一种两相钽酸钴陶瓷块体及其制备方法转让专利

申请号 : CN202110954053.7

文献号 : CN113548891B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陈琳冯晶王建坤张陆洋李振军王峰

申请人 : 陕西天璇涂层科技有限公司

摘要 :

本发明公开了一种两相钽酸钴陶瓷块体及其制备方法,两相钽酸钴陶瓷块体由Co4Ta2O9和CoTa2O6构成,且Co4Ta2O9和CoTa2O6的摩尔比为X:(1‑X),1>X>0;两相钽酸钴陶瓷块体的热导率为1.5~2.8W.m‑1.K‑1,断裂韧性>2MPa.m1/2;通过热分解获得具有高度烧结、反应活性的氧化钴和氧化钽,有效降低了反应生成Co4Ta2O9和CoTa2O6致密陶瓷所需温度,防止过烧和晶粒过度长大现象的发生,使得两种陶瓷可在同样的低温下反应结晶形核,同时两种钽酸钴晶粒同时结晶长大相互竞争,起到了抑制晶粒长大和提高材料致密度的作用,获得晶粒尺寸小于10微米的陶瓷材料,有效提高材料的断裂韧性并降低热导率,最终陶瓷材料的致密度大于99%,气孔率小于1%,材料纯度大于99%。

权利要求 :

1.一种两相钽酸钴陶瓷块体,其特征在于,所述两相钽酸钴陶瓷块体由Co4Ta2O9和CoTa2O6构成,且所述Co4Ta2O9和CoTa2O6的摩尔比为X:(1‑X),1>X>0;

‑1 ‑1 1/2

两相钽酸钴陶瓷块体的热导率为1.5~2.8W.m .K ,断裂韧性>2MPa.m 。

2.一种两相钽酸钴陶瓷块体的制备方法,其特征在于,所述两相钽酸钴陶瓷块体由Co4Ta2O9和CoTa2O6构成,且所述Co4Ta2O9和CoTa2O6的摩尔比为X:(1‑X),1>X>0;具体包括以下步骤:将碳酸钴进行煅烧分解,煅烧温度为430~450℃,得到氧化钴粉末;

将草酸钽进行煅烧分解,煅烧温度为910~920℃,得到氧化钽粉末;

根据待制备的两相钽酸钴陶瓷块体中由Co4Ta2O9和CoTa2O6的摩尔比称取所述氧化钴粉末和氧化钽末,并加入介质溶剂进行研磨,干燥后得到粉末A;

将所述粉末A保温烧结,得到两相粉体B;将所述粉末A保温烧结时,烧结温度为860~

880℃,保温时间为1~1.5h;

将所述两相粉体B通过冷等静压压制成型,再进行保温烧结,得到所述两相钽酸钴陶瓷块体;其中,保温烧结温度为950~980℃,保温时间为2~3h;

‑1 ‑1 1/2

所述两相钽酸钴陶瓷块体的热导率为1.5~2.8W.m .K ,断裂韧性>2MPa.m ,致密度>99%,气孔率<1%,晶粒尺寸<10μm。

3.如权利要求2所述的一种两相钽酸钴陶瓷块体的制备方法,其特征在于,研磨时,转速为2360~2400r/min,研磨时间为22~24h。

4.如权利要求3所述的一种两相钽酸钴陶瓷块体的制备方法,其特征在于,所述冷等静压的压力为280~300MPa,保压时间为6~8min。

说明书 :

一种两相钽酸钴陶瓷块体及其制备方法

技术领域

[0001] 本发明属于陶瓷材料技术领域,尤其涉及一种两相钽酸钴陶瓷块体及其制备方法。

背景技术

[0002] 新型陶瓷是采用人工合成的高纯度无机化合物为原料,在严格控制的条件下经成型、烧结和其他处理而制成具有微细结晶组织的无机材料。它具有一系列优越的物理、化学和生物性能,其应用范围是传统陶瓷远远不能相比的,这类陶瓷又称为特种陶瓷或精细陶瓷。
[0003] Co4Ta2O9和CoTa2O6陶瓷均具有优异的高温相稳定性和抗腐蚀性能,利用钽酸钴与NiCoCrAlY粘结层的优异高温化学相容性和极高结合强度大幅度,可提高涂层材料的服役寿命。但是,Co4Ta2O9和CoTa2O6陶瓷断裂韧性差、热导率高,限制了它们的进一步应用。

