0067] 步骤3.2、建立挡土墙的力平衡约束方程:
[0068] 建立挡土墙沿水平方向的力平衡约束方程:
[0069] Sd‑Fc cosβ=0
[0070] 式中:Sd是挡土墙底面的切向力;Fc是碳酸岩裂隙边坡滑体的剩余推力;β是碳酸岩裂隙边坡滑体底滑面的倾角;
[0071] 建立挡土墙沿竖直方向的力平衡约束方程:
[0072]
[0073] 式中:Nd是挡土墙底面的法向力;Fc是碳酸岩裂隙边坡滑体的剩余推力;β是碳酸岩裂隙边坡滑体底滑面的倾角;Du是挡土墙顶面的宽度;Dd是挡土墙底面的宽度;Dd=Du+Hs/
tanθ,θ是挡土墙的临空面的倾角;Hs是碳酸岩裂隙边坡的高度;γw是挡土墙的容重;
[0074] 步骤3.3、建立挡土墙的力矩平衡约束方程,具体为:建立挡土墙绕墙趾转动的力矩平衡约束方程如下:
[0075]
[0076] 式中:Fc是碳酸岩裂隙边坡滑体的剩余推力;β是碳酸岩裂隙边坡滑体底滑面的倾角;Du是挡土墙顶面的宽度;Dd是挡土墙底面的宽度,Dd=Du+Hs/tanθ,θ是挡土墙的临空面的
倾角;Hs是碳酸岩裂隙边坡的高度;γw是挡土墙的容重;
[0077] 步骤3.4、建立挡土墙底面的剪切屈服约束方程:
[0078]
[0079] 式中:K是碳酸岩裂隙边坡的稳定性安全系数,Sd是挡土墙底面的切向力;Nd是挡土墙底面的法向力;Dd是挡土墙底面的宽度,Dd=Du+Hs/tanθ;cw是挡土墙底面的凝聚力; 是
挡土墙底面的内摩擦角;
[0080] 步骤3.5、建立碳酸岩裂隙边坡稳定性安全裕度的约束方程:
[0081]
[0082] 式中:K是碳酸岩裂隙边坡的稳定性安全系数,δ是碳酸岩裂隙边坡的稳定性安全裕度;
[0083] 步骤3.6、建立求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型,具体为:集成上述的挡土墙最优体型目标函数、挡土墙的力平衡约束方程、挡土墙的力矩平衡约
束方程、挡土墙底面的剪切屈服约束方程和碳酸岩裂隙边坡稳定性安全裕度的约束方程,
得到求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型如下:
[0084]
[0085] 式中:Minimize表示“求最小”,Ad是挡土墙的截面面积,Du是挡土墙顶面的宽度,Dd是挡土墙底面的宽度,Dd=Du+Hs/tanθ,θ是挡土墙的临空面的倾角,Hs是碳酸岩裂隙边坡的
高度;Sd是挡土墙底面的切向力,Fc是碳酸岩裂隙边坡滑体的剩余推力,β是碳酸岩裂隙边坡
滑体底滑面的倾角;Nd是挡土墙底面的法向力,γw是挡土墙的容重;K是碳酸岩裂隙边坡的
稳定性安全系数, 是挡土墙底面的内摩擦角,cw是挡土墙底面的凝聚力;δ是碳酸岩裂隙
边坡的稳定性安全裕度;Hc是碳酸岩裂隙边坡的垂直溶蚀裂隙的深度,L是碳酸岩裂隙边坡
滑体顶面的宽度,Gr是碳酸岩裂隙边坡滑体的自重,γs是碳酸岩裂隙边坡岩体的容重,Fr是
碳酸岩裂隙边坡滑体顶部作用的集中力, 是碳酸岩边坡岩体的内摩擦角,cs是碳酸岩边
坡岩体的凝聚力。
[0086] 进一步地,可以设置所述步骤4具体为:将已知参数θ、Hs、L、Hc、γs、 cs、γw、cw、δ代入求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型,以挡土墙的截面面
积Ad为目标函数,以Du、Dd、Fr、Gr、β、K、Nd、Sd为决策变量,使用“内点算法”求解该非线性数学
规划模型,求解得到挡土的截面面积以及挡土墙的顶面宽度、底面宽度的最优值;其中,θ是
挡土墙的临空面的倾角,Hs是碳酸岩裂隙边坡的高度,L是碳酸岩裂隙边坡滑体顶面的宽
度,Hc是碳酸岩裂隙边坡的垂直溶蚀裂隙的深度,γs是碳酸岩裂隙边坡岩体的容重, 是
碳酸岩边坡岩体的内摩擦角,cs是碳酸岩边坡岩体的凝聚力,γw是挡土墙的容重,cw是挡土
墙底面的凝聚力, 是挡土墙底面的内摩擦角,δ是碳酸岩裂隙边坡的稳定性安全裕度,Du
是挡土墙顶面的宽度,Dd是挡土墙底面的宽度,Fr是碳酸岩裂隙边坡滑体顶部作用的集中
力,Gr是碳酸岩裂隙边坡滑体的自重,β是碳酸岩裂隙边坡滑体底滑面的倾角,K是碳酸岩裂
隙边坡的稳定性安全系数,Nd是挡土墙底面的法向力,Sd是挡土墙底面的切向力。
[0087] 再进一步,本发明给出如下实验数据:
[0088] 碳酸岩裂隙边坡的高度Hs取12.0m,碳酸岩裂隙边坡滑体顶面的宽度L取3.0m,碳3
酸岩裂隙边坡的垂直溶蚀裂隙的深度Hc取7.0m;碳酸岩裂隙边坡岩体的容重γs取26kN/m ,
碳酸岩裂隙边坡岩体的凝聚力cs取300kPa,碳酸岩裂隙边坡岩体的内摩擦角 取30°;碳酸
岩裂隙边坡滑体顶部作用的集中力Fr取3000kN,碳酸岩裂隙边坡的稳定性安全裕度δ取
3
50%;挡土墙的临空面的倾角θ取75°;挡土墙的容重γw取27kN/m ,挡土墙底面的凝聚力cw
取80kPa,挡土墙底面的内摩擦角 取20°。
[0089] 将已知参数θ、Hs、L、Hc、γs、 cs、γw、cw、 δ代入求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划模型,以挡土墙的截面面积Ad为目标函数,以Du、Dd、Fr、Gr、β、K、Nd、
Sd为决策变量,使用“内点算法”求解该非线性数学规划模型,目标函数和决策变量的求解
2
结果如表1所示,求解得到:挡土的截面面积最优值为34.69m ,挡土墙的顶面宽度的最优值
为1.28m、底面宽度的最优值为4.49m。
[0090] 表1实施例计算结果统计表
[0091]
[0092] 本发明的基本原理是:本发明以碳酸岩裂隙边坡为研究对象,根据碳酸岩裂隙边坡滑体的极限平衡计算碳酸岩裂隙边坡滑体的剩余推力;进而根据挡土墙最优体型目标函
数、挡土墙的力平衡约束方程、挡土墙的力矩平衡方程、挡土墙底面的剪切屈服约束方程和
碳酸岩裂隙边坡稳定性安全裕度的约束方程,建立求解碳酸岩裂隙边坡挡土墙最优体型参
数的数学规划模型;使用“内点算法”求解碳酸岩裂隙边坡挡土墙最优体型参数的数学规划
模型,获得挡土墙的最优体型参数,包括挡土墙的顶面宽度、底面宽度的最优值。
[0093] 上面结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前
提下作出各种变化。