发明内容

[0004] 本发明的目的是提供一种两相钽酸钴陶瓷块体及其制备方法,以提升钽酸钴的断裂韧性,且降低其热导率,扩展其应用场景。
[0005] 本发明采用以下技术方案:一种两相钽酸钴陶瓷块体,两相钽酸钴陶瓷块体由Co4Ta2O9和CoTa2O6构成,且Co4Ta2O9和CoTa2O6的摩尔比为X:(1‑X),1>X>0。
[0006] 进一步地,两相钽酸钴陶瓷块体的热导率为1.5~2.8W.m‑1.K‑1,断裂韧性>1/2
2MPa.m 。
[0007] 本发明的另一种技术方案:一种两相钽酸钴陶瓷块体的制备方法,两相钽酸钴陶瓷块体由Co4Ta2O9和CoTa2O6构成,且Co4Ta2O9和CoTa2O6的摩尔比为X:(1‑X),1>X>0;具体包括以下步骤:
[0008] 将碳酸钴进行煅烧分解,煅烧温度为430~450℃,得到氧化钴粉末;
[0009] 将草酸钽进行煅烧分解,煅烧温度为910~920℃,得到氧化钽粉末;
[0010] 根据待制备的两相钽酸钴陶瓷块体中由Co4Ta2O9和CoTa2O6的摩尔比称取氧化钴粉末和氧化钽末,并加入介质溶剂进行研磨,干燥后得到粉末A;
[0011] 将粉末A保温烧结,得到两相粉体B;
[0012] 将两相粉体B通过冷等静压压制成型,再进行保温烧结,得到两相钽酸钴陶瓷块体;其中,保温烧结温度为950~980℃,保温时间为2~3h。
[0013] 进一步地,研磨时,转速为2360~2400r/min,研磨时间为22~24h。
[0014] 进一步地,将粉末A保温烧结时,烧结温度为860~880℃,保温时间为1~1.5h。
[0015] 进一步地,冷等静压的压力为280~300MPa,保压时间为6~8min。
[0016] 进一步地,两相钽酸钴陶瓷块体的热导率为1.5~2.8W.m‑1.K‑1,断裂韧性>1/2
2MPa.m ,致密度>99%,气孔率<1%,晶粒尺寸<10μm。
[0017] 本发明的有益效果是:通过热分解获得具有高度烧结、反应活性的氧化钴和氧化钽,有效降低了反应生成Co4Ta2O9和CoTa2O6致密陶瓷所需温度,防止过烧和晶粒过度长大现象的发生,使得两种陶瓷可在同样的低温下反应结晶形核,同时两种钽酸钴晶粒同时结晶长大相互竞争,起到了抑制晶粒长大和提高材料致密度的作用,获得晶粒尺寸小于10微米的陶瓷材料,有效提高材料的断裂韧性并降低热导率,最终陶瓷材料的致密度大于99%,气孔率小于1%,材料纯度大于99%。

附图说明

[0018] 图1为本发明实施例1制得的两相钽酸钴陶瓷的实物图;
[0019] 图2为本发明实施例1制得的两相钽酸钴陶瓷的XRD衍射图;
[0020] 图3为本发明实施例1制得的两相钽酸钴陶瓷的扫描电镜结果图;
[0021] 图4为本发明实施例1制得的两相钽酸钴陶瓷的热导率随温度变化示意图;
[0022] 图5为本发明的两相钽酸钴陶瓷的硬度随成分变化示意图。

具体实施方式

[0023] 下面结合附图和具体实施方式对本发明进行详细说明。
[0024] Co4Ta2O9和CoTa2O6陶瓷的断裂韧性均小于2MPa.m1/2,且导热率为2~6W.m‑1.K‑1。为了解决钽酸钴陶瓷的断裂韧性差和热导率高的问题,本发明制备了两相钽酸钴陶瓷,使其1/2
具有优异的综合力学性质:合适的杨氏模量(~200GPa)、优异的断裂韧性(>2MPa.m )和较高的硬度(~10GPa),同时有效降低其热导率,使其可作为高温隔热耐磨防护涂层材料应用。
[0025] 本发明公开了一种两相钽酸钴陶瓷块体,两相钽酸钴陶瓷块体由Co4Ta2O9和CoTa2O6构成,且Co4Ta2O9和CoTa2O6的摩尔比为X:(1‑X),1>X>0。该两相钽酸钴陶瓷块体的热‑1 ‑1 1/2导率为1.5~2.8W.m .K ,断裂韧性>2MPa.m 。
[0026] 本发明还公开了一种两相钽酸钴陶瓷块体的制备方法,两相钽酸钴陶瓷块体由Co4Ta2O9和CoTa2O6构成,且Co4Ta2O9和CoTa2O6的摩尔比为X:(1‑X),1>X>0;具体包括以下步骤:
[0027] 将碳酸钴进行煅烧分解,煅烧温度为430~450℃,得到氧化钴粉末;将草酸钽进行煅烧分解,煅烧温度为910~920℃,得到氧化钽粉末。热分解后的氧化钴和氧化钽具有极高的活性,使得氧化钴和氧化钽反应所需能量及温度剧烈下降。原本Co4Ta2O9的熔点低于CoTa2O6,使用具有高度活性的原料氧化物后,可以使两者在低温下可同时反应生成。
[0028] 在本发明中针对当前直接用氧化钴和氧化钽粉末为原料通过固相高温烧结制备的单相钽酸钴(Co4Ta2O9或CoTa2O6)陶瓷断裂韧性差和热导率高的问题,采用了煅烧分解获得氧化钴粉末和氧化钽粉末,通过热分解获得具有高度烧结、反应活性的氧化钴和氧化钽,有效降低烧结温度的同时在低温下可以同时生成Co4Ta2O9和CoTa2O6陶瓷,避免烧结温度过高导致晶粒过烧和过分长大的问题。最终产物具有高纯度、高致密度、力学性能优异和低热导率的特点,没有其他杂质的产生。如果直接使用普通氧化钴和氧化钽粉末作为原料,通过固相法烧结制备钽酸钴陶瓷时,当原料的化学计量比偏离Co4Ta2O9或CoTa2O6时烧结后得到的是单相钽酸钴与原料粉末的混合物,无法得到Co4Ta2O9和CoTa2O6为产物的两相陶瓷,从而无法对材料的性质及形貌进行有效调控。
[0029] 根据待制备的两相钽酸钴陶瓷块体中由Co4Ta2O9和CoTa2O6的摩尔比称取氧化钴粉末和氧化钽末,并加入介质溶剂进行研磨,干燥后得到粉末A。研磨时转速为2360~2400r/min,研磨时间为22~24h。对最终产物中的Co4Ta2O9和CoTa2O6摩尔比进行控制,通过研磨的方法进行混料既可以获得均匀混合的粉末,又可以细化粉末从而进一步降低最终烧结温度避免过烧和晶粒过度长大的现象。
[0030] 将粉末A保温烧结,烧结温度为860~880℃,保温时间为1~1.5h。得到两相粉体B;通过对未压制成形的粉末直接进行烧结可获得混合均匀的两相钽酸钴粉末,使其适合作为高温隔热耐磨陶瓷使用。获得混合均匀的Co4Ta2O9和CoTa2O6两相陶瓷粉体,其通过喷雾造粒后可作为喷涂粉体使用。
[0031] 将两相粉体B通过冷等静压压制成型,冷等静压的压力为280~300MPa,再进行保温烧结,保压时间为6~8min,得到两相钽酸钴陶瓷块体;其中,保温烧结温度为950~980℃,保温时间为2~3h。在低温烧结过程中Co4Ta2O9和CoTa2O6的晶粒同时形核长大相互竞争,从而有益于排出陶瓷内气体、降低气孔率,同时抑制晶粒过度长大而获得大小均匀的晶粒。高度活性氧化物原料的使用避免了优先生成某一种钽酸钴。对粉末进行压制成形,没有采用放电等离子烧结和热压烧结制备致密块体材料,以及没有添加任何烧结助剂是为了防止烧结过程模具中的污染物如进入试样内,降低试样纯度;采用纳米级的高活性度粉体原料保证了冷等静压后获得的坯体通过较低温度的无压烧结即可获得致密的陶瓷块体。
[0032] 本发明制备得到的两相钽酸钴陶瓷块体的热导率为1.5~2.8W.m‑1.K‑1,断裂韧性1/2
>2MPa.m ,致密度>99%,气孔率<1%,晶粒尺寸<10μm,利用两相材料的相互作用对材
1/2 ‑1 ‑1
料的杨氏模量(~200GPa)、断裂韧性(>2MPa.m )和热导率(1.5‑2.8W.m .K )进行调控,同时保持钽酸钴陶瓷的高温稳定性、与粘结层结合强度优异和高硬度等特点。
[0033] 通过控制原料的比例、烧结温度和保温时间对两种材料的含量进行控制,而不会单独生成其中一种钽酸钴产物和氧化物原料的混合物。如果在钽酸钴中加入其它的陶瓷材料,如稀土钽酸盐、稀土磷酸盐、稀土锆酸盐和稀土硅酸盐,这些材料均会在高温下与钽酸钴反应从而破坏其性能特点,限制材料的应用。
[0034] 实施例1:
[0035] 将碳酸钴和草酸钽置于氧化铝坩埚后,在中温炉中进行煅烧分解。碳酸钴的煅烧温度为450℃,保温时间为1小时;草酸钽的煅烧温度为910℃,保温时间为1小时。
[0036] 根据(Co4Ta2O9)0.2(CoTa2O6)0.8摩尔比称量氧化钴和氧化钽粉末原料,加入无水乙醇将其置于研磨机中进行球磨混料的同时细化粉末粒径,转速2400转每分钟,研磨混料时间为24小时。取出后在80℃保温7小时,干燥后得到粉末A。直接将粉末A在860℃保温1小时,可获得混合均匀的(Co4Ta2O9)0.2(CoTa2O6)0.8两相粉体B。
[0037] 称取2.6g的粉末B置于冷等静压机中进行压制成型,压力为300MPa,保压时间8分钟,随后在950℃保温2.5小时,烧结最终得到致密的两相(Co4Ta2O9)0.2(CoTa2O6)0.8钽酸钴陶瓷材料。
[0038] 通过上述过程可获得致密(Co4Ta2O9)0.2(CoTa2O6)0.8钽酸钴块体,该块体的实物图如图1所示,制备得到的两相钽酸钴陶瓷块体致密度为99.9%,平均晶粒尺寸小于10微米,如图2所示,为该产物的XRD衍射图,图中黑色标记的衍射峰属于CoTa2O6,其余的衍射峰属于Co4Ta2O9,根据该图可知,无第三种物质的衍射峰,所有XRD衍射峰属于(Co4Ta2O9)和(CoTa2O6)的特征峰。经过测试陶瓷材料的杨氏模量为185GPa,维氏硬度为8.2GPa,在25~‑1 ‑11000℃的温度范围内致密材料的热导率为1.33~2.74W.m .K 。
[0039] 图3显示制备得到的块体陶瓷材料晶粒尺寸为微米级别,平均晶粒尺寸在约为5微米,同时晶粒之间结合良好,裂纹和气孔等缺陷极少,保证了材料具有极高的致密度和优异的力学性质。图4为实施例1制备的致密(Co4Ta2O9)0.2(CoTa2O6)0.8钽酸钴块体热导率随温度变化情况,可以看到随着温度的升高热导率不断下降,其最小值约为1.3W/m/K,同时高温下没有发现由于热辐射导致的热导率升高现象,证明此类材料在高温下具有优异的隔热防护效果。图5显示随着X值的增大材料的硬度不断增大,这是由于在此两相材料中CoTa2O6具有更高的硬度导致的,较高的硬度有利于材料抵抗外来粒子的冲击保持材料的整体性,延服役寿命。